Citation: | LI Linying, LIN Yilin, WEN Yaosheng, et al. Inhibitory Effect of Allyl Isothiocyanate on Clostridium perfringens and Its Application of Cooked Pork[J]. Science and Technology of Food Industry, 2023, 44(23): 127−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020200. |
[1] |
BRYNESTAD S, GRANUM P E. Clostridium perfringens and foodborne infections[J]. International Journal of Food Microbiology,2002,74(3):195−202. doi: 10.1016/S0168-1605(01)00680-8
|
[2] |
KIU R, HALL L J. An update on the human and animal enteric pathogen Clostridium perfringens[J]. Emerging Microbes & Infections,2018,7:1−15.
|
[3] |
GARCIA S, HEREDIA N. Clostridium perfringens:A dynamic foodborne pathogen[J]. Food and Bioprocess Technology,2011,4(4):624−630. doi: 10.1007/s11947-009-0182-2
|
[4] |
JAYASENA D D, JO C. Essential oils as potential antimicrobial agents in meat and meat products:A review[J]. Trends in Food Science & Technology,2013,34(2):96−108.
|
[5] |
LI Y X, ERHUNMWUNSEE F, LIU M, et al. Antimicrobial mechanisms of spice essential oils and application in food industry[J]. Food Chemistry,2022,382:132312. doi: 10.1016/j.foodchem.2022.132312
|
[6] |
RADAELLI M, DA SILVA B P, WEIDLICH L, et al. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens[J]. Brazilian Journal of Microbiology,2016,47(2):424−430. doi: 10.1016/j.bjm.2015.10.001
|
[7] |
CLEMENTE I, AZNAR M, SILVA F, et al. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria[J]. Innovative Food Science & Emerging Technologies,2016,36:26−33.
|
[8] |
LIN C M, PRESTON J F, WEI C I. Antibacterial mechanism of allyl isothiocyanate[J]. Journal of Food Protection,2000,63(6):727−734. doi: 10.4315/0362-028X-63.6.727
|
[9] |
AHN E S, KIM Y S, SHIN D H. Observation of bactericidal effect of allyl isothiocyanate on Listeria monocytogenes[J]. Food Science and Biotechnology,2001,10:31−35.
|
[10] |
OLAIMAT A N, HOLLEY R A. Effects of changes in pH and temperature on the inhibition of Salmonella and Listeria monocytogenes by allyl isothiocyanate[J]. Food Control,2013,34(2):414−419. doi: 10.1016/j.foodcont.2013.05.014
|
[11] |
TURGIS M, HAN J, CAILLET S, et al. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi[J]. Food Control,2009,20(12):1073−1079. doi: 10.1016/j.foodcont.2009.02.001
|
[12] |
ALANAZI S, ALNOMAN M, BANAWAS S, et al. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores of Clostridium perfringens type A in laboratory medium and chicken meat[J]. Food Microbiology,2018,73:311−318. doi: 10.1016/j.fm.2018.02.003
|
[13] |
ZHU Y D, MA Y Y, ZHANG J Y, et al. The inhibitory effects of spice essential oils and rapidly prediction on the growth of Clostridium perfringens in cooked chicken breast[J]. Food Control,2020,113:106978. doi: 10.1016/j.foodcont.2019.106978
|
[14] |
WU Y, BAI J, ZHONG K, et al. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R, 3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus[J]. Food Chemistry,2017,218:463−470. doi: 10.1016/j.foodchem.2016.07.090
|
[15] |
LUO K, ZHAO P, HE Y, et al. Antibacterial effect of oregano essential oil against Vibrio vulnificus and its mechanism[J]. Foods,2022,11(3):403. doi: 10.3390/foods11030403
|
[16] |
CUI H, ZHANG C, LI C, et al. Antimicrobial mechanism of clove oil on Listeria monocytogenes[J]. Food Control,2018,94:140−146. doi: 10.1016/j.foodcont.2018.07.007
|
[17] |
GUO F, CHEN Q, LIANG Q, et al. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens[J]. Frontiers in Microbiology,2021,12:562094. doi: 10.3389/fmicb.2021.562094
|
[18] |
HUANG L, LI C. Growth of Clostridium perfringens in cooked chicken during cooling:One-step dynamic inverse analysis, sensitivity analysis, and Markov Chain Monte Carlo simulation[J]. Food Microbiology,2020,85:103285. doi: 10.1016/j.fm.2019.103285
|
[19] |
邓群, 许晓曦, 卓志国, 等. 异硫氰酸苄酯对产气荚膜梭菌抑菌作用的研究[J]. 食品工业科技,2011,32:125−128. [DENG Q, XU X X, ZHUO Z G, et al. Study on antimicrobial action of benzyl isothiocyanate against Clostridium perfringens[J]. Science and Technology of Food Industry,2011,32:125−128. doi: 10.13386/j.issn1002-0306.2011.04.001
|
[20] |
WANG S, LIU S, HAO G, et al. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk[J]. Food Control,2022,139:127268.
|
[21] |
BURT S. Essential oils:Their antibacterial properties and potential applications in foods-A review[J]. International Journal of Food Microbiology,2004,94(3):223−253. doi: 10.1016/j.ijfoodmicro.2004.03.022
|
[22] |
CALO J R, CRANDALL P G, O'BRYAN C A, et al. Essential oils as antimicrobials in food systems-A review[J]. Food Control,2015,54:111−119. doi: 10.1016/j.foodcont.2014.12.040
|
[23] |
FALLEH H, BEN JEMAA M, SAADA M, et al. Essential oils:A promising eco-friendly food preservative[J]. Food Chemistry,2020,330:127268. doi: 10.1016/j.foodchem.2020.127268
|
[24] |
LU Y, YAN H, LI X, et al. Physicochemical properties and mode of action of a novel bacteriocin BM1122 with broad antibacterial spectrum produced by Lactobacillus crustorum MN047[J]. Journal of Food Science,2020,85(5):1523−1535. doi: 10.1111/1750-3841.15131
|
[25] |
BORGES A, ABREU A C, FERREIRA C, et al. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens[J]. Journal of Food Science and Technology-Mysore,2015,52(8):4737−4748. doi: 10.1007/s13197-014-1533-1
|
[26] |
WANG X, SHEN Y, THAKUR K, et al. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus[J]. Molecules,2020,25(17):3955. doi: 10.3390/molecules25173955
|
[27] |
DUAN X, CHEN S, DUAN S, et al. Antibiotic activities of the natural antimicrobial substance produced by Lactobacillus paracasei FX-6 against Pseudomonas putida[J]. LWT-Food Science and Technology,2020,123:109096. doi: 10.1016/j.lwt.2020.109096
|
[28] |
WANG N, QIAN Z, LUO M, et al. Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii[J]. International Journal of Molecular Sciences,2018,19(11):3359. doi: 10.3390/ijms19113359
|
[29] |
耿一鸣, 李婷婷, 励建荣, 等. 松油烯-4-醇对荧光假单胞菌抑菌能力及作用机理[J]. 食品科学,2022,43:30−36. [GENG Y M, LI T T, LI J R, et al. Antibacterial activity and mechanism of terpinene-4-ol against Pseudomonas fluorescens[J]. Food Science,2022,43:30−36. doi: 10.7506/spkx1002-6630-20201113-143
|
[30] |
WEN Y, LI W, SU R, et al. Multi-target antibacterial mechanism of moringin from Moringa oleifera seeds against Listeria mo nocytogenes[J]. Frontiers in Microbiology,2022,13:925291. doi: 10.3389/fmicb.2022.925291
|
[31] |
李苗云, 张佳烨, 朱瑶迪, 等. 精油对熟制鸡胸肉中产气荚膜梭菌抑制效果预测模型研究[J]. 农业工程学报,2019,35:315−320. [LI M Y, ZHANG J Y, ZHU Y D, et al. Prediction model for inhibitory effect of essential oils on Clostridium perfringens in cooked chicken breast[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35:315−320.
|