LIU Jiaqi, YANG Menglu, HUANG Yuli, et al. Research Progress on the Composition of Bacteriophages and the Effect on Quality Formation in Fermented Foods[J]. Science and Technology of Food Industry, 2025, 46(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070022.
Citation: LIU Jiaqi, YANG Menglu, HUANG Yuli, et al. Research Progress on the Composition of Bacteriophages and the Effect on Quality Formation in Fermented Foods[J]. Science and Technology of Food Industry, 2025, 46(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070022.

Research Progress on the Composition of Bacteriophages and the Effect on Quality Formation in Fermented Foods

More Information
  • Received Date: July 02, 2024
  • Available Online: March 19, 2025
  • Fermented foods, of which components are transformed through controlled microbial fermentation process, are an important part of the daily diet of people due to their delicious and probiotic properties. However, the microbial composition of fermented foods is complex, and studies limited to bacteria and fungi are often insufficient to fully reveal the quality formation mechanisms of fermented foods. Therefore, in recent years, research attention has been gradually turned to phages to explore a more comprehensive pathway for quality control. Phages have been detected across various fermented foods and have been shown that certain environmental factors such as pH, phytochemicals (organic acids and vitamins), temperature and salinity in fermented foods may lead to changes in their life cycle, which may trigger the transformation of temperate phages into virulent phages. This could further enable phages to play an important role in the formation of the final quality by lysing core microorganisms or pathogenic microorganisms as well as genetically regulating acid-production metabolism of core microorganisms at the gene level. This review summarized the composition of phages in fermented foods, including Siphoviridae, Myoviridae and Podoviridae. Additionally, it provided an overview of the mechanisms by which phages affect host metabolism by lysing the host or modulating their metabolic pathways, thus indirectly affecting the fermentation process and ultimately leading to an enhancement or deterioration of the product quality (sensory, nutritional, safety), aiming to provide scientific guidance for improving the controllability of the quality of fermented foods.
  • [1]
    MUKHERJEE A, GOMEZ-SALA B, O'CONNOR E M, et al. Global regulatory frameworks for fermented foods:A review[J]. Frontiers in Nutrition,2022,9:902642. doi: 10.3389/fnut.2022.902642
    [2]
    HUANG Q, DONG K, WANG Q, et al. Changes in volatile flavor of yak meat during oxidation based on multi-omics[J]. Food Chemistry,2022,371:131103. doi: 10.1016/j.foodchem.2021.131103
    [3]
    ZHAO N, HUANG Y L, LAI H M, et al. Illumination and reconstruction of keystone microbiota for reproduction of key flavor-active volatile compounds during paocai (a traditional fermented vegetable) fermentation[J]. Food Bioscience,2023,56:103148. doi: 10.1016/j.fbio.2023.103148
    [4]
    CHILESHE J, TALSMA E F, SCHOUSTRA S E, et al. Potential contribution of cereal and milk based fermented foods to dietary nutrient intake of 1-5 years old children in Central province in Zambia[J]. PLoS One,2020,15(5):e0232824. doi: 10.1371/journal.pone.0232824
    [5]
    LIU L B, CHEN X Q, HAO L L, et al. Traditional fermented soybean products:processing, flavor formation, nutritional and biological activities[J]. Critical Reviews in Food Science and Nutrition,2022,62(7):1971−1989. doi: 10.1080/10408398.2020.1848792
    [6]
    ROMULO A, SURYA R. Tempe:A traditional fermented food of Indonesia and its health benefits[J]. International Journal of Gastronomy and Food Science,2021,26:100413. doi: 10.1016/j.ijgfs.2021.100413
    [7]
    ABU-SALEMFERIAL, RASHA M, AHMED G, et al. Levels of some Antinutritional factors in tempeh produced from some legumes and jojobas seeds[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(1):5−6.
    [8]
    LAATIKAINEN R, KOSKENPATO J, HONGISTO S M, et al. Randomised clinical trial:low-fodmap rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome[J]. Alimentary Pharmacology & Therapeutics,2016,44(5):460−470.
    [9]
    CUVAS-LIMON R B, NOBRE C, CRUZ M, et al. Spontaneously fermented traditional beverages as a source of bioactive compounds:an overview[J]. Critical Reviews in Food Science and Nutrition,2021,61(18):2984−3006. doi: 10.1080/10408398.2020.1791050
    [10]
    FAN J, QU G, WANG D, et al. Synergistic fermentation with functional microorganisms improves safety and quality of traditional chinese fermented foods[J]. Foods,2023,12(15):2892. doi: 10.3390/foods12152892
    [11]
    HOTESSA N, ROBE J. Ethiopian indigenous traditional fermented beverage:The role of the microorganisms toward nutritional and safety value of fermented beverage[J]. International Journal of Microbiology,2020,2020:8891259.
    [12]
    SHARMA R, GARG P, KUMAR P, et al. Microbial fermentation and its role in quality improvement of fermented foods[J]. Fermentation-Basel,2020,6(4):106. doi: 10.3390/fermentation6040106
    [13]
    WANG J X, HAO S Y, REN Q. Uncultured microorganisms and their functions in the fermentation systems of traditional chinese fermented foods[J]. Foods,2023,12(14):2691. doi: 10.3390/foods12142691
    [14]
    ASHAOLU T J. Safety and quality of bacterially fermented functional foods and beverages:a mini review[J]. Food Quality and Safety,2020,4(3):123−127. doi: 10.1093/fqsafe/fyaa003
    [15]
    HWANG J, KIM Y, SEO Y, et al. Effect of starter cultures on quality of fermented sausages[J]. Food Science of Animal Resources,2023,43(1):1−9. doi: 10.5851/kosfa.2022.e75
    [16]
    GE L H, LAI H M, HUANG Y L, et al. Comparative evaluation of package types in alleviating textural softening and package-swelling of Paocai during storage:Insight into microbial invasion, cell wall pectinolysis and alteration in sugar and organic acid profiles[J]. Food Chemistry,2021,365:130489. doi: 10.1016/j.foodchem.2021.130489
    [17]
    LEDORMAND P, DESMASURES N, MIDOUX C, et al. Investigation of the phageome and prophages in french cider, a fermented beverage[J]. Microorganisms,2022,10(6):1203. doi: 10.3390/microorganisms10061203
    [18]
    YU Z, MA Y, GUAN Y F, et al. Metagenomics of virus diversities in solid-state brewing process of traditional chinese vinegar[J]. Foods,2022,11(20):3296. doi: 10.3390/foods11203296
    [19]
    YOU L J, YANG C C, JIN H, et al. Metagenomic features of traditional fermented milk products[J]. Lwt-Food Science and Technology,2022,155:112945. doi: 10.1016/j.lwt.2021.112945
    [20]
    MA C J, PAN N Q, CHEN Z J, et al. Geographical diversity of Streptococcus thermophilus phages in Chinese yoghurt plants[J]. International Dairy Journal,2014,35(1):32−37. doi: 10.1016/j.idairyj.2013.10.007
    [21]
    GAUTIER M, ROUAULT A, HERVé C, et al. Bacteriophages of dairy propionibacteria[J]. Lait,1999,79(1):93−104. doi: 10.1051/lait:199917
    [22]
    PARK W J, KONG S J, PARK J H. Kimchi bacteriophages of lactic acid bacteria:population, characteristics, and their role in watery kimchi[J]. Food Science and Biotechnology,2021,30(7):949−957. doi: 10.1007/s10068-021-00930-y
    [23]
    LEE S, PARK J H. Characteristics on host specificity, infection, and temperature stability of Weissella phages from watery kimchi[J]. Food Science and Biotechnology,2021,30(6):843−851. doi: 10.1007/s10068-021-00920-0
    [24]
    DERUYTER P, KUIPERS O P, MEIJER W C, et al. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening[J]. Nature Biotechnology,1997,15(10):976−979. doi: 10.1038/nbt1097-976
    [25]
    WALSH A M, MACORI G, KILCAWLEY K N, et al. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality[J]. Nature Food,2020,1(8):500−510. doi: 10.1038/s43016-020-0129-3
    [26]
    BANDARA N, JO J, RYU S, et al. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods[J]. Food Microbiology,2012,31(1):9−16. doi: 10.1016/j.fm.2012.02.003
    [27]
    ROHWER F, SEGALL A M. In retrospect A century of phage lessons[J]. Nature,2015,528(7580):46−48. doi: 10.1038/528046a
    [28]
    尹红梅, 侯忠余, 王金丽, 等. 普通变形杆菌噬菌体裂解酶Lys66的表达纯化及活性分析[J]. 食品工业科技,2024,45(4):109−115. [YIN H M, HOU Z Y, WANG J L, et al. Expression, purification and activity analysis of proteus vulgaris phage Lys66[J]. Food Industry Science and Technology,2024,45(4):109−115.]

    YIN H M, HOU Z Y, WANG J L, et al. Expression, purification and activity analysis of proteus vulgaris phage Lys66[J]. Food Industry Science and Technology, 2024, 45(4): 109−115.
    [29]
    ACKERMANN H W. 2 5500 Phages examined in the electron microscope[J]. Archives of Virology,2007,152(2):227−243. doi: 10.1007/s00705-006-0849-1
    [30]
    LEPRINCE A, MAHILLON J. Phage adsorption to gram-positive bacteria[J]. Viruses-Basel,2023,15(1):196. doi: 10.3390/v15010196
    [31]
    MOUROSI J T, AWE A, GUO W, et al. Understanding bacteriophage tail fiber interaction with host surface receptor:The key "blueprint" for reprogramming phage host range[J]. International Journal of Molecular Sciences,2022,23(20):12146. doi: 10.3390/ijms232012146
    [32]
    SHARP R. 3 Bacteriophages:biology and history[J]. Journal of Chemical Technology and Biotechnology,2001,76(7):667−672. doi: 10.1002/jctb.434
    [33]
    胡申才, 楚乐乐, 周敏. 假单胞菌噬菌体PrH-181对大黄鱼块防腐效果的研究[J]. 食品工业科技,2021,42(6):288−291,324. [HU S C, CHU L L, ZHOU M. Antiseptic effect of Pseudomonas bacteriophages PrH-181 on large yellow croaker meat[J]. Food Industry Science and Technology,2021,42(6):288−291,324.]

    HU S C, CHU L L, ZHOU M. Antiseptic effect of Pseudomonas bacteriophages PrH-181 on large yellow croaker meat[J]. Food Industry Science and Technology, 2021, 42(6): 288−291,324.
    [34]
    LOS J M, LOS M, WEGRZYN G. Bacteriophages carrying Shiga toxin genes:genomic variations, detection and potential treatment of pathogenic bacteria[J]. Future Microbiology,2011,6(8):909−924. doi: 10.2217/fmb.11.70
    [35]
    JUNG J Y, LEE S H, KIM J M, et al. Metagenomic analysis of kimchi, a traditional korean fermented food[J]. Applied and Environmental Microbiology,2011,77(7):2264−2274. doi: 10.1128/AEM.02157-10
    [36]
    MAHONY J, MOSCARELLI A, KELLEHER P, et al. Phage biodiversity in artisanal cheese wheys reflects the complexity of the fermentation process[J]. Viruses-Basel,2017,9(3):45. doi: 10.3390/v9030045
    [37]
    MURPHY J, ROYER B, MAHONY J, et al. Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants[J]. Journal of Dairy Science,2013,96(8):4945−4957. doi: 10.3168/jds.2013-6748
    [38]
    KOT W, NEVE H, HELLER K J, et al. Bacteriophages of Leuconostoc, Oenococcus, and Weissella[J]. Frontiers in Microbiology,2014,5:186.
    [39]
    MUDGAL P, BREIDT F, LUBKIN S R, et al. Quantifying the significance of phage attack on starter cultures:a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut[J]. Applied and Environmental Microbiology,2006,72(6):3908−3915. doi: 10.1128/AEM.02429-05
    [40]
    ZINNO P, JANZEN T, BENNEDSEN M, et al. Characterization of Streptococcus thermophilus lytic bacteriophages from mozzarella cheese plants[J]. International Journal of Food Microbiology,2010,138(1-2):137−144. doi: 10.1016/j.ijfoodmicro.2009.12.008
    [41]
    BRUSSOW H, FREMONT M, BRUTTIN A, et al. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation[J]. Applied and Environmental Microbiology,1994,60(12):4537−4543. doi: 10.1128/aem.60.12.4537-4543.1994
    [42]
    WHITEHEAD H R, HUNTER G J E. Bacteriophage in cheese manufacture:contamination from farm equipment[J]. Journal of Dairy Research,1947,15(1−2):112. doi: 10.1017/S0022029900004994
    [43]
    NAGAI T. Overview of studies on Bacillus subtilis (natto) bacteriophages and the prospects[J]. Jarq-Japan Agricultural Research Quarterly,2012,46(4):305−310. doi: 10.6090/jarq.46.305
    [44]
    KLEPPEN H P, HOLO H, JEON S R, et al. Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi[J]. Applied and Environmental Microbiology,2012,78(20):7299−7308. doi: 10.1128/AEM.00031-12
    [45]
    艾连中. 发酵乳制品质量安全问题及控制技术[J]. 食品科学技术学报,2016,34(1):16−20. [AI L Z. Quality and safety issues and control technique of fermented milk[J]. Journal of Food Science and Technology,2016,34(1):16−20.] doi: 10.3969/j.issn.2095-6002.2016.01.003

    AI L Z. Quality and safety issues and control technique of fermented milk[J]. Journal of Food Science and Technology, 2016, 34(1): 16−20. doi: 10.3969/j.issn.2095-6002.2016.01.003
    [46]
    VERREAULT D, GENDRON L, ROUSSEAU G M, et al. Detection of airborne Lactococcal bacteriophages in cheese manufacturing plants[J]. Applied and Environmental Microbiology,2011,77(2):491−497. doi: 10.1128/AEM.01391-10
    [47]
    GARNEAU J E, MOINEAU S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations[J]. Microbial Cell Factories,2011,10:S20. doi: 10.1186/1475-2859-10-S1-S20
    [48]
    LU Z, PEREZ-DÍAZ I M, HAYES J S, et al. Bacteriophage ecology in a commercial cucumber fermentation[J]. Applied and Environmental Microbiology,2012,78(24):8571−8578. doi: 10.1128/AEM.01914-12
    [49]
    KLEPPEN H P, BANG T, NES I F, et al. Bacteriophages in milk fermentations:Diversity fluctuations of normal and failed fermentations[J]. International Dairy Journal,2011,21(9):592−600. doi: 10.1016/j.idairyj.2011.02.010
    [50]
    MADERA C, MONJARDÍN C, SUÁREZ J E. Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies[J]. Applied and Environmental Microbiology,2004,70(12):7365−7371. doi: 10.1128/AEM.70.12.7365-7371.2004
    [51]
    FERNÁNDEZ L, ESCOBEDO S, GUTIÉRREZ D, et al. Bacteriophages in the dairy environment:From enemies to allies[J]. Antibiotics-Basel,2017,6(4):27. doi: 10.3390/antibiotics6040027
    [52]
    ZHANG X, KONG J, QU Y. Isolation and characterization of a Lactobacillus fermentum temperate bacteriophage from Chinese yogurt[J]. Journal of Applied Microbiology,2006,101(4):857−863. doi: 10.1111/j.1365-2672.2006.03007.x
    [53]
    WANG S H, KONG J, GAO C, et al. Isolation and characterization of a novel virulent phage (phiLdb) of Lactobacillus delbrueckii[J]. International Journal of Food Microbiology,2010,137(1):22−27. doi: 10.1016/j.ijfoodmicro.2009.10.024
    [54]
    QUIBERONI A, AUAD L, BINETTI A G, et al. Comparative analysis of Streptococcus thermophilus bacteriophages isolated from a yogurt industrial plant[J]. Food Microbiology,2003,20(4):461−469. doi: 10.1016/S0740-0020(02)00143-0
    [55]
    DUGAT-BONY E, LOSSOUARN J, DE PAEPE M, et al. Viral metagenomic analysis of the cheese surface:A comparative study of rapid procedures for extracting viral particles[J]. Food Microbiology,2020,85:103278. doi: 10.1016/j.fm.2019.103278
    [56]
    FRANTZEN C A, HOLO H. Unprecedented diversity of Lactococcal group 936 bacteriophages revealed by amplicon sequencing of the portal protein gene[J]. Viruses-Basel,2019,11(5):443. doi: 10.3390/v11050443
    [57]
    QUEIROZ L L, LACORTE G A, ISIDORIO W R, et al. High level of interaction between phages and bacteria in an artisanal raw milk cheese microbial community[J]. Msystems,2023,8(1):e00564−e00522.
    [58]
    KLEPPEN H P, NES I F, HOLO H. Characterization of a Leuconostoc bacteriophage infecting flavor producers of cheese starter cultures[J]. Applied and Environmental Microbiology,2012,78(18):6769−6772. doi: 10.1128/AEM.00562-12
    [59]
    QUIBERONI A, TREMBLAY D, ACKERMANN H W, et al. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina[J]. Journal of Dairy Science,2006,89(10):3791−3799. doi: 10.3168/jds.S0022-0302(06)72420-1
    [60]
    MASUD T, LATIF A, HAMEED A. Characterization of four new Lactococcus lactis bacteriophages isolated from dahi whey[J]. International Journal of Dairy Technology,2009,62(1):107−111. doi: 10.1111/j.1471-0307.2008.00452.x
    [61]
    KONG S J, PARK J H. Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi[J]. Food Science and Biotechnology,2020,29(6):873−878. doi: 10.1007/s10068-019-00723-4
    [62]
    KIM S H, PARK J H. Characterization of prophages in Leuconostoc derived from Kimchi and genomic analysis of the induced prophage in Leuconostoc lactis[J]. Journal of Microbiology and Biotechnology,2022,32(3):333−340. doi: 10.4014/jmb.2110.10046
    [63]
    傅文博. 酱香型白酒发酵过程细菌病毒多样性及其功能的研究[D]. 无锡:江南大学, 2022. [FU W B. Study on diversity and function of bacterial viruses in the sauce-flavor Baijiu fermentation[D]. Wuxi:Jiangnan University, 2022.]

    FU W B. Study on diversity and function of bacterial viruses in the sauce-flavor Baijiu fermentation[D]. Wuxi: Jiangnan University, 2022.
    [64]
    DU H, CHEN B W, FU W B, et al. Composition and function of viruses in sauce-flavor Baijiu fermentation[J]. International Journal of Food Microbiology,2023,387:110055. doi: 10.1016/j.ijfoodmicro.2022.110055
    [65]
    KYRKOU I, CARSTENS A B, ELLEGAARD-JENSEN L, et al. Isolation and characterisation of novel phages infecting Lactobacillus plantarum and proposal of a new genus, "Silenusvirus"[J]. Scientific Reports, 2020, 10(1):8763.
    [66]
    OMATA K, HIBI N, NAKANO S, et al. Distribution and genome structures of temperate phages in acetic acid bacteria[J]. Scientific Reports,2021,11(1):21567. doi: 10.1038/s41598-021-00998-w
    [67]
    QIAN C G, MA J W, LIANG J L, et al. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin-antitoxin system, and linkage with CRISPR-Cas system[J]. Frontiers in Microbiology,2022,13:951030. doi: 10.3389/fmicb.2022.951030
    [68]
    AGYIRIFO D S, WAMALWA M, OTWE E P, et al. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities[J]. Heliyon,2019,5(7):e02170. doi: 10.1016/j.heliyon.2019.e02170
    [69]
    ILLEGHEMS K, DE V L, PAPALEXANDRATOU Z, et al. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity[J]. PLoS One,2012,7(5):e38040. doi: 10.1371/journal.pone.0038040
    [70]
    CHIBANI-CHENNOUFI S, DILLMANN M L, MARVIN-GUY L, et al. Lactobacillus plantarum bacteriophage LP65:A new member of the SPO1-like genus of the family Myoviridae[J]. Journal of Bacteriology,2004,186(21):7069−7083. doi: 10.1128/JB.186.21.7069-7083.2004
    [71]
    TAN G L, QI S H, WANG Y, et al. Uncovering differences in the composition and function of phage communities and phage-bacterium interactions in raw soy sauce[J]. Frontiers in Microbiology,2023,14:1328158. doi: 10.3389/fmicb.2023.1328158
    [72]
    UMENE K, OOHASHI S, YAMANAKA F, et al. Molecular characterization of the genome of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production[J]. World Journal of Microbiology & Biotechnology,2009,25(10):1877−1881.
    [73]
    GEWTAISONG J, CHUKEATIROTE E, AHN J. Characterization of Bacillus subtilis bacteriophage BasuTN3 isolated from Thua Nao, a thai fermented soybean food product[J]. Food Science and Biotechnology,2023,32(2):203−208. doi: 10.1007/s10068-022-01188-8
    [74]
    CHMIELEWSKA-JEZNAC M, BARDOESKI J K, SZCZEPANKOWSKA A K. Lactococcus Ceduovirus phages isolated from industrial dairy plants-from physiological to genomic analyses[J]. Viruses-Basel,2020,12(3):280. doi: 10.3390/v12030280
    [75]
    CHEN X, GUO J, LIU Y, et al. Characterization and adsorption of a Lactobacillus plantarum virulent phage[J]. Journal of Dairy Science,2019,102(5):3879−3886. doi: 10.3168/jds.2018-16019
    [76]
    ZHAO N, HUANG Y L, LAI H M, et al. The role of abiotic and biotic factors of aged brine in directing microbial assembly and volatile profiles of Paocai during fermentation[J]. Food Bioscience,2024,57:103592. doi: 10.1016/j.fbio.2024.103592
    [77]
    KONG S J, PARK J H. Effect of bacteriophages on viability and growth of co-cultivated Weissella and Leuconostoc in Kimchi fermentation[J]. Journal of Microbiology and Biotechnology,2019,29(4):558−561. doi: 10.4014/jmb.1902.02023
    [78]
    LU Z J, PÉREZ-DÍAZ I M, HAYES J S, et al. Bacteriophages infecting gram-negative bacteria in a commercial cucumber fermentation[J]. Frontiers in Microbiology,2020,11:1306. doi: 10.3389/fmicb.2020.01306
    [79]
    BARRANGOU R, YOON S S, BREIDT F, et al. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation[J]. Applied and Environmental Microbiology,2002,68(11):5452−5458. doi: 10.1128/AEM.68.11.5452-5458.2002
    [80]
    YOON S S, BARRANGOU-POUEYS R, BREIDT F, et al. Isolation and characterization of bacteriophages from fermenting sauerkraut[J]. Applied and Environmental Microbiology,2002,68(2):973−976. doi: 10.1128/AEM.68.2.973-976.2002
    [81]
    HUANG Y L, GE L H, LAI H M, et al. Seasonal alteration of environmental condition-driven shift in microbiota composition, physicochemical attributes and organic compound profiles in aged Paocai brine during intermittent back-slopping fermentation[J]. Food Bioscience,2022,50:102111. doi: 10.1016/j.fbio.2022.102111
    [82]
    LU Z, ALTERMANN E, BREIDT F, et al. Sequence analysis of Leuconostoc mesenteroides bacteriophage Φ1-A4 isolated from an industrial vegetable fermentation[J]. Applied and Environmental Microbiology,2010,76(6):1955−1966. doi: 10.1128/AEM.02126-09
    [83]
    MAHONY J, VAN SINDEREN D. Current taxonomy of phages infecting lactic acid bacteria[J]. Frontiers in Microbiology,2014,5:7.
    [84]
    DEGROUX S, EFFANTIN G, LINARES R, et al. Deciphering bacteriophage T5 host recognition mechanism and infection trigger[J]. Journal of Virology,2023,97(3):e01584.
    [85]
    BRITO I L. Examining horizontal gene transfer in microbial communities[J]. Nature Reviews Microbiology,2021,19(7):442−453. doi: 10.1038/s41579-021-00534-7
    [86]
    VISWESWARAN G R R, KUREK D, SZELIGA M, et al. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis[J]. Applied Microbiology and Biotechnology,2017,101(3):1099−1110. doi: 10.1007/s00253-016-7822-z
    [87]
    FERNÁNDEZ L, GUTIÉRREZ D, GARCÍA P, et al. Environmental pH is a key modulator of Staphylococcus aureus biofilm development under predation by the virulent phage phiIPLA-RODI[J]. Isme Journal,2021,15(1):245−259. doi: 10.1038/s41396-020-00778-w
    [88]
    OH J H, ALEXANDER L M, PAN M, et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri[J]. Cell Host & Microbe,2019,25(2):273−284.
    [89]
    HENROT C, PETIT M A. Signals triggering prophage induction in the gut microbiota[J]. Molecular Microbiology,2022,118(5):494−502. doi: 10.1111/mmi.14983
    [90]
    AL-ANANY A M, FATIMA R, NAIR G, et al. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny[J]. Mbio, 2024:e00504.
    [91]
    SMID E, KLEEREBEZEM M. Production of aroma compounds in lactic fermentations[J]. Annual Review of Food Science and Technology,2014,5(1):313−326. doi: 10.1146/annurev-food-030713-092339
    [92]
    PHILIPPE C, KRUPOVIC M, JAOMANJAKA F, et al. Bacteriophage GC1, a novel tectivirus infecting Gluconobacter Cerinus, an acetic acid bacterium associated with wine-making[J]. Viruses-Basel,2018,10(1):39. doi: 10.3390/v10010039
    [93]
    WEN Q N, LV R R, ZHANG C, et al. Transcriptome analysis of the response of Lactiplantibacillus plantarum IMAU10120 to infection by phage P2[J]. International Journal of Dairy Technology,2024,77(2):435−449. doi: 10.1111/1471-0307.13055
    [94]
    KARAYNIR A, SALIH H, BOZDOGAN B, et al. Isolation and characterization of Brochothrix phage ADU4[J]. Virus Research,2022,321:198902. doi: 10.1016/j.virusres.2022.198902
    [95]
    ZHANG H D, ZHANG H X, DU H, et al. The insights into the phage communities of fermented foods in the age of viral metagenomics[J]. Critical Reviews in Food Science and Nutrition, 2023:2299323.
    [96]
    MA J W, QIAN C G, HU Q J, et al. The bacteriome-coupled phage communities continuously contract and shift to orchestrate the traditional rice vinegar fermentation[J]. Food Research International,2024,184:114244. doi: 10.1016/j.foodres.2024.114244
    [97]
    IPSEN R. Microparticulated whey proteins for improving dairy product texture[J]. International Dairy Journal,2017,67:73−79. doi: 10.1016/j.idairyj.2016.08.009
    [98]
    LIU X, LIN S, LIU T, et al. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella[J]. Nucleic Acids Research,2021,49(6):3427−3440. doi: 10.1093/nar/gkab137
    [99]
    MASKE B L, PEREIRA G V D, VALE A D, et al. Viruses in fermented foods:are they good or bad? Two sides of the same coin[J]. Food Microbiology,2021,98:103794. doi: 10.1016/j.fm.2021.103794
    [100]
    HUANG D, XIA R, CHEN C, et al. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress[J]. Trends in microbiology,2024,2:002.
    [101]
    SILPE J E, DUDDY O P, BASSLER B L. Induction mechanisms and strategies underlying interprophage competition during polylysogeny[J]. Plos Pathogens,2023,19(5):e1011363. doi: 10.1371/journal.ppat.1011363
    [102]
    DEL RIO B, SÁNCHEZ-LLANA E, REDRUELLO B, et al. Enterococcus faecalis bacteriophage 156 is an effective biotechnological tool for reducing the presence of tyramine and putrescine in an experimental cheese model[J]. Frontiers in Microbiology,2019,10:566. doi: 10.3389/fmicb.2019.00566
    [103]
    TABLA R, GÓMEZ A, REBOLLO J E, et al. Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli[J]. Lwt-Food Science and Technology,2022,153:112430. doi: 10.1016/j.lwt.2021.112430
    [104]
    TOMAT D, MERCANTI D, BALAGUé C, et al. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation[J]. Letters in Applied Microbiology,2013,57(1):3−10. doi: 10.1111/lam.12074
    [105]
    KOMORA N, MACIEL C, PINTO C A, et al. Non-thermal approach to Listeria monocytogenes inactivation in milk:The combined effect of high pressure, pediocin PA-1 and bacteriophage P100[J]. Food Microbiology,2020,86:103315. doi: 10.1016/j.fm.2019.103315
  • Related Articles

    [1]LI Jingjing, LUO Tingting, HU Haiyue, GENG Dongyu, LIU Yaxuan, WANG Lina, YANG Chen, WANG Jianming. Effects of Different Extraction Methods on Structure and Functional Characteristics of Almond Protein[J]. Science and Technology of Food Industry, 2025, 46(5): 72-80. DOI: 10.13386/j.issn1002-0306.2024030197
    [2]Xiaoyu ZHANG, Zhenfeng GAO, Yaru HOU, Xinxian ZHANG, Yuanyuan CHEN, Lixin ZHANG. Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi[J]. Science and Technology of Food Industry, 2023, 44(13): 110-118. DOI: 10.13386/j.issn1002-0306.2022060099
    [3]MENG Jiajun, XU Shurong, DENG Sha, HE Guiping, LÜ Yuanping. Effects of Salt Marinating on Chicken Quality and Structure Characteristics, Function Characteristics of Chicken Myofibrin Protein[J]. Science and Technology of Food Industry, 2022, 43(24): 45-53. DOI: 10.13386/j.issn1002-0306.2022020270
    [4]HOU Yaru, GAO Zhenfeng, YANG Zhiguo, CHEN Tian, ZHANG Yang, GUAN Junfeng, ZHANG Lixin, ZHANG Xiaoyu. Isolation, Identification and Biological Characteristics of Postharvest Pathogens of Yuluxiang Pear[J]. Science and Technology of Food Industry, 2022, 43(18): 122-129. DOI: 10.13386/j.issn1002-0306.2021110364
    [5]LI Xiao-ying, LIU Hong, ZHANG Yan-ting, WANG Jing. Biological characteristics and safety evaluation of five Lactobacillus plantarum strains[J]. Science and Technology of Food Industry, 2017, (20): 115-119. DOI: 10.13386/j.issn1002-0306.2017.20.021
    [6]YANG Wei, LI Bo, XU Xiang, DENG Chu-jun, CHANG Jin-cui, CHEN Ru-yan, ZHAO Tong, GAO Yan-xiang. Advance in research on the structural and function characteristics of noncovalent interactions of protein, polyphenol and polysaccharide[J]. Science and Technology of Food Industry, 2017, (17): 329-334. DOI: 10.13386/j.issn1002-0306.2017.17.064
    [7]XIN Song-lin, JIAO Lu, XU Xiao-xue, WANG Hui, QIN Wen. Research on pathogen identification and biological characteristics of sclerotinia from Sichuan okra[J]. Science and Technology of Food Industry, 2017, (12): 186-190. DOI: 10.13386/j.issn1002-0306.2017.12.034
    [8]CHEN Pei, DANG Hui, WANG Wei, CHEN Wei. Biological characteristics of Lactobacillus rhamnosus with antidiabetic activity[J]. Science and Technology of Food Industry, 2016, (21): 162-165. DOI: 10.13386/j.issn1002-0306.2016.21.023
    [9]DU Xiao-qin, LI Jie, QIN Wen, LI Yu, HE Jing-liu, WANG Wei-qiong, CHEN Qin-yuan, YE Xin-yi. Isolation,identification and biological characteristics of pathogenic bacteria for sweet cherry[J]. Science and Technology of Food Industry, 2015, (18): 197-202. DOI: 10.13386/j.issn1002-0306.2015.18.031
    [10]BAO Guan-yuan, GUO Hai-yan, JIA Mu-tai, SU Shao-feng, HE Yin-feng, MANG Lai, WU Jing. Biological characteristics of antimicrobial substance produced by Enterococcus faecalis 8-1[J]. Science and Technology of Food Industry, 2015, (18): 147-151. DOI: 10.13386/j.issn1002-0306.2015.18.021

Catalog

    Article Metrics

    Article views (9) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return