Citation: | DONG Xinyu, MI Rui, WANG Fuyi, et al. Research Progress of Sea Cucumber Polysaccharides on the Structure, Health Efficacy and Mechanism[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070404. |
[1] |
FAN X R, MA Y S, LI M, et al. Thermal treatments and their influence on physicochemical properties of sea cucumbers:A comprehensive review[J]. International Journal of Food Science & Technology,2022,57(9):5790−5800.
|
[2] |
VARSHA K, JONA F, PAULSN B S, et al. Sulphated polysaccharide from the sea cucumber frondosa affect maturation of human dendritic cells and their activation of allogeneic CD4(+) T cells in vitro[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(2):108−117. doi: 10.1016/j.bcdf.2013.09.009
|
[3] |
ZHAO Y C, XUE C H, ZHANG T T, et al. Saponins from sea cucumber and their biological activities[J]. Journal of Agricultural and Food Chemistry,2018,66(28):7222−7237. doi: 10.1021/acs.jafc.8b01770
|
[4] |
ZHU Z J, HAN Y H, DING Y, et al. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(3):2882−2913. doi: 10.1111/1541-4337.12754
|
[5] |
GUO W L, DENG J C, PAN Y Y, et al. Hypoglycemic and hypolipidemic activities of gifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin[J]. International Journal of Biological Macromolecules,2020,153:1231−1240. doi: 10.1016/j.ijbiomac.2019.10.253
|
[6] |
YANG D D, LIN F D, HUANG Y Y, et al. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera[J]. International Journal of Biological Macromolecules,2020,155:1003−1018. doi: 10.1016/j.ijbiomac.2019.11.064
|
[7] |
LI J H, LI S, WU L M, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity[J]. Carbohydrate Polymers,2019,209:82−91. doi: 10.1016/j.carbpol.2018.12.061
|
[8] |
SONG S, PENG H R, WNAG Q L, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2[J]. Food & Function,2020,11(9):7415−7420.
|
[9] |
CHAHED L, BALTI R, ELHISS S, et al. Anticoagulant activity of fucosylated chondroitin sulfate isolated from cucumaria syracusana[J]. Process Biochemistry,2020,91:149−157. doi: 10.1016/j.procbio.2019.12.006
|
[10] |
MOURAO P A S. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs[J]. Marine Drugs,2015,13(5):2770−2784. doi: 10.3390/md13052770
|
[11] |
PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. Journal of Traditional and Complementary Medicine,2018,8(3):341−351. doi: 10.1016/j.jtcme.2017.06.007
|
[12] |
LI Y, LI M, XU B J, et al. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers:A comprehensive review[J]. Journal of Functional Foods,2021,87:104744. doi: 10.1016/j.jff.2021.104744
|
[13] |
XU H, ZHOU Q, LIU B, et al. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health:Structures and biological activities[J]. Carbohydrate Polymers,2022,275:118691. doi: 10.1016/j.carbpol.2021.118691
|
[14] |
BISHNOI M, JAIN A, HURKAT P, et al. Chondroitin sulphate:A focus on osteoarthritis[J]. Glycoconjugate Journal,2016,33(5):693−705. doi: 10.1007/s10719-016-9665-3
|
[15] |
LI S N, ZHONG W, PAN Y, et al. Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis[J]. Carbohydrate Polymers,2021,269:118290. doi: 10.1016/j.carbpol.2021.118290
|
[16] |
CHEN S G, LI G Y, WU N, et al. Sulfation pattern of the fucose branch is important for the anticoagulant and antithrombotic activities of fucosylated chondroitin sulfates[J]. Biochimica Et Biophysica Acta,2013,1830(4):3054−3066. doi: 10.1016/j.bbagen.2013.01.001
|
[17] |
USTYUZHANINA N E, BILAN M I, DMITRENOKE A S, et al. Fucosylated chondroitin sulfate from the sea cucumber Hemioedema spectabilis:structure and influence on cell adhesion and tubulogenesis[J]. Carbohydrate Polymers,2020,234:115895. doi: 10.1016/j.carbpol.2020.115895
|
[18] |
尹利昂, 陈士国, 薛长湖, 等. 4种海参中含岩藻糖支链的硫酸软骨素化学组成差异的分析[J]. 中国海洋大学学报(自然科学版),2009,39(S1):63−68. [YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition),2009,39(S1):63−68.]
YIN L A, CHEN S G, XUE C H, et al. Analysis of chemical composition differences of chondroitin sulfate containing fucosaccharide branched chain in four sea cucumbers[J]. Journal of Ocean University of China (Natural Science Edition), 2009, 39(S1): 63−68.
|
[19] |
严鲁峰. 海参岩藻糖基化硫酸软骨素寡糖抗凝血机制研究[D]. 宁波:浙江大学, 2020:52. [YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo:Zhejiang University, 2020:52.]
YAN L F. Study on anticoagulation mechanism of chondroitin sulfate oligosaccharides by fucosylated sea cucumber[D]. Ningbo: Zhejiang University, 2020: 52.
|
[20] |
ZHANG Y J, SONG S L, SONG D, et al. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus[J]. Journal of Bioscience and Bioengineering,2010,109(1):67−72. doi: 10.1016/j.jbiosc.2009.07.010
|
[21] |
王亚囡, 仇文峰, 杨毅, 等. 分子量对海参岩藻聚糖硫酸酯在体内吸收的影响[J]. 中国海洋药物, 2020, 39(2):42−49. [WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J]. Chinese Journal of Marine Medicine, 2020, 39(2):42−49.]
WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabloism of sea cucumber fucoidan[J]. Chinese Journal of Marine Medicine, 2020, 39(2): 42−49.
|
[22] |
LI C, LI S J, ZHANG X, et al. Fucoidan from sea cucumber Holothuria polii:structural elucidation and stimulation of ematopoietic activity[J]. Journal of Biological Macromolecules,2020,150:1123−1121.
|
[23] |
CHEN S G, HU Y Q, YE X Q, et al. Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus[J]. Biochimica et Biophysica Acta,2012,1820(7):989−1000. doi: 10.1016/j.bbagen.2012.03.002
|
[24] |
YU L, CHANG Y G, HU Y F, et al. Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus[J]. Food Chemistry,2015,180:71−76. doi: 10.1016/j.foodchem.2015.02.034
|
[25] |
CAI Y, YIN R H, ZHOU L T, et al. An anticoagulant fucan sulfate with hexasaccharide repeating units from the sea cucumber Holothuria albiventer[J]. Carbohydrate Research,2018,464:12−18. doi: 10.1016/j.carres.2018.05.007
|
[26] |
李珊. 海参硫酸多糖对营养过剩诱发的代谢疾病调控机制研究[D]. 宁波:浙江大学, 2018:15. [LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo:Zhejiang University, 2018:15.]
LI S. Study on the regulatory mechanism of sea cucumber sulfated polysaccharide on metabolic diseases induced by overnutrition[D]. Ningbo: Zhejiang University, 2018: 15.
|
[27] |
齐俊华, 王展, 石德玲, 等. 小有刺参硫酸软骨素和岩藻聚糖硫酸酯抗血小板聚集活性的比较[J]. 中国海洋药物,2019,38(1):42−48. [QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine,2019,38(1):42−48.]
QI J H, WANG Z, SHI D L, et al. Comparison of antiplatelet aggregation activity between chondroitin sulfate and fucosan sulfate of Stichopus japonicus[J]. Chinese Journal of Marine Medicine, 2019, 38(1): 42−48.
|
[28] |
DONG X , PAN R, DENG X, et al. Separation, purification, anticoagulant activity and preliminary structural characterization of two sulfated polysaccharides from sea cucumber Acaudina molpadioidea and Holothuria nobilis[J]. Process Biochemistry, 2014, 49(8):1352−1361.
|
[29] |
MOU J J, LI Q, QI X H, et al. Structural comparison, antioxidant and anti-inflammatory properties of fucosylated chondroitin sulfate of three edible sea cucumbers[J]. Carbohydrate Polymers,2018,185:41−47. doi: 10.1016/j.carbpol.2018.01.017
|
[30] |
MOU J J, WANG C, LI W J, et al. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana[J]. International Journal of Biological Macromolecules,2017,98:208−215. doi: 10.1016/j.ijbiomac.2017.01.123
|
[31] |
SHI D L, QI J H, ZHANG H W, et al. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers[J]. Carbohydrate Polymers,2011,83(2):688−696. doi: 10.1016/j.carbpol.2010.08.040
|
[32] |
USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Two fucosylated chondroitin sulfates from the sea cucumber Eupentacta fraudatrix[J]. Carbohydrate Polymers,2017,164:8−12. doi: 10.1016/j.carbpol.2017.01.034
|
[33] |
CHANG Y G, HU Y F, YU L, et al. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa[J]. Carbohydrate Polymers,2016,136:1091−1097. doi: 10.1016/j.carbpol.2015.10.016
|
[34] |
YIN J Y, YANG X Q, XIA B, et al. The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice[J]. Journal of Functional Foods,2019,61:103493. doi: 10.1016/j.jff.2019.103493
|
[35] |
LI Q, JIANG S X, SHI W W, et al. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus[J]. Carbohydrate Polymers,2020,231:115767. doi: 10.1016/j.carbpol.2019.115767
|
[36] |
MAO H, CAI Y, LI S N, et al. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides:Unusual structure and anti-intrinsic tenase activity[J]. Carbohydrate Polymers,2020,245:116503. doi: 10.1016/j.carbpol.2020.116503
|
[37] |
YUAN Q, LI H, WANG Q, et al. Deaminative-cleaved S. monotuberculatus fucosylated glycosaminoglycan:Structural elucidation and anticoagulant activity[J]. Carbohydr Polym,2022,298:120072. doi: 10.1016/j.carbpol.2022.120072
|
[38] |
吕律. 不同分子量仿刺参糖胺聚糖抗凝血、抗血栓活性研究[D]. 青岛:中国海洋大学, 2015:61. [LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao:Ocean University of China, 2015:61.]
LÜ L. Study on anticoagulant and antithrombotic activity of glycosaminoglycan of Apostichopus japonicas with different molecular weight[D]. Qingdao: Ocean University of China, 2015: 61.
|
[39] |
USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. Fucosylated chondroitin sulfates from the sea cucumbers Paracaudina chilensis and Holothuria hilla:Structures and anticoagulant activity[J]. Marine Drugs,2020,18(11):540. doi: 10.3390/md18110540
|
[40] |
USTYUZHANINA N E, BILAN M I, DMITRENOK A S, et al. A highly regular fucosylated chondroitin sulfate from the sea cucumber Massinium magnum:structure and effects on coagulation[J]. Carbohydrate Polymers,2017,167:20−26. doi: 10.1016/j.carbpol.2017.02.101
|
[41] |
SHNAG F N, GAO N, YIN R H, et al. Precise structures of fucosylated glycosaminoglycan and its oligosaccharides as novel intrinsic factor Xase inhibitors[J]. European Journal of Medicinal Chemistry,2018,148:423−435. doi: 10.1016/j.ejmech.2018.02.047
|
[42] |
ZHAO Y, ZHANG D H, WANG S, et al. Holothurian glycosaminoglycan inhibits metastasis and thrombosis via targeting of nuclear factor-kappab/tissue factor/Factor Xa pathway in melanoma B16F10 cells[J]. International Journal of Biological Macromolecules,2013,8(2):56557.
|
[43] |
YUE Z Q, WANG A Y, ZHU Z J, et al. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells[J]. Molecular and Cellular Biochemistry,2015,410(1-2):143−154. doi: 10.1007/s11010-015-2546-4
|
[44] |
张珣, 王静凤, 杨玉红, 等. 海参岩藻聚糖硫酸酯抑制小鼠肿瘤生长和转移及其作用机制的研究[J]. 中国药理学通报,2011,27(8):1098−1103. [ZHANG X, WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin,2011,27(8):1098−1103.] doi: 10.3969/j.issn.1001-1978.2011.08.016
ZHANG X, WANG J F, YANG Y H, et al. Inhibition of tumor growth and metastasis by sea cucumber fucosan sulfate and its mechanism in mice[J]. Chinese Pharmacology Bulletin, 2011, 27(8): 1098−1103. doi: 10.3969/j.issn.1001-1978.2011.08.016
|
[45] |
邢淑雁, 于钦辉, 杨菁华, 等. 海洋生物多糖抗肿瘤作用研究进展[J]. 中华中医药学刊, 2021, 39(11):158−161. [XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11):158−161.]
XING S Y, YU Q H, YANG J H, et al. Research progress on antitumor effects of marine biological polysaccharides[J]. Chinese Journal of Traditional Chinese Medicine, 21, 39(11): 158−161.
|
[46] |
薛魁金. 刺参粘多糖对人胰腺癌细胞株SW1990增殖的抑制作用[D]. 青岛:青岛大学, 2012:135-136. [XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao:Qingdao University, 2012:135-136.]
XUE K J. Inhibitory effect of mucopolysaccharide of Stipidus japonicus on proliferation of human pancreatic cancer cell line SW1990[D]. Qingdao: Qingdao University, 2012: 135-136.
|
[47] |
SONG Y, JIN S J, CUI L H, et al. Immunomodulatory effect of Stichopus japonicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats[J]. Molecules,2013,18(6):7179−7193. doi: 10.3390/molecules18067179
|
[48] |
彭玲, 于壮, 宋扬. 刺参黏多糖对Hela细胞增殖分化的影响[J]. 青岛大学医学院学报,2008(3):212−215,219. [PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University,2008(3):212−215,219.]
PENG L, YU Z, SONG Y. Effect of mucopolysaccharide on proliferation and differentiation of Hela cells[J]. Journal of Medical College of Qingdao University, 2008(3): 212−215,219.
|
[49] |
牛娟娟, 宋扬. 海洋刺参多糖对宫颈癌细胞周期的影响及其机制[J]. 齐鲁医学杂志,2010,25(5):386−388. [NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal,2010,25(5):386−388.] doi: 10.3969/j.issn.1008-0341.2010.05.004
NIU J J, SONG Y. Effects of Stichopus japonicus acidic mucopolysaccharide on cell cycle of Hela cells and its mechanism[J]. Qilu Medical Journal, 2010, 25(5): 386−388. doi: 10.3969/j.issn.1008-0341.2010.05.004
|
[50] |
李甜甜. 海参多糖抗肺癌活性及对T细胞免疫功能调节研究[D]. 青岛:青岛大学, 2015:50. [LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao:Qingdao University, 2015:50.]
LI T T. Study on the anti-lung cancer activity of sea cucumber polysaccharide and its regulation on T cell immune function[D]. Qingdao: Qingdao University, 2015: 50.
|
[51] |
张晓波, 孙辉. 肠道菌群对人体健康的作用及其应用[J]. 生物医学转化,2021,2(2):39−45. [ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine,2021,2(2):39−45.]
ZHANG X B, SUN H. Effects of intestinal flora on human health and its application[J]. Biomedical Translational Medicine, 2021, 2(2): 39−45.
|
[52] |
HU S W, WANG J H, WANG J F, et al. Fucoidan from Acaudina molpadioides improves insulin resistance by altering gut microbiota dysfunction[J]. Journal of Functional Foods,2019,57:59−67. doi: 10.1016/j.jff.2019.03.033
|
[53] |
刘昕, 齐延民, 张健, 等. 海藻多糖与肠道菌群相互作用研究进展[J]. 食品安全质量检测学报, 2022, 13(17):5723−5729. [LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17):5723−5729.]
LIU X, QI Y M, ZHANG J, et al. Research progress on the interaction between seaweed polysaccharides and intestinal flora[J]. Journal of Food Safety and Quality Inspection, 2019, 13(17): 5723−5729.
|
[54] |
KAOUTARI A E, ARMOUGOM F, GORDON J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nature Reviews Microbiology,2013,11(7):497−504. doi: 10.1038/nrmicro3050
|
[55] |
吴小松. 肠道菌群对肥胖和相关代谢疾病的影响[J]. 农产品加工,2022(11):89−93,98. [WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing,2022(11):89−93,98.]
WU X S. Effects of intestinal flora on obesity and related metabolic diseases[J]. Agricultural Processing, 2022(11): 89−93,98.
|
[56] |
LIU B N, LIU X D, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837
|
[57] |
ZENG Q, LI N S, PAN X F, et al. Clinical management and treatment of obesity in China[J]. The Lancet Diabetes & Endocrinology,2021,9(6):393−405.
|
[58] |
BENDOR C D, BARDUGO A, HAMIEL O P, et al. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity[J]. Cardiovascular Diabetology,2020,19(1):79. doi: 10.1186/s12933-020-01052-1
|
[59] |
FREDRIK B, DING H, WNAG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15718−15723.
|
[60] |
LI S, LI J H, MAO G Z, et al. Fucosylated chondroitin sulfate from Isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet[J]. International Journal of Biological Macromolecules,2019,124:377−388. doi: 10.1016/j.ijbiomac.2018.11.167
|
[61] |
HU S W, WANG J H, XU Y L, et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice[J]. Food & Function, 2019, 10(3):1736−1746.
|
[62] |
LI S, LI J H, MAO G Z, et al. A fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice[J]. Food & Function,2018,9(10):5371−5380.
|
[63] |
王馥仪, 于双, 董新玉, 等. 海洋多糖的结构、组成及其抑制肥胖作用机制的研究进展[J]. 食品科学,2024,45(17):335−347. [WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science,2024,45(17):335−347.] doi: 10.7506/spkx1002-6630-20231208-070
WANG F Y, YU S, DONG X Y, et al. Rearch progress in structure, composition an antiobesity mechanism of marine polysaccharides[J]. Food Science, 2024, 45(17): 335−347. doi: 10.7506/spkx1002-6630-20231208-070
|
[64] |
LI S, LI J H, MAO G Z, et al. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice[J]. Journal of Functional Foods,2019,55:193−210. doi: 10.1016/j.jff.2019.02.001
|
[65] |
LI Y M, LIU Y P, LIANG J J, et al. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT- and AMPK-mediated signaling pathways in type 2 diabetes mellitus rats[J]. Journal of Agricultural and Food Chemistry,2019,67(47):13051−13060. doi: 10.1021/acs.jafc.9b04931
|
[66] |
GILLANI S W, ABDUL M I, ANSARI I A, et al. Predicting relationship of eating behavior, physical activity and smoking with type II diabetes and related comorbidities among saudi citizens:cross-sectional observational study[J]. International Journal of Diabetes in Developing Countries,2019,39(1):13410.
|
[67] |
CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas:global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271−281. doi: 10.1016/j.diabres.2018.02.023
|
[68] |
LIN H T, ZHANG J W, LI S Y, et al. Polysaccharides isolated from Laminaria japonica attenuates gestational diabetes mellitus by regulating the gut microbiota in mice[J]. Food Frontiers,2021,2(2):208−217. doi: 10.1002/fft2.79
|
[69] |
PUSHPANATHAN P, SRIKANTH, SESHADRI K G, et al. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a tertiary care centre in chennai, india[J]. Indian Journal of Endocrinology and Metabolism,2016,20(4):523−530. doi: 10.4103/2230-8210.183474
|
[70] |
ZHAO F Q, LIU Q B, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J]. Food and Chemical Toxicology,2020,135:110886. doi: 10.1016/j.fct.2019.110886
|
[71] |
HU S W, WANG J F, XU H, et al. Fucosylated chondroitin sulphate from sea cucumber inhibits high-fat-sucrose diet-induced apoptosis in mouse pancreatic islets via down-regulating mitochondrial signaling pathway[J]. Journal of Functional Foods,2014,7:517−526. doi: 10.1016/j.jff.2014.01.004
|
[72] |
WANG J H, HU S W, JIANG W, et al. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice[J]. International Immunopharmacology,2016,31:15−23. doi: 10.1016/j.intimp.2015.12.009
|
[73] |
ZHU Q Y, LIN L Z, ZHAO M M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats:New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. International Journal of Biological Macromolecules,2020,159:34−45. doi: 10.1016/j.ijbiomac.2020.05.043
|
[74] |
HU S W, XIA G H, WANG J F, et al. Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice[J]. Journal of Functional Foods,2014,10:128−138. doi: 10.1016/j.jff.2014.05.012
|
[75] |
LI S, LI J H, ZHI Z J, et al. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers[J]. Carbohydrate Polymers,2017,173:330−337. doi: 10.1016/j.carbpol.2017.05.063
|
[76] |
XU X Q, CHANG Y G, XUE C H, et al. Gastric protective activities of sea cucumber fucoidans with different molecular weight and chain conformations:a structure-activity relationship investigation[J]. Food Chemistry,2018(3):8615−8622.
|
[77] |
SHIDA M, MIKAMI T, TAMURA J, et al. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity:Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus[J]. Biochemical and Biophysical Research Communications,2017,487(3):678−683. doi: 10.1016/j.bbrc.2017.04.114
|
[1] | ZHANG Ziyi, ZHAO Feiran, SUO Xiaoyi, YANG Jiwen, WEI Guanmian, SANG Yaxin. Research Progress on the Anti-inflammatory Mechanism of Ziziphus jujuba Mill. and Its Bioactive Ingredients[J]. Science and Technology of Food Industry, 2025, 46(6): 407-416. DOI: 10.13386/j.issn1002-0306.2024040216 |
[2] | NING Miao, WU Rina, HE Kairu, BAO Yufei, ZHANG Yuxin, YANG Hui, WU Junrui. Progress on the Mechanism of Action of Probiotics in Alleviating Cow's Milk Allergy[J]. Science and Technology of Food Industry, 2025, 46(5): 371-379. DOI: 10.13386/j.issn1002-0306.2024030148 |
[3] | CHEN Qiuyu, ZHAO Ran, MENG Meishan, DOU Xinyu, CHEN Biyi, ZHAO Qiancheng, LI Ying. Research Progress on Immune Regulation Activities of Marine Sulfate Polysaccharides[J]. Science and Technology of Food Industry, 2025, 46(1): 413-423. DOI: 10.13386/j.issn1002-0306.2024020170 |
[4] | HUANG Yanyan, LIANG Yantong, WU Jiamin, ZENG Xin'an, ZENG Qiaohui, CAO Shilin, LIAO Lan, WANG Langhong. A Review of the Mechanism of Probiotics Controlling Obesity through Intestinal Flora[J]. Science and Technology of Food Industry, 2023, 44(8): 1-8. DOI: 10.13386/j.issn1002-0306.2022080280 |
[5] | TANG Manyu, WANG Wanqing, QIANG Jingwen, HUA Wei, WU Shuang, LI Yali, ZHEN Xin, LI Chungeng, CHENG Yanling. Interaction and Mechanism of Probiotics with Gut Flora and Immune Regulation: A Review[J]. Science and Technology of Food Industry, 2022, 43(16): 486-493. DOI: 10.13386/j.issn1002-00306.2022030025 |
[6] | CHEN Yanjun, LIU Jiahong, ZHANG Xiang, CUI Jingai, CHEN Xiaoping. Metabolic Regulation and Mechanism of Multi-Component Resistant Starch on High-Sugar and High-Fat Model Mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357-362. DOI: 10.13386/j.issn1002-0306.2020100085 |
[7] | NIU Jiahui, YUAN Jing, WEI Ran, ZHANG Xiaofu, ZHANG Huifang, JIA Jinyu, ZHAO Wen. Protective Effect and Mechanism Study of Jujube Polysaccharides on Intestinal Immune Barrier in Mice[J]. Science and Technology of Food Industry, 2021, 42(4): 295-300,306. DOI: 10.13386/j.issn1002-0306.2020060068 |
[8] | ZHANG Xiu-juan, MA Jun-chi, ZHAO Jin-tong, GAO Shi-yong. Advances on the Effect of Berberine on Intestinal Flora[J]. Science and Technology of Food Industry, 2020, 41(23): 359-363. DOI: 10.13386/j.issn1002-0306.2020030333 |
[9] | XIAO Xue-jun, XINHUA·Na-bi. Research Progress on Immunomodulation and Antitumor Effect of Probiotics[J]. Science and Technology of Food Industry, 2020, 41(10): 321-326. DOI: 10.13386/j.issn1002-0306.2020.10.054 |
[10] | DU Xiao-lin, HUANG Huang, LI Qian, WU Zheng-qi, CHEN Xiao-qiang, MI Zhi-yuan. Advances in anti-tumor effect of catechins EGCG and its mechanism[J]. Science and Technology of Food Industry, 2017, (24): 308-314. DOI: 10.13386/j.issn1002-0306.2017.24.060 |