Citation: | LIU Jiaqi, YANG Menglu, HUANG Yuli, et al. Research Progress on the Composition of Bacteriophages and the Effect on Quality Formation in Fermented Foods[J]. Science and Technology of Food Industry, 2025, 46(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070022. |
[1] |
MUKHERJEE A, GOMEZ-SALA B, O'CONNOR E M, et al. Global regulatory frameworks for fermented foods:A review[J]. Frontiers in Nutrition,2022,9:902642. doi: 10.3389/fnut.2022.902642
|
[2] |
HUANG Q, DONG K, WANG Q, et al. Changes in volatile flavor of yak meat during oxidation based on multi-omics[J]. Food Chemistry,2022,371:131103. doi: 10.1016/j.foodchem.2021.131103
|
[3] |
ZHAO N, HUANG Y L, LAI H M, et al. Illumination and reconstruction of keystone microbiota for reproduction of key flavor-active volatile compounds during paocai (a traditional fermented vegetable) fermentation[J]. Food Bioscience,2023,56:103148. doi: 10.1016/j.fbio.2023.103148
|
[4] |
CHILESHE J, TALSMA E F, SCHOUSTRA S E, et al. Potential contribution of cereal and milk based fermented foods to dietary nutrient intake of 1-5 years old children in Central province in Zambia[J]. PLoS One,2020,15(5):e0232824. doi: 10.1371/journal.pone.0232824
|
[5] |
LIU L B, CHEN X Q, HAO L L, et al. Traditional fermented soybean products:processing, flavor formation, nutritional and biological activities[J]. Critical Reviews in Food Science and Nutrition,2022,62(7):1971−1989. doi: 10.1080/10408398.2020.1848792
|
[6] |
ROMULO A, SURYA R. Tempe:A traditional fermented food of Indonesia and its health benefits[J]. International Journal of Gastronomy and Food Science,2021,26:100413. doi: 10.1016/j.ijgfs.2021.100413
|
[7] |
ABU-SALEMFERIAL, RASHA M, AHMED G, et al. Levels of some Antinutritional factors in tempeh produced from some legumes and jojobas seeds[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(1):5−6.
|
[8] |
LAATIKAINEN R, KOSKENPATO J, HONGISTO S M, et al. Randomised clinical trial:low-fodmap rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome[J]. Alimentary Pharmacology & Therapeutics,2016,44(5):460−470.
|
[9] |
CUVAS-LIMON R B, NOBRE C, CRUZ M, et al. Spontaneously fermented traditional beverages as a source of bioactive compounds:an overview[J]. Critical Reviews in Food Science and Nutrition,2021,61(18):2984−3006. doi: 10.1080/10408398.2020.1791050
|
[10] |
FAN J, QU G, WANG D, et al. Synergistic fermentation with functional microorganisms improves safety and quality of traditional chinese fermented foods[J]. Foods,2023,12(15):2892. doi: 10.3390/foods12152892
|
[11] |
HOTESSA N, ROBE J. Ethiopian indigenous traditional fermented beverage:The role of the microorganisms toward nutritional and safety value of fermented beverage[J]. International Journal of Microbiology,2020,2020:8891259.
|
[12] |
SHARMA R, GARG P, KUMAR P, et al. Microbial fermentation and its role in quality improvement of fermented foods[J]. Fermentation-Basel,2020,6(4):106. doi: 10.3390/fermentation6040106
|
[13] |
WANG J X, HAO S Y, REN Q. Uncultured microorganisms and their functions in the fermentation systems of traditional chinese fermented foods[J]. Foods,2023,12(14):2691. doi: 10.3390/foods12142691
|
[14] |
ASHAOLU T J. Safety and quality of bacterially fermented functional foods and beverages:a mini review[J]. Food Quality and Safety,2020,4(3):123−127. doi: 10.1093/fqsafe/fyaa003
|
[15] |
HWANG J, KIM Y, SEO Y, et al. Effect of starter cultures on quality of fermented sausages[J]. Food Science of Animal Resources,2023,43(1):1−9. doi: 10.5851/kosfa.2022.e75
|
[16] |
GE L H, LAI H M, HUANG Y L, et al. Comparative evaluation of package types in alleviating textural softening and package-swelling of Paocai during storage:Insight into microbial invasion, cell wall pectinolysis and alteration in sugar and organic acid profiles[J]. Food Chemistry,2021,365:130489. doi: 10.1016/j.foodchem.2021.130489
|
[17] |
LEDORMAND P, DESMASURES N, MIDOUX C, et al. Investigation of the phageome and prophages in french cider, a fermented beverage[J]. Microorganisms,2022,10(6):1203. doi: 10.3390/microorganisms10061203
|
[18] |
YU Z, MA Y, GUAN Y F, et al. Metagenomics of virus diversities in solid-state brewing process of traditional chinese vinegar[J]. Foods,2022,11(20):3296. doi: 10.3390/foods11203296
|
[19] |
YOU L J, YANG C C, JIN H, et al. Metagenomic features of traditional fermented milk products[J]. Lwt-Food Science and Technology,2022,155:112945. doi: 10.1016/j.lwt.2021.112945
|
[20] |
MA C J, PAN N Q, CHEN Z J, et al. Geographical diversity of Streptococcus thermophilus phages in Chinese yoghurt plants[J]. International Dairy Journal,2014,35(1):32−37. doi: 10.1016/j.idairyj.2013.10.007
|
[21] |
GAUTIER M, ROUAULT A, HERVé C, et al. Bacteriophages of dairy propionibacteria[J]. Lait,1999,79(1):93−104. doi: 10.1051/lait:199917
|
[22] |
PARK W J, KONG S J, PARK J H. Kimchi bacteriophages of lactic acid bacteria:population, characteristics, and their role in watery kimchi[J]. Food Science and Biotechnology,2021,30(7):949−957. doi: 10.1007/s10068-021-00930-y
|
[23] |
LEE S, PARK J H. Characteristics on host specificity, infection, and temperature stability of Weissella phages from watery kimchi[J]. Food Science and Biotechnology,2021,30(6):843−851. doi: 10.1007/s10068-021-00920-0
|
[24] |
DERUYTER P, KUIPERS O P, MEIJER W C, et al. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening[J]. Nature Biotechnology,1997,15(10):976−979. doi: 10.1038/nbt1097-976
|
[25] |
WALSH A M, MACORI G, KILCAWLEY K N, et al. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality[J]. Nature Food,2020,1(8):500−510. doi: 10.1038/s43016-020-0129-3
|
[26] |
BANDARA N, JO J, RYU S, et al. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods[J]. Food Microbiology,2012,31(1):9−16. doi: 10.1016/j.fm.2012.02.003
|
[27] |
ROHWER F, SEGALL A M. In retrospect A century of phage lessons[J]. Nature,2015,528(7580):46−48. doi: 10.1038/528046a
|
[28] |
尹红梅, 侯忠余, 王金丽, 等. 普通变形杆菌噬菌体裂解酶Lys66的表达纯化及活性分析[J]. 食品工业科技,2024,45(4):109−115. [YIN H M, HOU Z Y, WANG J L, et al. Expression, purification and activity analysis of proteus vulgaris phage Lys66[J]. Food Industry Science and Technology,2024,45(4):109−115.]
YIN H M, HOU Z Y, WANG J L, et al. Expression, purification and activity analysis of proteus vulgaris phage Lys66[J]. Food Industry Science and Technology, 2024, 45(4): 109−115.
|
[29] |
ACKERMANN H W. 2 5500 Phages examined in the electron microscope[J]. Archives of Virology,2007,152(2):227−243. doi: 10.1007/s00705-006-0849-1
|
[30] |
LEPRINCE A, MAHILLON J. Phage adsorption to gram-positive bacteria[J]. Viruses-Basel,2023,15(1):196. doi: 10.3390/v15010196
|
[31] |
MOUROSI J T, AWE A, GUO W, et al. Understanding bacteriophage tail fiber interaction with host surface receptor:The key "blueprint" for reprogramming phage host range[J]. International Journal of Molecular Sciences,2022,23(20):12146. doi: 10.3390/ijms232012146
|
[32] |
SHARP R. 3 Bacteriophages:biology and history[J]. Journal of Chemical Technology and Biotechnology,2001,76(7):667−672. doi: 10.1002/jctb.434
|
[33] |
胡申才, 楚乐乐, 周敏. 假单胞菌噬菌体PrH-181对大黄鱼块防腐效果的研究[J]. 食品工业科技,2021,42(6):288−291,324. [HU S C, CHU L L, ZHOU M. Antiseptic effect of Pseudomonas bacteriophages PrH-181 on large yellow croaker meat[J]. Food Industry Science and Technology,2021,42(6):288−291,324.]
HU S C, CHU L L, ZHOU M. Antiseptic effect of Pseudomonas bacteriophages PrH-181 on large yellow croaker meat[J]. Food Industry Science and Technology, 2021, 42(6): 288−291,324.
|
[34] |
LOS J M, LOS M, WEGRZYN G. Bacteriophages carrying Shiga toxin genes:genomic variations, detection and potential treatment of pathogenic bacteria[J]. Future Microbiology,2011,6(8):909−924. doi: 10.2217/fmb.11.70
|
[35] |
JUNG J Y, LEE S H, KIM J M, et al. Metagenomic analysis of kimchi, a traditional korean fermented food[J]. Applied and Environmental Microbiology,2011,77(7):2264−2274. doi: 10.1128/AEM.02157-10
|
[36] |
MAHONY J, MOSCARELLI A, KELLEHER P, et al. Phage biodiversity in artisanal cheese wheys reflects the complexity of the fermentation process[J]. Viruses-Basel,2017,9(3):45. doi: 10.3390/v9030045
|
[37] |
MURPHY J, ROYER B, MAHONY J, et al. Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants[J]. Journal of Dairy Science,2013,96(8):4945−4957. doi: 10.3168/jds.2013-6748
|
[38] |
KOT W, NEVE H, HELLER K J, et al. Bacteriophages of Leuconostoc, Oenococcus, and Weissella[J]. Frontiers in Microbiology,2014,5:186.
|
[39] |
MUDGAL P, BREIDT F, LUBKIN S R, et al. Quantifying the significance of phage attack on starter cultures:a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut[J]. Applied and Environmental Microbiology,2006,72(6):3908−3915. doi: 10.1128/AEM.02429-05
|
[40] |
ZINNO P, JANZEN T, BENNEDSEN M, et al. Characterization of Streptococcus thermophilus lytic bacteriophages from mozzarella cheese plants[J]. International Journal of Food Microbiology,2010,138(1-2):137−144. doi: 10.1016/j.ijfoodmicro.2009.12.008
|
[41] |
BRUSSOW H, FREMONT M, BRUTTIN A, et al. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation[J]. Applied and Environmental Microbiology,1994,60(12):4537−4543. doi: 10.1128/aem.60.12.4537-4543.1994
|
[42] |
WHITEHEAD H R, HUNTER G J E. Bacteriophage in cheese manufacture:contamination from farm equipment[J]. Journal of Dairy Research,1947,15(1−2):112. doi: 10.1017/S0022029900004994
|
[43] |
NAGAI T. Overview of studies on Bacillus subtilis (natto) bacteriophages and the prospects[J]. Jarq-Japan Agricultural Research Quarterly,2012,46(4):305−310. doi: 10.6090/jarq.46.305
|
[44] |
KLEPPEN H P, HOLO H, JEON S R, et al. Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi[J]. Applied and Environmental Microbiology,2012,78(20):7299−7308. doi: 10.1128/AEM.00031-12
|
[45] |
艾连中. 发酵乳制品质量安全问题及控制技术[J]. 食品科学技术学报,2016,34(1):16−20. [AI L Z. Quality and safety issues and control technique of fermented milk[J]. Journal of Food Science and Technology,2016,34(1):16−20.] doi: 10.3969/j.issn.2095-6002.2016.01.003
AI L Z. Quality and safety issues and control technique of fermented milk[J]. Journal of Food Science and Technology, 2016, 34(1): 16−20. doi: 10.3969/j.issn.2095-6002.2016.01.003
|
[46] |
VERREAULT D, GENDRON L, ROUSSEAU G M, et al. Detection of airborne Lactococcal bacteriophages in cheese manufacturing plants[J]. Applied and Environmental Microbiology,2011,77(2):491−497. doi: 10.1128/AEM.01391-10
|
[47] |
GARNEAU J E, MOINEAU S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations[J]. Microbial Cell Factories,2011,10:S20. doi: 10.1186/1475-2859-10-S1-S20
|
[48] |
LU Z, PEREZ-DÍAZ I M, HAYES J S, et al. Bacteriophage ecology in a commercial cucumber fermentation[J]. Applied and Environmental Microbiology,2012,78(24):8571−8578. doi: 10.1128/AEM.01914-12
|
[49] |
KLEPPEN H P, BANG T, NES I F, et al. Bacteriophages in milk fermentations:Diversity fluctuations of normal and failed fermentations[J]. International Dairy Journal,2011,21(9):592−600. doi: 10.1016/j.idairyj.2011.02.010
|
[50] |
MADERA C, MONJARDÍN C, SUÁREZ J E. Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies[J]. Applied and Environmental Microbiology,2004,70(12):7365−7371. doi: 10.1128/AEM.70.12.7365-7371.2004
|
[51] |
FERNÁNDEZ L, ESCOBEDO S, GUTIÉRREZ D, et al. Bacteriophages in the dairy environment:From enemies to allies[J]. Antibiotics-Basel,2017,6(4):27. doi: 10.3390/antibiotics6040027
|
[52] |
ZHANG X, KONG J, QU Y. Isolation and characterization of a Lactobacillus fermentum temperate bacteriophage from Chinese yogurt[J]. Journal of Applied Microbiology,2006,101(4):857−863. doi: 10.1111/j.1365-2672.2006.03007.x
|
[53] |
WANG S H, KONG J, GAO C, et al. Isolation and characterization of a novel virulent phage (phiLdb) of Lactobacillus delbrueckii[J]. International Journal of Food Microbiology,2010,137(1):22−27. doi: 10.1016/j.ijfoodmicro.2009.10.024
|
[54] |
QUIBERONI A, AUAD L, BINETTI A G, et al. Comparative analysis of Streptococcus thermophilus bacteriophages isolated from a yogurt industrial plant[J]. Food Microbiology,2003,20(4):461−469. doi: 10.1016/S0740-0020(02)00143-0
|
[55] |
DUGAT-BONY E, LOSSOUARN J, DE PAEPE M, et al. Viral metagenomic analysis of the cheese surface:A comparative study of rapid procedures for extracting viral particles[J]. Food Microbiology,2020,85:103278. doi: 10.1016/j.fm.2019.103278
|
[56] |
FRANTZEN C A, HOLO H. Unprecedented diversity of Lactococcal group 936 bacteriophages revealed by amplicon sequencing of the portal protein gene[J]. Viruses-Basel,2019,11(5):443. doi: 10.3390/v11050443
|
[57] |
QUEIROZ L L, LACORTE G A, ISIDORIO W R, et al. High level of interaction between phages and bacteria in an artisanal raw milk cheese microbial community[J]. Msystems,2023,8(1):e00564−e00522.
|
[58] |
KLEPPEN H P, NES I F, HOLO H. Characterization of a Leuconostoc bacteriophage infecting flavor producers of cheese starter cultures[J]. Applied and Environmental Microbiology,2012,78(18):6769−6772. doi: 10.1128/AEM.00562-12
|
[59] |
QUIBERONI A, TREMBLAY D, ACKERMANN H W, et al. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina[J]. Journal of Dairy Science,2006,89(10):3791−3799. doi: 10.3168/jds.S0022-0302(06)72420-1
|
[60] |
MASUD T, LATIF A, HAMEED A. Characterization of four new Lactococcus lactis bacteriophages isolated from dahi whey[J]. International Journal of Dairy Technology,2009,62(1):107−111. doi: 10.1111/j.1471-0307.2008.00452.x
|
[61] |
KONG S J, PARK J H. Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi[J]. Food Science and Biotechnology,2020,29(6):873−878. doi: 10.1007/s10068-019-00723-4
|
[62] |
KIM S H, PARK J H. Characterization of prophages in Leuconostoc derived from Kimchi and genomic analysis of the induced prophage in Leuconostoc lactis[J]. Journal of Microbiology and Biotechnology,2022,32(3):333−340. doi: 10.4014/jmb.2110.10046
|
[63] |
傅文博. 酱香型白酒发酵过程细菌病毒多样性及其功能的研究[D]. 无锡:江南大学, 2022. [FU W B. Study on diversity and function of bacterial viruses in the sauce-flavor Baijiu fermentation[D]. Wuxi:Jiangnan University, 2022.]
FU W B. Study on diversity and function of bacterial viruses in the sauce-flavor Baijiu fermentation[D]. Wuxi: Jiangnan University, 2022.
|
[64] |
DU H, CHEN B W, FU W B, et al. Composition and function of viruses in sauce-flavor Baijiu fermentation[J]. International Journal of Food Microbiology,2023,387:110055. doi: 10.1016/j.ijfoodmicro.2022.110055
|
[65] |
KYRKOU I, CARSTENS A B, ELLEGAARD-JENSEN L, et al. Isolation and characterisation of novel phages infecting Lactobacillus plantarum and proposal of a new genus, "Silenusvirus"[J]. Scientific Reports, 2020, 10(1):8763.
|
[66] |
OMATA K, HIBI N, NAKANO S, et al. Distribution and genome structures of temperate phages in acetic acid bacteria[J]. Scientific Reports,2021,11(1):21567. doi: 10.1038/s41598-021-00998-w
|
[67] |
QIAN C G, MA J W, LIANG J L, et al. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin-antitoxin system, and linkage with CRISPR-Cas system[J]. Frontiers in Microbiology,2022,13:951030. doi: 10.3389/fmicb.2022.951030
|
[68] |
AGYIRIFO D S, WAMALWA M, OTWE E P, et al. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities[J]. Heliyon,2019,5(7):e02170. doi: 10.1016/j.heliyon.2019.e02170
|
[69] |
ILLEGHEMS K, DE V L, PAPALEXANDRATOU Z, et al. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity[J]. PLoS One,2012,7(5):e38040. doi: 10.1371/journal.pone.0038040
|
[70] |
CHIBANI-CHENNOUFI S, DILLMANN M L, MARVIN-GUY L, et al. Lactobacillus plantarum bacteriophage LP65:A new member of the SPO1-like genus of the family Myoviridae[J]. Journal of Bacteriology,2004,186(21):7069−7083. doi: 10.1128/JB.186.21.7069-7083.2004
|
[71] |
TAN G L, QI S H, WANG Y, et al. Uncovering differences in the composition and function of phage communities and phage-bacterium interactions in raw soy sauce[J]. Frontiers in Microbiology,2023,14:1328158. doi: 10.3389/fmicb.2023.1328158
|
[72] |
UMENE K, OOHASHI S, YAMANAKA F, et al. Molecular characterization of the genome of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production[J]. World Journal of Microbiology & Biotechnology,2009,25(10):1877−1881.
|
[73] |
GEWTAISONG J, CHUKEATIROTE E, AHN J. Characterization of Bacillus subtilis bacteriophage BasuTN3 isolated from Thua Nao, a thai fermented soybean food product[J]. Food Science and Biotechnology,2023,32(2):203−208. doi: 10.1007/s10068-022-01188-8
|
[74] |
CHMIELEWSKA-JEZNAC M, BARDOESKI J K, SZCZEPANKOWSKA A K. Lactococcus Ceduovirus phages isolated from industrial dairy plants-from physiological to genomic analyses[J]. Viruses-Basel,2020,12(3):280. doi: 10.3390/v12030280
|
[75] |
CHEN X, GUO J, LIU Y, et al. Characterization and adsorption of a Lactobacillus plantarum virulent phage[J]. Journal of Dairy Science,2019,102(5):3879−3886. doi: 10.3168/jds.2018-16019
|
[76] |
ZHAO N, HUANG Y L, LAI H M, et al. The role of abiotic and biotic factors of aged brine in directing microbial assembly and volatile profiles of Paocai during fermentation[J]. Food Bioscience,2024,57:103592. doi: 10.1016/j.fbio.2024.103592
|
[77] |
KONG S J, PARK J H. Effect of bacteriophages on viability and growth of co-cultivated Weissella and Leuconostoc in Kimchi fermentation[J]. Journal of Microbiology and Biotechnology,2019,29(4):558−561. doi: 10.4014/jmb.1902.02023
|
[78] |
LU Z J, PÉREZ-DÍAZ I M, HAYES J S, et al. Bacteriophages infecting gram-negative bacteria in a commercial cucumber fermentation[J]. Frontiers in Microbiology,2020,11:1306. doi: 10.3389/fmicb.2020.01306
|
[79] |
BARRANGOU R, YOON S S, BREIDT F, et al. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation[J]. Applied and Environmental Microbiology,2002,68(11):5452−5458. doi: 10.1128/AEM.68.11.5452-5458.2002
|
[80] |
YOON S S, BARRANGOU-POUEYS R, BREIDT F, et al. Isolation and characterization of bacteriophages from fermenting sauerkraut[J]. Applied and Environmental Microbiology,2002,68(2):973−976. doi: 10.1128/AEM.68.2.973-976.2002
|
[81] |
HUANG Y L, GE L H, LAI H M, et al. Seasonal alteration of environmental condition-driven shift in microbiota composition, physicochemical attributes and organic compound profiles in aged Paocai brine during intermittent back-slopping fermentation[J]. Food Bioscience,2022,50:102111. doi: 10.1016/j.fbio.2022.102111
|
[82] |
LU Z, ALTERMANN E, BREIDT F, et al. Sequence analysis of Leuconostoc mesenteroides bacteriophage Φ1-A4 isolated from an industrial vegetable fermentation[J]. Applied and Environmental Microbiology,2010,76(6):1955−1966. doi: 10.1128/AEM.02126-09
|
[83] |
MAHONY J, VAN SINDEREN D. Current taxonomy of phages infecting lactic acid bacteria[J]. Frontiers in Microbiology,2014,5:7.
|
[84] |
DEGROUX S, EFFANTIN G, LINARES R, et al. Deciphering bacteriophage T5 host recognition mechanism and infection trigger[J]. Journal of Virology,2023,97(3):e01584.
|
[85] |
BRITO I L. Examining horizontal gene transfer in microbial communities[J]. Nature Reviews Microbiology,2021,19(7):442−453. doi: 10.1038/s41579-021-00534-7
|
[86] |
VISWESWARAN G R R, KUREK D, SZELIGA M, et al. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis[J]. Applied Microbiology and Biotechnology,2017,101(3):1099−1110. doi: 10.1007/s00253-016-7822-z
|
[87] |
FERNÁNDEZ L, GUTIÉRREZ D, GARCÍA P, et al. Environmental pH is a key modulator of Staphylococcus aureus biofilm development under predation by the virulent phage phiIPLA-RODI[J]. Isme Journal,2021,15(1):245−259. doi: 10.1038/s41396-020-00778-w
|
[88] |
OH J H, ALEXANDER L M, PAN M, et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri[J]. Cell Host & Microbe,2019,25(2):273−284.
|
[89] |
HENROT C, PETIT M A. Signals triggering prophage induction in the gut microbiota[J]. Molecular Microbiology,2022,118(5):494−502. doi: 10.1111/mmi.14983
|
[90] |
AL-ANANY A M, FATIMA R, NAIR G, et al. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny[J]. Mbio, 2024:e00504.
|
[91] |
SMID E, KLEEREBEZEM M. Production of aroma compounds in lactic fermentations[J]. Annual Review of Food Science and Technology,2014,5(1):313−326. doi: 10.1146/annurev-food-030713-092339
|
[92] |
PHILIPPE C, KRUPOVIC M, JAOMANJAKA F, et al. Bacteriophage GC1, a novel tectivirus infecting Gluconobacter Cerinus, an acetic acid bacterium associated with wine-making[J]. Viruses-Basel,2018,10(1):39. doi: 10.3390/v10010039
|
[93] |
WEN Q N, LV R R, ZHANG C, et al. Transcriptome analysis of the response of Lactiplantibacillus plantarum IMAU10120 to infection by phage P2[J]. International Journal of Dairy Technology,2024,77(2):435−449. doi: 10.1111/1471-0307.13055
|
[94] |
KARAYNIR A, SALIH H, BOZDOGAN B, et al. Isolation and characterization of Brochothrix phage ADU4[J]. Virus Research,2022,321:198902. doi: 10.1016/j.virusres.2022.198902
|
[95] |
ZHANG H D, ZHANG H X, DU H, et al. The insights into the phage communities of fermented foods in the age of viral metagenomics[J]. Critical Reviews in Food Science and Nutrition, 2023:2299323.
|
[96] |
MA J W, QIAN C G, HU Q J, et al. The bacteriome-coupled phage communities continuously contract and shift to orchestrate the traditional rice vinegar fermentation[J]. Food Research International,2024,184:114244. doi: 10.1016/j.foodres.2024.114244
|
[97] |
IPSEN R. Microparticulated whey proteins for improving dairy product texture[J]. International Dairy Journal,2017,67:73−79. doi: 10.1016/j.idairyj.2016.08.009
|
[98] |
LIU X, LIN S, LIU T, et al. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella[J]. Nucleic Acids Research,2021,49(6):3427−3440. doi: 10.1093/nar/gkab137
|
[99] |
MASKE B L, PEREIRA G V D, VALE A D, et al. Viruses in fermented foods:are they good or bad? Two sides of the same coin[J]. Food Microbiology,2021,98:103794. doi: 10.1016/j.fm.2021.103794
|
[100] |
HUANG D, XIA R, CHEN C, et al. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress[J]. Trends in microbiology,2024,2:002.
|
[101] |
SILPE J E, DUDDY O P, BASSLER B L. Induction mechanisms and strategies underlying interprophage competition during polylysogeny[J]. Plos Pathogens,2023,19(5):e1011363. doi: 10.1371/journal.ppat.1011363
|
[102] |
DEL RIO B, SÁNCHEZ-LLANA E, REDRUELLO B, et al. Enterococcus faecalis bacteriophage 156 is an effective biotechnological tool for reducing the presence of tyramine and putrescine in an experimental cheese model[J]. Frontiers in Microbiology,2019,10:566. doi: 10.3389/fmicb.2019.00566
|
[103] |
TABLA R, GÓMEZ A, REBOLLO J E, et al. Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli[J]. Lwt-Food Science and Technology,2022,153:112430. doi: 10.1016/j.lwt.2021.112430
|
[104] |
TOMAT D, MERCANTI D, BALAGUé C, et al. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation[J]. Letters in Applied Microbiology,2013,57(1):3−10. doi: 10.1111/lam.12074
|
[105] |
KOMORA N, MACIEL C, PINTO C A, et al. Non-thermal approach to Listeria monocytogenes inactivation in milk:The combined effect of high pressure, pediocin PA-1 and bacteriophage P100[J]. Food Microbiology,2020,86:103315. doi: 10.1016/j.fm.2019.103315
|
[1] | LI Jingjing, LUO Tingting, HU Haiyue, GENG Dongyu, LIU Yaxuan, WANG Lina, YANG Chen, WANG Jianming. Effects of Different Extraction Methods on Structure and Functional Characteristics of Almond Protein[J]. Science and Technology of Food Industry, 2025, 46(5): 72-80. DOI: 10.13386/j.issn1002-0306.2024030197 |
[2] | Xiaoyu ZHANG, Zhenfeng GAO, Yaru HOU, Xinxian ZHANG, Yuanyuan CHEN, Lixin ZHANG. Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi[J]. Science and Technology of Food Industry, 2023, 44(13): 110-118. DOI: 10.13386/j.issn1002-0306.2022060099 |
[3] | MENG Jiajun, XU Shurong, DENG Sha, HE Guiping, LÜ Yuanping. Effects of Salt Marinating on Chicken Quality and Structure Characteristics, Function Characteristics of Chicken Myofibrin Protein[J]. Science and Technology of Food Industry, 2022, 43(24): 45-53. DOI: 10.13386/j.issn1002-0306.2022020270 |
[4] | HOU Yaru, GAO Zhenfeng, YANG Zhiguo, CHEN Tian, ZHANG Yang, GUAN Junfeng, ZHANG Lixin, ZHANG Xiaoyu. Isolation, Identification and Biological Characteristics of Postharvest Pathogens of Yuluxiang Pear[J]. Science and Technology of Food Industry, 2022, 43(18): 122-129. DOI: 10.13386/j.issn1002-0306.2021110364 |
[5] | LI Xiao-ying, LIU Hong, ZHANG Yan-ting, WANG Jing. Biological characteristics and safety evaluation of five Lactobacillus plantarum strains[J]. Science and Technology of Food Industry, 2017, (20): 115-119. DOI: 10.13386/j.issn1002-0306.2017.20.021 |
[6] | YANG Wei, LI Bo, XU Xiang, DENG Chu-jun, CHANG Jin-cui, CHEN Ru-yan, ZHAO Tong, GAO Yan-xiang. Advance in research on the structural and function characteristics of noncovalent interactions of protein, polyphenol and polysaccharide[J]. Science and Technology of Food Industry, 2017, (17): 329-334. DOI: 10.13386/j.issn1002-0306.2017.17.064 |
[7] | XIN Song-lin, JIAO Lu, XU Xiao-xue, WANG Hui, QIN Wen. Research on pathogen identification and biological characteristics of sclerotinia from Sichuan okra[J]. Science and Technology of Food Industry, 2017, (12): 186-190. DOI: 10.13386/j.issn1002-0306.2017.12.034 |
[8] | CHEN Pei, DANG Hui, WANG Wei, CHEN Wei. Biological characteristics of Lactobacillus rhamnosus with antidiabetic activity[J]. Science and Technology of Food Industry, 2016, (21): 162-165. DOI: 10.13386/j.issn1002-0306.2016.21.023 |
[9] | DU Xiao-qin, LI Jie, QIN Wen, LI Yu, HE Jing-liu, WANG Wei-qiong, CHEN Qin-yuan, YE Xin-yi. Isolation,identification and biological characteristics of pathogenic bacteria for sweet cherry[J]. Science and Technology of Food Industry, 2015, (18): 197-202. DOI: 10.13386/j.issn1002-0306.2015.18.031 |
[10] | BAO Guan-yuan, GUO Hai-yan, JIA Mu-tai, SU Shao-feng, HE Yin-feng, MANG Lai, WU Jing. Biological characteristics of antimicrobial substance produced by Enterococcus faecalis 8-1[J]. Science and Technology of Food Industry, 2015, (18): 147-151. DOI: 10.13386/j.issn1002-0306.2015.18.021 |