Citation: | SHU Ting, WANG Lin, ZOU Xiaoyu, et al. Antibacterial Effect of Solenocera crassicornis Processing By-products Fermentation on Specific Spoilage Organisms in the Late Stage of Squid Refrigeration[J]. Science and Technology of Food Industry, 2025, 46(11): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070148. |
[1] |
严鹏伟, 张珊珊, 蒲昕怡, 等. 鱿鱼胴体分离蛋白的制备及营养成分分析[J]. 食品安全导刊,2023(09):92−96. [YAN P W, ZHANG S S, PU X Y, et al. Preparation and nutritional analysis of squid carcass protein isolate[J]. China Food Safety Magazine,2023(09):92−96.]
YAN P W, ZHANG S S, PU X Y, et al. Preparation and nutritional analysis of squid carcass protein isolate[J]. China Food Safety Magazine, 2023(09): 92−96.
|
[2] |
CHOI S M, PULIGUNDLA P, MOK C. Impact of corona discharge plasma treatment on microbial load and physicochemical and sensory characteristics of semi-dried squid (Todarodes pacificus)[J]. Food Science and Biotechnology,2017,26:1137−1144. doi: 10.1007/s10068-017-0137-8
|
[3] |
DIKEMAN M. Encyclopedia of meat sciences[M]. 3th ed. Amsterdam:Academic Press, 2023:108–124.
|
[4] |
ABRIL A G, CALO-MATA P, VILLA T G, et al. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria[J]. Food Chemistry,2024,448:139045. doi: 10.1016/j.foodchem.2024.139045
|
[5] |
BOZIARIS I S, PARLAPANI F F. Specific spoilage organisms (SSOs) in fish[J]. The Microbiological Quality of Food,2017:61−98.
|
[6] |
沈萍. 北太平洋鱿鱼腐败菌生长动力学和货架期预测[D]. 上海:上海海洋大学, 2016. [SHEN P. The growth kinetics of spoilage organisms and shelf life prediction for the north pacific squid[D]. Shanghai:Shanghai Ocean University, 2016.]
SHEN P. The growth kinetics of spoilage organisms and shelf life prediction for the north pacific squid[D]. Shanghai: Shanghai Ocean University, 2016.
|
[7] |
PARLAPANI F F, MICHAILIDOU S, ANAGNOSTOPOULOS D A, et al. Microbial spoilage investigation of thawed common cuttlefish (Sepia officinalis) stored at 2 ℃ using next generation sequencing and volatilome analysis[J]. Food Microbiology,2018,76:18−525.
|
[8] |
陈家盛. 基于蛋白质组学分析低温等离子体技术调控冰鲜鱿鱼品质稳定的作用机制[D]. 舟山:浙江海洋大学, 2023. [CHEN J S. Proteomic analysis of the mechanism of low temperature plasma technology in regulating quality stability of chilled squid[D]. Zhoushan:Zhejiang Ocean University, 2023.]
CHEN J S. Proteomic analysis of the mechanism of low temperature plasma technology in regulating quality stability of chilled squid[D]. Zhoushan: Zhejiang Ocean University, 2023.
|
[9] |
ANAGNOSTOPOULOS D A, PARLAPANI F F, BOZIARIS I S. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century:Have we finished or just begun?[J]. Trends in Food Science & Technology,2022,120:236−247.
|
[10] |
MA T, LI C, ZHAO F, et al. Effects of co-fermented collagen peptide-jackfruit juice on the immune response and gut microbiota in immunosuppressed mice[J]. Food Chemistry,2021,365:130487. doi: 10.1016/j.foodchem.2021.130487
|
[11] |
ULUG S K, JAHANDIDEH F, WU Jianping. Novel technologies for the production of bioactive peptides[J]. Trends in Food Science and Technology,2021,108(1):27−39.
|
[12] |
MARULO S, DE CARO S, NITRIDE C, et al. Bioactive peptides released by lactic acid bacteria fermented pistachio beverages[J]. Food Bioscience,2024,59:103988. doi: 10.1016/j.fbio.2024.103988
|
[13] |
ARULRAJAH B, MUHIALDIN B J, ZAREI M, et al. Lacto-fermented Kenaf (Hibiscus cannabinus L. ) seed protein as a source of bioactive peptides and their applications as natural preservatives[J]. Food Control,2020,110:106969. doi: 10.1016/j.foodcont.2019.106969
|
[14] |
MUHIALDIN B J, RANI N F, HUSSIN A S. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes[J]. LWT-Food Science and Technology,2020,131:109776. doi: 10.1016/j.lwt.2020.109776
|
[15] |
ASHOKBHAI J K, BASAIAWMOIT B, DAS S, et al. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk:In-vitro, in-silico and molecular interaction studies[J]. Food Bioscience,2022,47(11):101666.
|
[16] |
KHUBBER S, MARTÍ-QUIJAL F J, TOMAŠEVIĆ I, et al. Lactic acid fermentation as a useful strategy to recover antimicrobial and antioxidant compounds for food and by-products[J]. Current Opinion in Food Science,2021,43(3):189−198.
|
[17] |
JIANG S, ZHANG Z, YU F, et al. Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice[J]. Journal of Functional Foods,2020,72:104085. doi: 10.1016/j.jff.2020.104085
|
[18] |
LIU Z, LIU Q, ZHANG D, et al. Comparison of the proximate composition and nutritional profile of byproducts and edible parts of five species of shrimp[J]. Foods,2021,10(11):2603. doi: 10.3390/foods10112603
|
[19] |
LI J, SONG R, ZOU X, et al. Simultaneous preparation of chitin and flavor protein hydrolysates from the by-products of shrimp processing by one-step fermentation with Lactobacillus fermuntum[J]. Molecules,2023,28(9):3761. doi: 10.3390/molecules28093761
|
[20] |
GOODNO C C, SWAISGOOD H E, CATIGNANI G L. A fluorimetric assay for available lysine in proteins[J]. Analytical Biochemistry,1981,115(1):203−211. doi: 10.1016/0003-2697(81)90547-9
|
[21] |
SONG R, SHI M, GU L. Digestive properties of half-fin anchovy hydrolysates/glucose Maillard reaction products and modulation effects on intestinal microbiota[J]. Journal of the Science of Food and Agriculture,2022,102(6):2584−2597. doi: 10.1002/jsfa.11600
|
[22] |
谷萝, 宋茹. 虾加工副产物抗菌型水解液制备条件优化及抑菌作用[J]. 食品工业科技,2024,45(3):162−170. [GU L, SONG R. Optimization of hydrolysis conditions and antibacterial activity of hydrolysate from shrimp processing by-products[J]. Science and Technology of Food Industry,2024,45(3):162−170.]
GU L, SONG R. Optimization of hydrolysis conditions and antibacterial activity of hydrolysate from shrimp processing by-products[J]. Science and Technology of Food Industry, 2024, 45(3): 162−170.
|
[23] |
SONG R, WEI R. ZHANG B, et al. Optimization of the antibacterial activity of half-fin anchovy (Setipinna taty) hydrolysates[J]. Food and Bioprocess Technology,2011,5(5):1979−1989.
|
[24] |
BOUND D J, MURTHY P S, SRINIVAS P. Synthesis and antibacterial properties of 2, 3-dideoxyglucosides of terpene alcohols and phenols[J]. Food Chemistry,2015,185:192−199. doi: 10.1016/j.foodchem.2015.03.078
|
[25] |
GU L, ZHU Q, ZOU X, et al. Antibacterial effect of shrimp by-products hydrolysate on specific spoilage organisms of squid[J]. Molecules,2023,28(10):4105. doi: 10.3390/molecules28104105
|
[26] |
ALMI-SEBBANE D, ADT I, DEGRAEVE P, et al. Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein[J]. International Dairy Journal,2018,86:49−56. doi: 10.1016/j.idairyj.2018.06.016
|
[27] |
SMITH J, DOE A, ROBERTS B. Environmental stress-induced extracellular nucleases in Escherichia coli[J]. Journal of Bacteriology,2019,201(12):876−885.
|
[28] |
JI S, AN F, ZHANG T, et al. Antimicrobial peptides:An alternative to traditional antibiotics[J]. European Journal of Medicinal Chemistry,2024,265:116072. doi: 10.1016/j.ejmech.2023.116072
|
[29] |
LI L, SHI Y, CHENG X, et al. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA[J]. Food Chemistry,2015,166:231−239. doi: 10.1016/j.foodchem.2014.05.113
|
[30] |
李昕诺, 吴宇辉, 吴良如, 等. 基于宏基因组学揭示自然发酵与植物乳杆菌接种发酵酸笋中微生物代谢及关键风味基因[J/OL]. 食品与发酵工业, 2024:1−12. [2024-07-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.039366. [LI X N, WU Y H, WU L R, et al. Revealing microbial metabolism and key flavor genes in natural fermented and Lactobacillus plantarum inoculated fermented Suansun based on macrogenomics[J]. Food and Fermentation Industries, 2024: 1−12. [2024-07-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.039366.]
LI X N, WU Y H, WU L R, et al. Revealing microbial metabolism and key flavor genes in natural fermented and Lactobacillus plantarum inoculated fermented Suansun based on macrogenomics[J]. Food and Fermentation Industries, 2024: 1−12. [2024-07-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.039366.
|
[31] |
LIU C, PAN Y, LI Y, et al. The effect of electron beam irradiation combined with slurry ice on physicochemical parameters and bacterial communities of shrimp (Litopenaeus vannamei) during refrigerated storage[J]. Food Control,2023,158:110264.
|
[32] |
侯温甫, 岳琪琪, 韩千慧. ε-聚赖氨酸对草鱼鱼肉优势腐败菌的抑制作用及其冷藏期间微生物多样性的影响[J]. 食品科学,2020,41(17):223−230. [HOU W P, YUE Q Q, HAN Q H, et al. Inhibition of ε-poly-lysine on dominant spoilage bacteria in grass carp and its effect on microbial diversity during cold storage[J]. Food Science,2020,41(17):223−230.] doi: 10.7506/spkx1002-6630-20191021-211
HOU W P, YUE Q Q, HAN Q H, et al. Inhibition of ε-poly-lysine on dominant spoilage bacteria in grass carp and its effect on microbial diversity during cold storage[J]. Food Science, 2020, 41(17): 223−230. doi: 10.7506/spkx1002-6630-20191021-211
|
[33] |
ILLIKOUD N, ROSSERO A, CHAUVET R, et al. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta[J]. Food Microbiology,2019,81:22−31. doi: 10.1016/j.fm.2018.01.015
|
[34] |
潘艳艳, 雷丽萍, 卢佳芳, 等. 壳聚糖对冰藏鲈鱼品质及其菌群变化的影响[J]. 核农学报,2018,32(12):2346−2354. [PAN Y Y, LEI L P, LU J F, et al. Influence of chitosan on quality and change in intestinal flora of Lateolabrax japonicus during iced storage[J]. Journal of Nuclear Agricultural Sciences,2018,32(12):2346−2354.] doi: 10.11869/j.issn.100-8551.2018.12.2346
PAN Y Y, LEI L P, LU J F, et al. Influence of chitosan on quality and change in intestinal flora of Lateolabrax japonicus during iced storage[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2346−2354. doi: 10.11869/j.issn.100-8551.2018.12.2346
|
[35] |
LORENZO J, MUNEKATA P E, DOMÍNGUEZ R, et al. Chapter 3 Main groups of microorganisms of relevance for food safety and stability general aspects and overall description[J]. Innovative Technologies for Food Preservation, 2018:53–107.
|
[36] |
PAPADOPOULOU O S, DOULGERAKI A I, BOTTA C, et al. Genotypic characterization of Brochothrix thermosphacta isolated during storage of minced pork under aerobic or modified atmosphere packaging conditions[J]. Meat Science,2012,92(4):735−738. doi: 10.1016/j.meatsci.2012.06.030
|
[37] |
LI Y, ZHAO N, LI Y, et al. Dynamics and diversity of microbial community in salmon slices during refrigerated storage and identification of biogenic amine-producing bacteria[J]. Food Bioscience,2023,52(5):102441.
|
[38] |
LEISNER J J, LAURSEN B G, PRÉVOST H, et al. Carnobacterium:positive and negative effects in the environment and in foods[J]. FEMS Microbiology Reviews,2007,31(5):592−613. doi: 10.1111/j.1574-6976.2007.00080.x
|
[39] |
严龙飞, 严文静, 戴凡炜, 等. 暗纹东方鲀冷藏期间细菌群落结构与功能变化[J]. 食品工业科技,2023,44(14):363−369. [YAN L F, YAN W J, DAI F W, et al. Microbial community structure and function succession of Puffer fish (Takifugu obscurus) During Refrigeration[J]. Science and Technology of Food Industry,2023,44(14):363−369.]
YAN L F, YAN W J, DAI F W, et al. Microbial community structure and function succession of Puffer fish (Takifugu obscurus) During Refrigeration[J]. Science and Technology of Food Industry, 2023, 44(14): 363−369.
|
[40] |
ECONOMOU V, GOUSIA P, KEMENETZI D, et al. Microbial quality and histamine producing microflora analysis of the ice used for fish preservation[J]. Journal of Food Safety,2017,37(1):e12285. doi: 10.1111/jfs.12285
|
[41] |
WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, et al. The predominance of psychrotrophic Pseudomonads on aerobically stored chilled red meat[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1622−1635. doi: 10.1111/1541-4337.12483
|
[42] |
BATT C A, TORTORELLO M L. Encyclopedia of Food Microbiology[M]. 2th ed. Amsterdam:Academic Press, 2014:379−383.
|
[43] |
LAURSEN B G, BAY L, CLEENWERCK I, et al. Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood:phenotypic and genotypic characterization[J]. Systematic and Applied Microbiology,2005,28(2):151−164. doi: 10.1016/j.syapm.2004.12.001
|
[44] |
JAFFRÈS E, LALANNE V, MACÉ S, et al. Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME-GC-MS analysis[J]. International Journal of Food Microbiology,2011,147(3):195−202. doi: 10.1016/j.ijfoodmicro.2011.04.008
|
[45] |
STUPAR J, HOEL S, STRØMSETH S, et al. Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms[J]. Heliyon,2023,9(9):e19887. doi: 10.1016/j.heliyon.2023.e19887
|
[46] |
LU H, ZHENG S, FANG J, et al. Photodynamic inactivation of spoilers Pseudomonas lundensis and Brochothrix thermosphacta by food-grade curcumin and its application on ground beef[J]. Innovative Food Science and Emerging Technologies,2023,87:103410. doi: 10.1016/j.ifset.2023.103410
|
[47] |
GARCÍA-LÓPEZ M L, SANTOS J A, OTERO A, et al. Psychrobacter[M]. In Encyclopedia of Food Microbiology. 2th ed. Amsterdam:The Netherlands, 2014:261–268.
|
[48] |
BROEKAERT K, NOSEDA B, HEYNDRICKX M, et al. Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage[J]. International Journal of Food Microbiology, 2013, 166(3):487−493.
|
[49] |
RIVERO-PINO F, LEÓN M J, MILLÁN-LINARES M D, et al. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems[J]. Trends in Food Science & Technology,2023,135:32−42.
|
[50] |
KULAWIK P, JAMRÓZ E, JANIK M, et al. Biological activity of biopolymer edible furcellaran-chitosan coatings enhanced with bioactive peptides[J]. Food Control,2022,137(4):108933.
|
[51] |
PELLISSERY A J, VINAYAMOHAN P G, AMALARADJOU M A, et al. Spoilage bacteria and meat quality[J]. Meat Quality Analysis, 2020:307−334.
|
[52] |
NYCHAS G J E, SKANDAMIS P N, TASSOU C C, et al. Meat spoilage during distribution[J]. Meat Science,2008,78(1−2):77−89. doi: 10.1016/j.meatsci.2007.06.020
|
[53] |
CASABURI A, PIOMBINO P, NYCHAS G J, et al. Bacterial populations and the volatilome associated to meat spoilage[J]. Food Microbiology,2015,45:83−102. doi: 10.1016/j.fm.2014.02.002
|
[54] |
COHEN G N. Microbial Biochemistry[M]. 3th ed. Berlin:Springer Netherlands, 2016:73−112.
|
[55] |
WANG D, LIU Y, LI X, et al. Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna[J]. Food Control,2023,145:109512. doi: 10.1016/j.foodcont.2022.109512
|
[56] |
吴庆, 杨小萍, 辛世华, 等. 老面传代发酵过程中细菌菌群结构及其功能预测[J]. 中国酿造,2024,43(4):152−157. [WU Q, YANG X P, XIN S H, et al. Bacterial community structure and function prediction of sourdough during generation fermentation[J]. China Brewing,2024,43(4):152−157.] doi: 10.11882/j.issn.0254-5071.2024.04.023
WU Q, YANG X P, XIN S H, et al. Bacterial community structure and function prediction of sourdough during generation fermentation[J]. China Brewing, 2024, 43(4): 152−157. doi: 10.11882/j.issn.0254-5071.2024.04.023
|
[57] |
TAN C, LI P, SHANG N. Novel perspective on the spoilage metabolism of refrigerated sturgeon fillets:Nonspecific spoilage dominant organisms play an important role[J]. LWT,2022,173:114292.
|
[58] |
WANG N, QIAN Z, LUO M, et al. Identification of salt stress responding genes using transcriptome analysis in green alga chlamydomonas reinhardtii[J]. International Journal of Molecular Sciences,2018,19(11):3359. doi: 10.3390/ijms19113359
|
[59] |
GRAF M, MARDIROSSIAN M, NGUYEN F, et al. Proline-rich antimicrobial peptides targeting protein synthesis[J]. Natural Product Reports,2017,34(7):702−711. doi: 10.1039/C7NP00020K
|
[60] |
MOOKHERJEE N, ANDERSON M A, HAAGSMAN H P, et al. Antimicrobial host defence peptides:Functions and clinical potential[J]. Nature Reviews Drug Discovery,2020,19(5):311−332. doi: 10.1038/s41573-019-0058-8
|