DONG Xinyu, MI Rui, WANG Fuyi, et al. Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070404.
Citation: DONG Xinyu, MI Rui, WANG Fuyi, et al. Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070404.

Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism

More Information
  • Received Date: July 30, 2024
  • Available Online: February 19, 2025
  • Sea cucumber polysaccharides (SCPs) are characterized by their unique structural configurations and broad-spectrum bioactivities, which are manifested through their regulatory functions or interactions with microbial communities upon entering the organism. This paper systematically reviews SCPs into two primary categories: glycosaminoglycans (GAGs) and sulfated fucoidans, with detailed comparisons of their molecular weights, chemical compositions, monosaccharide ratios and sulfate contents. The mechanisms underlying their therapeutic effects are elucidated, including anticoagulant activity through thrombin inhibition and fibrinolytic enhancement, as well as immunomodulatory effects via macrophage activation and tumor cell apoptosis induction. Furthermore, the prebiotic potential of SCPs in modulating gut microbiota and alleviating metabolic disorders such as obesity and diabetes is reviewed. The feasibility of SCPs as bioactive agents for addressing various health issues, including thrombosis, cancer, obesity, and diabetes is demonstrated. Future research directions emphasize the development of SCPs in pharmaceutical and functional food applications, providing a theoretical foundation for their functional utilization.
  • [1]
    FAN X R, MA Y S, LI M, et al. Thermal treatments and their influence on physicochemical properties of sea cucumbers:A comprehensive review[J]. International Journal of Food Science & Technology,2022,57(9):5790−5800.
    [2]
    VARSHA K, JONA F, PAULSN B S, et al. Sulphated polysaccharide from the sea cucumber frondosa affect maturation of human dendritic cells and their activation of allogeneic CD4(+) T cells in vitro[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(2):108−117. doi: 10.1016/j.bcdf.2013.09.009
    [3]
    ZHAO Y C, XUE C H, ZHANG T T, et al. Saponins from sea cucumber and their biological activities[J]. Journal of Agricultural and Food Chemistry,2018,66(28):7222−7237. doi: 10.1021/acs.jafc.8b01770
    [4]
    ZHU Z J, HAN Y H, DING Y, et al. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(3):2882−2913. doi: 10.1111/1541-4337.12754
    [5]
    GUO W L, DENG J C, PAN Y Y, et al. Hypoglycemic and hypolipidemic activities of gifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin[J]. International Journal of Biological Macromolecules,2020,153:1231−1240. doi: 10.1016/j.ijbiomac.2019.10.253
    [6]
    YANG D D, LIN F D, HUANG Y Y, et al. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera[J]. International Journal of Biological Macromolecules,2020,155:1003−1018. doi: 10.1016/j.ijbiomac.2019.11.064
    [7]
    LI J H, LI S, WU L M, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J]. Carbohydrate Polymers,2019,209:82−91. doi: 10.1016/j.carbpol.2018.12.061
    [8]
    SONG S, PENG H R, WNAG Q L, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2[J]. Food & Function,2020,11(9):7415−7420.
    [9]
    CHAHED L, BALTI R, ELHISS S, et al. Anticoagulant activity of fucosylated chondroitin sulfate isolated from cucumaria syracusana[J]. Process Biochemistry,2020,91:149−157. doi: 10.1016/j.procbio.2019.12.006
    [10]
    MOURAO P A S. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs[J]. Marine Drugs,2015,13(5):2770−2784. doi: 10.3390/md13052770
    [11]
    PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. Journal of Traditional and Complementary Medicine,2018,8(3):341−351. doi: 10.1016/j.jtcme.2017.06.007
    [12]
    LI Y, LI M, XU B J, et al. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers:A comprehensive review[J]. Journal of Functional Foods,2021,87:104744. doi: 10.1016/j.jff.2021.104744
    [13]
    XU H, ZHOU Q, LIU B, et al. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health:Structures and biological activities[J]. Carbohydrate Polymers,2022,275:118691. doi: 10.1016/j.carbpol.2021.118691
    [14]
    BISHNOI M, JAIN A, HURKAT P, et al. Chondroitin sulphate:A focus on osteoarthritis[J]. Glycoconjugate Journal,2016,33(5):693−705. doi: 10.1007/s10719-016-9665-3
    [15]
    LI S N, ZHONG W, PAN Y, et al. Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis[J]. Carbohydrate Polymers,2021,269:118290. doi: 10.1016/j.carbpol.2021.118290
    [16]
    CHEN S G, LI G Y, WU N, et al. Sulfation pattern of the fucose branch is important for the anticoagulant and antithrombotic activities of fucosylated chondroitin sulfates[J]. Biochimica Et Biophysica Acta,2013,1830(4):3054−3066. doi: 10.1016/j.bbagen.2013.01.001
    [17]
    USTYUZHANINA N E, BILAN M I, DMITRENOKE A S, et al. Fucosylated chondroitin sulfate from the sea cucumber Hemioedema spectabilis:structure and influence on cell adhesion and tubulogenesis[J]. Carbohydrate Polymers,2020,234:115895. doi: 10.1016/j.carbpol.2020.115895
    [18]
    尹利昂, 陈士国, 薛长湖, 等. 4种海参中含岩藻糖支链的硫酸软骨素化学组成差异的分析[J]. 中国海洋大学学报(自然科学版),2009,39(S1):63−68. [YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition),2009,39(S1):63−68.]

    YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition), 2009, 39(S1): 63−68.
    [19]
    严鲁峰. 海参岩藻糖基化硫酸软骨素寡糖抗凝血机制研究[D]. 宁波:浙江大学, 2020:52. [YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo:Zhejiang University, 2020:52.]

    YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo: Zhejiang University, 2020: 52.
    [20]
    ZHANG Y J, SONG S L, SONG D, et al. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus[J]. Journal of Bioscience and Bioengineering,2010,109(1):67−72. doi: 10.1016/j.jbiosc.2009.07.010
    [21]
    王亚囡, 仇文峰, 杨毅, 等. 分子量对海参岩藻聚糖硫酸酯在体内吸收的影响[J]. 中国海洋药物, 2020, 39(2):42−49. [WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J]. Chinese Journal of Marine Medicine, 2020, 39(2):42−49.]

    WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J]. Chinese Journal of Marine Medicine, 2020, 39(2): 42−49.
    [22]
    LI C, LI S J, ZHANG X, et al. Fucoidan from sea cucumber Holothuria polii:structural elucidation and stimulation of ematopoietic activity[J]. Journal of Biological Macromolecules,2020,150:1123−1121.
    [23]
    CHEN S G, HU Y Q, YE X Q, et al. Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus[J]. Biochimica et Biophysica Acta,2012,1820(7):989−1000. doi: 10.1016/j.bbagen.2012.03.002
    [24]
    YU L, CHANG Y G, HU Y F, et al. Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus[J]. Food Chemistry,2015,180:71−76. doi: 10.1016/j.foodchem.2015.02.034
    [25]
    CAI Y, YIN R H, ZHOU L T, et al. An anticoagulant fucan sulfate with hexasaccharide repeating units from the sea cucumber Holothuria albiventer[J]. Carbohydrate Research,2018,464:12−18. doi: 10.1016/j.carres.2018.05.007
    [26]
    李珊. 海参硫酸多糖对营养过剩诱发的代谢疾病调控机制研究[D]. 宁波:浙江大学, 2018:15. [LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo:Zhejiang University, 2018:15.]

    LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo: Zhejiang University, 2018: 15.
    [27]
    齐俊华, 王展, 石德玲, 等. 小有刺参硫酸软骨素和岩藻聚糖硫酸酯抗血小板聚集活性的比较[J]. 中国海洋药物,2019,38(1):42−48. [QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine,2019,38(1):42−48.]

    QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine, 2019, 38(1): 42−48.
    [28]
    DONG X , PAN R, DENG X, et al. Separation, purification, anticoagulant activity and preliminary structural characterization of two sulfated polysaccharides from sea cucumber Acaudina molpadioidea and Holothuria nobilis[J]. Process Biochemistry, 2014, 49(8):1352−1361.
    [29]
    MOU J J, LI Q, QI X H, et al. Structural comparison, antioxidant and anti-inflammatory properties of fucosylated chondroitin sulfate of three edible sea cucumbers[J]. Carbohydrate Polymers,2018,185:41−47. doi: 10.1016/j.carbpol.2018.01.017
    [30]
    MOU J J, WANG C, LI W J, et al. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana[J]. International Journal of Biological Macromolecules,2017,98:208−215. doi: 10.1016/j.ijbiomac.2017.01.123
    [31]
    SHI D L, QI J H, ZHANG H W, et al. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers[J]. Carbohydrate Polymers,2011,83(2):688−696. doi: 10.1016/j.carbpol.2010.08.040
    [32]
    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Two fucosylated chondroitin sulfates from the sea cucumber Eupentacta fraudatrix[J]. Carbohydrate Polymers,2017,164:8−12. doi: 10.1016/j.carbpol.2017.01.034
    [33]
    CHANG Y G, HU Y F, YU L, et al. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa[J]. Carbohydrate Polymers,2016,136:1091−1097. doi: 10.1016/j.carbpol.2015.10.016
    [34]
    YIN J Y, YANG X Q, XIA B, et al. The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice[J]. Journal of Functional Foods,2019,61:103493. doi: 10.1016/j.jff.2019.103493
    [35]
    LI Q, JIANG S X, SHI W W, et al. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus[J]. Carbohydrate Polymers,2020,231:115767. doi: 10.1016/j.carbpol.2019.115767
    [36]
    MAO H, CAI Y, LI S N, et al. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides:Unusual structure and anti-intrinsic tenase activity[J]. Carbohydrate Polymers,2020,245:116503. doi: 10.1016/j.carbpol.2020.116503
    [37]
    YUAN Q, LI H, WANG Q, et al. Deaminative-cleaved S. monotuberculatus fucosylated glycosaminoglycan:Structural elucidation and anticoagulant activity[J]. Carbohydr Polym,2022,298:120072. doi: 10.1016/j.carbpol.2022.120072
    [38]
    吕律. 不同分子量仿刺参糖胺聚糖抗凝血、抗血栓活性研究[D]. 青岛:中国海洋大学, 2015:61. [LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao:Ocean University of China, 2015:61.]

    LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao: Ocean University of China, 2015: 61.
    [39]
    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Fucosylated chondroitin sulfates from the sea cucumbers Paracaudina chilensis and Holothuria hilla:Structures and anticoagulant activity[J]. Marine Drugs,2020,18(11):540. doi: 10.3390/md18110540
    [40]
    USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. A highly regular fucosylated chondroitin sulfate from the sea cucumber Massinium magnum:structure and effects on coagulation[J]. Carbohydrate Polymers,2017,167:20−26. doi: 10.1016/j.carbpol.2017.02.101
    [41]
    SHNAG F N, GAO N, YIN R H, et al. Precise structures of fucosylated glycosaminoglycan and its oligosaccharides as novel intrinsic factor Xase inhibitors[J]. European Journal of Medicinal Chemistry,2018,148:423−435. doi: 10.1016/j.ejmech.2018.02.047
    [42]
    ZHAO Y, ZHANG D H, WANG S, et al. Holothurian glycosaminoglycan inhibits metastasis and thrombosis via targeting of nuclear factor-kappab/tissue factor/Factor Xa pathway in melanoma B16F10 cells[J]. International Journal of Biological Macromolecules,2013,8(2):56557.
    [43]
    YUE Z Q, WANG A Y, ZHU Z J, et al. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells[J]. Molecular and Cellular Biochemistry,2015,410(1-2):143−154. doi: 10.1007/s11010-015-2546-4
    [44]
    张珣, 王静凤, 杨玉红, 等. 海参岩藻聚糖硫酸酯抑制小鼠肿瘤生长和转移及其作用机制的研究[J]. 中国药理学通报,2011,27(8):1098−1103. [ZHANG X, WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin,2011,27(8):1098−1103.] doi: 10.3969/j.issn.1001-1978.2011.08.016

    ZHANG X, WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin, 2011, 27(8): 1098−1103. doi: 10.3969/j.issn.1001-1978.2011.08.016
    [45]
    邢淑雁, 于钦辉, 杨菁华, 等. 海洋生物多糖抗肿瘤作用研究进展[J]. 中华中医药学刊, 2021, 39(11):158−161. [XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11):158−161.]

    XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11): 158−161.
    [46]
    薛魁金. 刺参粘多糖对人胰腺癌细胞株SW1990增殖的抑制作用[D]. 青岛:青岛大学, 2012:135-136. [XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao:Qingdao University, 2012:135-136.]

    XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao: Qingdao University, 2012: 135-136.
    [47]
    SONG Y, JIN S J, CUI L H, et al. Immunomodulatory effect of Stichopus japonicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats[J]. Molecules,2013,18(6):7179−7193. doi: 10.3390/molecules18067179
    [48]
    彭玲, 于壮, 宋扬. 刺参黏多糖对Hela细胞增殖分化的影响[J]. 青岛大学医学院学报,2008(3):212−215,219. [PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University,2008(3):212−215,219.]

    PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University, 2008(3): 212−215,219.
    [49]
    牛娟娟, 宋扬. 海洋刺参多糖对宫颈癌细胞周期的影响及其机制[J]. 齐鲁医学杂志,2010,25(5):386−388. [NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal,2010,25(5):386−388.] doi: 10.3969/j.issn.1008-0341.2010.05.004

    NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal, 2010, 25(5): 386−388. doi: 10.3969/j.issn.1008-0341.2010.05.004
    [50]
    李甜甜. 海参多糖抗肺癌活性及对T细胞免疫功能调节研究[D]. 青岛:青岛大学, 2015:50. [LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao:Qingdao University, 2015:50.]

    LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao: Qingdao University, 2015: 50.
    [51]
    张晓波, 孙辉. 肠道菌群对人体健康的作用及其应用[J]. 生物医学转化,2021,2(2):39−45. [ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine,2021,2(2):39−45.]

    ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine, 2021, 2(2): 39−45.
    [52]
    HU S W, WANG J H, WANG J F, et al. Fucoidan from Acaudina molpadioides improves insulin resistance by altering gut microbiota dysfunction[J]. Journal of Functional Foods,2019,57:59−67. doi: 10.1016/j.jff.2019.03.033
    [53]
    刘昕, 齐延民, 张健, 等. 海藻多糖与肠道菌群相互作用研究进展[J]. 食品安全质量检测学报, 2022, 13(17):5723−5729. [LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17):5723−5729.]

    LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17): 5723−5729.
    [54]
    KAOUTARI A E, ARMOUGOM F, GORDON J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nature Reviews Microbiology,2013,11(7):497−504. doi: 10.1038/nrmicro3050
    [55]
    吴小松. 肠道菌群对肥胖和相关代谢疾病的影响[J]. 农产品加工,2022(11):89−93,98. [WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing,2022(11):89−93,98.]

    WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing, 2022(11): 89−93,98.
    [56]
    LIU B N, LIU X D, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837
    [57]
    ZENG Q, LI N S, PAN X F, et al. Clinical management and treatment of obesity in China[J]. The Lancet Diabetes & Endocrinology,2021,9(6):393−405.
    [58]
    BENDOR C D, BARDUGO A, HAMIEL O P, et al. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity[J]. Cardiovascular Diabetology,2020,19(1):79. doi: 10.1186/s12933-020-01052-1
    [59]
    FREDRIK B, DING H, WNAG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15718−15723.
    [60]
    LI S, LI J H, MAO G Z, et al. Fucosylated chondroitin sulfate from Isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet[J]. International Journal of Biological Macromolecules,2019,124:377−388. doi: 10.1016/j.ijbiomac.2018.11.167
    [61]
    HU S W, WANG J H, XU Y L, et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice[J]. Food & Function, 2019, 10(3):1736−1746.
    [62]
    LI S, LI J H, MAO G Z, et al. A fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice[J]. Food & Function,2018,9(10):5371−5380.
    [63]
    王馥仪, 于双, 董新玉, 等. 海洋多糖的结构、组成及其抑制肥胖作用机制的研究进展[J]. 食品科学,2024,45(17):335−347. [WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science,2024,45(17):335−347.] doi: 10.7506/spkx1002-6630-20231208-070

    WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science, 2024, 45(17): 335−347. doi: 10.7506/spkx1002-6630-20231208-070
    [64]
    LI S, LI J H, MAO G Z, et al. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice[J]. Journal of Functional Foods,2019,55:193−210. doi: 10.1016/j.jff.2019.02.001
    [65]
    LI Y M, LIU Y P, LIANG J J, et al. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT- and AMPK-mediated signaling pathways in type 2 diabetes mellitus rats[J]. Journal of Agricultural and Food Chemistry,2019,67(47):13051−13060. doi: 10.1021/acs.jafc.9b04931
    [66]
    GILLANI S W, ABDUL M I, ANSARI I A, et al. Predicting relationship of eating behavior, physical activity and smoking with type II diabetes and related comorbidities among saudi citizens:cross-sectional observational study[J]. International Journal of Diabetes in Developing Countries,2019,39(1):13410.
    [67]
    CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas:global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271−281. doi: 10.1016/j.diabres.2018.02.023
    [68]
    LIN H T, ZHANG J W, LI S Y, et al. Polysaccharides isolated from Laminaria japonica attenuates gestational diabetes mellitus by regulating the gut microbiota in mice[J]. Food Frontiers,2021,2(2):208−217. doi: 10.1002/fft2.79
    [69]
    PUSHPANATHAN P, SRIKANTH, SESHADRI K G, et al. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a tertiary care centre in chennai, india[J]. Indian Journal of Endocrinology and Metabolism,2016,20(4):523−530. doi: 10.4103/2230-8210.183474
    [70]
    ZHAO F Q, LIU Q B, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J]. Food and Chemical Toxicology,2020,135:110886. doi: 10.1016/j.fct.2019.110886
    [71]
    HU S W, WANG J F, XU H, et al. Fucosylated chondroitin sulphate from sea cucumber inhibits high-fat-sucrose diet-induced apoptosis in mouse pancreatic islets via down-regulating mitochondrial signaling pathway[J]. Journal of Functional Foods,2014,7:517−526. doi: 10.1016/j.jff.2014.01.004
    [72]
    WANG J H, HU S W, JIANG W, et al. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice[J]. International Immunopharmacology,2016,31:15−23. doi: 10.1016/j.intimp.2015.12.009
    [73]
    ZHU Q Y, LIN L Z, ZHAO M M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats:New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. International Journal of Biological Macromolecules,2020,159:34−45. doi: 10.1016/j.ijbiomac.2020.05.043
    [74]
    HU S W, XIA G H, WANG J F, et al. Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice[J]. Journal of Functional Foods,2014,10:128−138. doi: 10.1016/j.jff.2014.05.012
    [75]
    LI S, LI J H, ZHI Z J, et al. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers[J]. Carbohydrate Polymers,2017,173:330−337. doi: 10.1016/j.carbpol.2017.05.063
    [76]
    XU X Q, CHANG Y G, XUE C H, et al. Gastric protective activities of sea cucumber fucoidans with different molecular weight and chain conformations:a structure-activity relationship investigation[J]. Food Chemistry,2018(3):8615−8622.
    [77]
    SHIDA M, MIKAMI T, TAMURA J, et al. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity:Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus[J]. Biochemical and Biophysical Research Communications,2017,487(3):678−683. doi: 10.1016/j.bbrc.2017.04.114
  • Related Articles

    [1]ZHANG Ziyi, ZHAO Feiran, SUO Xiaoyi, YANG Jiwen, WEI Guanmian, SANG Yaxin. Research Progress on the Anti-inflammatory Mechanism of Ziziphus jujuba Mill. and Its Bioactive Ingredients[J]. Science and Technology of Food Industry, 2025, 46(6): 407-416. DOI: 10.13386/j.issn1002-0306.2024040216
    [2]NING Miao, WU Rina, HE Kairu, BAO Yufei, ZHANG Yuxin, YANG Hui, WU Junrui. Progress on the Mechanism of Action of Probiotics in Alleviating Cow's Milk Allergy[J]. Science and Technology of Food Industry, 2025, 46(5): 371-379. DOI: 10.13386/j.issn1002-0306.2024030148
    [3]CHEN Qiuyu, ZHAO Ran, MENG Meishan, DOU Xinyu, CHEN Biyi, ZHAO Qiancheng, LI Ying. Research Progress on Immune Regulation Activities of Marine Sulfate Polysaccharides[J]. Science and Technology of Food Industry, 2025, 46(1): 413-423. DOI: 10.13386/j.issn1002-0306.2024020170
    [4]HUANG Yanyan, LIANG Yantong, WU Jiamin, ZENG Xin'an, ZENG Qiaohui, CAO Shilin, LIAO Lan, WANG Langhong. A Review of the Mechanism of Probiotics Controlling Obesity through Intestinal Flora[J]. Science and Technology of Food Industry, 2023, 44(8): 1-8. DOI: 10.13386/j.issn1002-0306.2022080280
    [5]TANG Manyu, WANG Wanqing, QIANG Jingwen, HUA Wei, WU Shuang, LI Yali, ZHEN Xin, LI Chungeng, CHENG Yanling. Interaction and Mechanism of Probiotics with Gut Flora and Immune Regulation: A Review[J]. Science and Technology of Food Industry, 2022, 43(16): 486-493. DOI: 10.13386/j.issn1002-00306.2022030025
    [6]CHEN Yanjun, LIU Jiahong, ZHANG Xiang, CUI Jingai, CHEN Xiaoping. Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357-362. DOI: 10.13386/j.issn1002-0306.2020100085
    [7]NIU Jiahui, YUAN Jing, WEI Ran, ZHANG Xiaofu, ZHANG Huifang, JIA Jinyu, ZHAO Wen. Protective Effect and Mechanism Study of Jujube Polysaccharides on Intestinal Immune Barrier in Mice[J]. Science and Technology of Food Industry, 2021, 42(4): 295-300,306. DOI: 10.13386/j.issn1002-0306.2020060068
    [8]ZHANG Xiu-juan, MA Jun-chi, ZHAO Jin-tong, GAO Shi-yong. Advances on the Effect of Berberine on Intestinal Flora[J]. Science and Technology of Food Industry, 2020, 41(23): 359-363. DOI: 10.13386/j.issn1002-0306.2020030333
    [9]XIAO Xue-jun, XINHUA·Na-bi. Research Progress on Immunomodulation and Antitumor Effect of Probiotics[J]. Science and Technology of Food Industry, 2020, 41(10): 321-326. DOI: 10.13386/j.issn1002-0306.2020.10.054
    [10]DU Xiao-lin, HUANG Huang, LI Qian, WU Zheng-qi, CHEN Xiao-qiang, MI Zhi-yuan. Advances in anti-tumor effect of catechins EGCG and its mechanism[J]. Science and Technology of Food Industry, 2017, (24): 308-314. DOI: 10.13386/j.issn1002-0306.2017.24.060

Catalog

    Article Metrics

    Article views (51) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return