WANG Wanting, CHEN Wanbing, ZHU Congyi, et al. Inhibitory Effects of Flavonoids from Citrus reticulata 'Chachi' Peel on the Formation of Advanced Glycation End-products[J]. Science and Technology of Food Industry, 2025, 46(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060404.
Citation: WANG Wanting, CHEN Wanbing, ZHU Congyi, et al. Inhibitory Effects of Flavonoids from Citrus reticulata 'Chachi' Peel on the Formation of Advanced Glycation End-products[J]. Science and Technology of Food Industry, 2025, 46(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060404.

Inhibitory Effects of Flavonoids from Citrus reticulata 'Chachi' Peel on the Formation of Advanced Glycation End-products

More Information
  • Received Date: June 26, 2024
  • Available Online: March 02, 2025
  • This study investigated the inhibitory effects of extracts from Citrus reticulata 'Chachi' peels at different growth stages and the primary flavonoid components (nobiletin, hesperetin, and hesperidin) on fluorescent AGEs using the bovine serum albumin-glucose (BSA-Glu) model. To elucidate the underlying mechanisms, the interactions between flavonoids and BSA were analyzed using multi-spectral techniques and computer molecular docking. Results showed that extracts from Citrus reticulata 'Chachi' peels at four growth stages significantly inhibited AGEs formation. The extracts obtained in December (2.5 mg/mL) showed maximum inhibition rates of 76.33% for fluorescent AGEs and 71.78%, 62.73%, and 66.07% for the protein glycoxidation products dityrosine, kynurenine, and N'-formylkynurenine, respectively. Fluorescence spectroscopy revealed that the fluorescence quenching mechanism of BSA by nobiletin, hesperetin, and hesperidin was via a static quenching procedure. Synchronous fluorescence spectroscopy revealed that these flavonoids slightly altered the conformation of BSA and the microenvironment of tryptophan (TRP) and tyrosine (TYR) residues. Molecular docking studies showed that the flavonoids bound to a hydrophobic pocket near the TRP-213 residue of BSA, forming a complex and disrupting glucose binding to glycation sites on BSA through hydrogen bonds and hydrophobic interactions. In conclusion, flavonoids derived from Citrus reticulata 'Chachi' peels effectively inhibited the formation of AGEs by reducing the combination of arginine and lysine residues with reducing sugars, and had potential for use in developing natural AGEs inhibitors.
  • [1]
    Chinese Pharmacopeia Commission. Pharmacopoeia of the People's Republic of China(中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2020:199.
    [2]
    裴昆, 夏放高, 陈海芳, 等. 陈皮、化橘红和枳壳研究概况[J]. 江西中医药,2015,46(4):71−74. [PEI K, XIA F G, CHEN H F, et al. Research situation of Pericarpium citri reticulatae, Citrus grandis Tomentosa and Fructus aurantii[J]. Jiangxi Traditional Chinese Medicine,2015,46(4):71−74.]

    PEI K, XIA F G, CHEN H F, et al. Research situation of Pericarpium citri reticulatae, Citrus grandis Tomentosa and Fructus aurantii[J]. Jiangxi Traditional Chinese Medicine, 2015, 46(4): 71−74.
    [3]
    温宝莹, 韩雪, 张秀权, 等. 广陈皮黄酮类主成分分析及其代谢转化研究[J]. 药学学报,2023,58(1):193−200. [WEN B Y, HAN X, ZHANG X Q, et al. Content assay and metabolic study of flavonoids from Citrus reticulata 'Chachi'[J]. Journal of Pharmacy,2023,58(1):193−200.]

    WEN B Y, HAN X, ZHANG X Q, et al. Content assay and metabolic study of flavonoids from Citrus reticulata 'Chachi'[J]. Journal of Pharmacy, 2023, 58(1): 193−200.
    [4]
    赖昌林, 吴鸿, 倪根金. 中药广陈皮与新会皮药名出现年代考[J]. 中国中药杂志,2017,42(4):789−794. [LAI C L, WU H, NI G J. Tradisional Chinese medicine Pericarpium citri reticulatae from Guangdong and Xinhui textual criticism[J]. Chinese Journal of Traditional Chinese Medicine,2017,42(4):789−794.]

    LAI C L, WU H, NI G J. Tradisional Chinese medicine Pericarpium citri reticulatae from Guangdong and Xinhui textual criticism[J]. Chinese Journal of Traditional Chinese Medicine, 2017, 42(4): 789−794.
    [5]
    林林. 陈皮总黄酮、橙皮苷和挥发油的动态分析研究[D]. 广州:广东药学院, 2009. [LIN L. Study on dynamic state analysis of the tatal flavone、the hesperidin and the volatile oil for Pericarpium citri reticulatae[D]. Guangzhou:Guangdong Pharmaceutical University, 2009.]

    LIN L. Study on dynamic state analysis of the tatal flavone、the hesperidin and the volatile oil for Pericarpium citri reticulatae[D]. Guangzhou: Guangdong Pharmaceutical University, 2009.
    [6]
    陈玉婷, 傅曼琴, 吴继军, 等. 不同生长时期茶枝柑果实品质分析[J]. 食品与发酵工业,2023,49(10):251−258. [CHEN Y T, FU M J, WU J J, et al. Analysis of Citrus reticulata ‘Chachi’ quality during different growth periods[J]. Food and Fermentation Industry,2023,49(10):251−258.]

    CHEN Y T, FU M J, WU J J, et al. Analysis of Citrus reticulata ‘Chachi’ quality during different growth periods[J]. Food and Fermentation Industry, 2023, 49(10): 251−258.
    [7]
    李昕琪. 茶枝柑果实生长发育过程中主要次生代谢物变化规律分析[D]. 武汉:华中农业大学, 2023. [LI X Q. Study on the change regularity of primary secondary metabolites in Citrus reticulata ‘Chachi’[D]. Wuhan:Huazhong Agricultural University, 2023.]

    LI X Q. Study on the change regularity of primary secondary metabolites in Citrus reticulata ‘Chachi’[D]. Wuhan: Huazhong Agricultural University, 2023.
    [8]
    LIANG P L, CHEN X L, GONG M J, et al. Guang Chen Pi (the pericarp of Citrus reticulata Blanco's cultivars ‘Chachi’) inhibits macrophage-derived foam cell formation[J]. Journal of Ethnopharmacology,2022,293:115328. doi: 10.1016/j.jep.2022.115328
    [9]
    LIANG S, ZHANG J, LIU Y, et al. Study on flavonoids and bioactivity features of pericarp of Citrus reticulata ‘Chachi’ at different harvest periods[J]. Plants,2022,11:3390. doi: 10.3390/plants11233390
    [10]
    YANG W L, LIANG Y Y, LIU Y J, et al. The molecular mechanism for inhibiting the growth of nasopharyngeal carcinoma cells using polymethoxyflavonoids purified from pericarp of Citrus reticulata ‘Chachi’ via HSCCC[J]. Frontiers in Pharmacology,2023,14:2023.
    [11]
    GAO Z, WANG Z Y, GUO Y, et al. Enrichment of polymethoxyflavones from Citrus reticulata ‘Chachi’ peels and their hypolipidemic effect[J]. Journal of Chromatography B,2019,1124:226−232. doi: 10.1016/j.jchromb.2019.06.010
    [12]
    于海飞. 类黄酮—蛋白质复合体系的制备、表征及应用[D]. 南昌:南昌大学, 2023. [YU H F. Preparation, characterization and application of flavonoid-protein complex system[D]. Nanchang:Nanchang University, 2023.]

    YU H F. Preparation, characterization and application of flavonoid-protein complex system[D]. Nanchang: Nanchang University, 2023.
    [13]
    叶倩. 黄酮醇影响饼干中丙烯酰胺、羟甲基糠醛形成的研究[D]. 长沙:湖南农业大学, 2023. [YE Q. Effect of flavonols on the formation of acrylamide and hydroxymethylfurfural in biscuit[D]. Changsha:Hunan Agricultural University, 2023.]

    YE Q. Effect of flavonols on the formation of acrylamide and hydroxymethylfurfural in biscuit[D]. Changsha: Hunan Agricultural University, 2023.
    [14]
    滕静. 典型黄酮在热加工中的变化及其对AGEs形成和毒性的影响[D]. 上海:上海海洋大学, 2020. [TENG J. The changes of representative flavonoids during thermal processing and their impacts on formation and toxicity of AGEs[D]. Shanghai:Shanghai Ocean University, 2020.]

    TENG J. The changes of representative flavonoids during thermal processing and their impacts on formation and toxicity of AGEs[D]. Shanghai: Shanghai Ocean University, 2020.
    [15]
    HELLWIG M, HUMPF H U, HENGSTLER J, et al. Quality criteria for studies on dietary glycation compounds and human health[J]. Journal of Agricultural and Food Chemistry,2019,67(41):11307−11311. doi: 10.1021/acs.jafc.9b04172
    [16]
    SHARMA C, KAUR A, THIND S S, et al. Advanced glycation end-products(AGEs):An emerging concern for processed food industries[J]. Journal of Food Science and Technology,2015,52(12):7561−7576. doi: 10.1007/s13197-015-1851-y
    [17]
    TESSIER F J, The Maillard reaction in the human body. The main discoveries and factors that affect glycation[J]. Pathologie Biologie,2010,58(3):214−219. doi: 10.1016/j.patbio.2009.09.014
    [18]
    JIA G H, HILL M A, SOWERS J R. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circulation Research,2018,122(4):624−638. doi: 10.1161/CIRCRESAHA.117.311586
    [19]
    SIFUENTES FRANCO S, PADILLA TEJEDA D E, CARRILLOIBARRA S, et al. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy[J]. International Journal of Endocrinology,2018,2018:1−13.
    [20]
    GOLDRING M B, OTERO M. Inflammation in osteoarthritis[J]. Current Opinion in Rheumatology,2011,23(5):471−478. doi: 10.1097/BOR.0b013e328349c2b1
    [21]
    LUEVANO CONTRERAS C, GARAY SEVILLA M E, CHAPMANNOVAKOFSKI K. Role of dietary advanced glycation end products in diabetes mellitus[J]. Journal of Evidence-Based Complementary & Alternative Medicine,2013,18(1):50−66.
    [22]
    KOCADAGLI T, ZILIC S, TAS N G, et al. Formation of a-dicarbonyl compounds in cookies made from wheat, hull-less barley and colored corn and its relation with phenolic compounds, free amino acids and sugars[J]. European Food Research and Technology,2015,242(1):51−60.
    [23]
    SYLWIA M S, ALEKSANDER S, ARTUR S, et al. Phenolic compounds reduce formation of Nε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system[J]. Food Chemistry,2017,231:175−184.
    [24]
    ZHANG J, ZHANG L Y, LAI C L, et al. Nutraceutical potential of navel orange peel in diabetes management:The chemical profile, antioxidant, α-glucosidase inhibitory and antiglycation effects of its flavonoids[J]. Food Bioscience,2022,49:101943. doi: 10.1016/j.fbio.2022.101943
    [25]
    UPADHYAY A, TUENTER E, AMIN A, et al. 5-O-Demethylnobiletin, a polymethoxylated flavonoid, from Citrus depressa Hayata peel prevents protein glycation[J]. Journal of Functional Foods,2014,11:243−249. doi: 10.1016/j.jff.2014.10.012
    [26]
    ZHENG G D, CHAO Y X, LIU M S, et al. Evaluation of dynamic changes in the bioactive components in Citri Reticulatae Pericarpium (Citrus reticulata ‘Chachi’) under different harvesting and drying conditions[J]. Journal of the Science of Food and Agriculture,2021,101(8):3280−3289. doi: 10.1002/jsfa.10957
    [27]
    王申宛, 郑晓燕, 艾斌凌, 等. 亲水胶体对海绵蛋糕中晚期糖基化终末产物的抑制作用[J]. 食品科学,2022,43(20):34−43. [WANG S W, ZHENG X Y, AI B L, et al. Inhibitory effects of hydrocolloids on the formation of advanced glycation end products in sponge cakes[J]. Journal of Food Science,2022,43(20):34−43.] doi: 10.7506/spkx1002-6630-20210812-157

    WANG S W, ZHENG X Y, AI B L, et al. Inhibitory effects of hydrocolloids on the formation of advanced glycation end products in sponge cakes[J]. Journal of Food Science, 2022, 43(20): 34−43. doi: 10.7506/spkx1002-6630-20210812-157
    [28]
    ZHAO L H, ZHAO H Z, ZHAO X, et al. Simultaneous quantification of seven bioactive flavonoids in citri reticulatae pericarpium by ultra-fast liquid chromatography coupled with tandem mass spectrometry[J]. Phytochemical Analysis,2016,27(3-4):168−173. doi: 10.1002/pca.2612
    [29]
    王光宁, 谢思敏, 戴依婷. 广陈皮陈化过程中主要成分的变化及美拉德褐变反应的初步研究[J]. 广州:广东药科大学学报,2023,39(2):73−81. [WANG G N, XIE S M, DAI Y T. Study on the change of compositions and Maillard browning reaction in Guang citri reticulatae pericarpium during ageing[J]. Guangzhou:Journal of Guangdong Pharmaceutical University,2023,39(2):73−81.]

    WANG G N, XIE S M, DAI Y T. Study on the change of compositions and Maillard browning reaction in Guang citri reticulatae pericarpium during ageing[J]. Guangzhou: Journal of Guangdong Pharmaceutical University, 2023, 39(2): 73−81.
    [30]
    BLASZCZAK W, JEZ M, SZWENGIEL A. Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin converting and acetylcholinesterase enzymes[J]. Food Chemistry,2020,314:126181. doi: 10.1016/j.foodchem.2020.126181
    [31]
    ZHAO L, ZHU X L, YU Y, et al. Comprehensive analysis of the anti-glycation effect of peanut skin extract[J]. Food Chemistry,2021,362:130169. doi: 10.1016/j.foodchem.2021.130169
    [32]
    EZE F N, TOLA A J. Protein glycation and oxidation inhibitory activity of Centella asiatica phenolics (CAP) in glucose-mediated bovine serum albumin glycoxidation[J]. Food Chemistry,2020,332:127302. doi: 10.1016/j.foodchem.2020.127302
    [33]
    OU J Y, TENG J, HANI S E N, et al. Impact of resveratrol, epicatechin and rosmarinic acid on fluorescent AGEs and cytotoxicity of cookies[J]. Journal of Functional Foods,2018,40:44−50. doi: 10.1016/j.jff.2017.10.042
    [34]
    翁婷. L-半胱氨酸盐酸盐对饼干感官品质和活泼羰基化合物的影响[D]. 广州:暨南大学, 2022. [WENG T. Effect of L-cysteine hydrochloride on the sensory qualities and reactive carbonyl species in biscuits[D]. Guangzhou:Jinan University, 2022.]

    WENG T. Effect of L-cysteine hydrochloride on the sensory qualities and reactive carbonyl species in biscuits[D]. Guangzhou: Jinan University, 2022.
    [35]
    ZHAO L, JIN X E, LI Y B, et al. Effects of A-type oligomer procyanidins on protein glycation using two glycation models coupled with spectroscopy, chromatography, and molecular docking[J]. Food Research International,2022,155:111068. doi: 10.1016/j.foodres.2022.111068
    [36]
    SHI J H, PAN D Q, JIANG M, et al. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods[J]. Journal of Biomolecular Structure and Dynamics,2017,35:2211−2223. doi: 10.1080/07391102.2016.1213663
    [37]
    于湛, 张微, 吴迪, 等. 柚皮素、柚皮苷与牛血清白蛋白相互作用的机理分析[J]. 沈阳师范大学学报(自然科学版),2023,41(2):108−113. [YU Z, ZHANG W, WU D, et al. Mechanistic analysis the binding interactions of naringenin and naringin with bovine serum albumin[J]. Journal of Shenyang Normal University (Natural Science Edition),2023,41(2):108−113.]

    YU Z, ZHANG W, WU D, et al. Mechanistic analysis the binding interactions of naringenin and naringin with bovine serum albumin[J]. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(2): 108−113.
    [38]
    LUO Y, ZENG W, HUANG K E, et al. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ as well as the Citrus reticulata ’Chachi’ within different storage years using ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,171:218−231. doi: 10.1016/j.jpba.2019.03.056
    [39]
    MAXIME B, TANIA N, MART T, et al. Identification and quantification of polymethoxylated flavonoids in different Citrus species using UPLC-QTOF-MS/MS and HPLC-DAD[J]. Planta Medica,2021,87(12/13):1080−1088. doi: 10.1055/a-1551-6337
    [40]
    WANG P, ZHANG J, ZHANG Y T, et al. Chemical and genetic discrimination of commercial Guangchenpi (Citrus reticulata ‘Chachi’) by using UPLC-QTOF-MS/MS based metabolomics and DNA barcoding approaches[J]. RSC Advances,2019,9:23373−23381. doi: 10.1039/C9RA03740C
    [41]
    SOBHY R, ZHAN F, MEKAWI E, et al. The noncovalent conjugations of bovine serum albumin with three structurally different phytosterols exerted antiglycation effects:A study with AGEs-inhibition, multispectral, and docking investigations[J]. Bioorganic Chemistry,2020,94:103478. doi: 10.1016/j.bioorg.2019.103478
    [42]
    BANDYOPADHYAY P, GHOSH A K, GHOSH C. Recent developments on polyphenol-protein interactions:Effects on tea and coffee taste, antioxidant properties and the digestive system[J]. Food & Function,2012,3(6):592−605.
    [43]
    ASHOKA S, SEETHARAMAPPA J, KANDAGAL P B. Investigation of the interaction between trazodone hydrochioride and bovione serum albumin[J]. Journal of Luminescence,2006,121(1):179−186. doi: 10.1016/j.jlumin.2005.12.001
    [44]
    SHAO X, CHEN H, ZHU Y, et al. Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal[J]. Journal of Agriculture and Food Chemistry,2014,62(14):3202−3210. doi: 10.1021/jf500204s
    [45]
    YUE Y, SUN Y, DONG Q, et al. Interaction of human serum albumin with novel imidazole derivatives studied by spectroscopy and molecular docking[J]. Luminescence,2016,31:671−681. doi: 10.1002/bio.3010
    [46]
    梁鑫富, 董庆亮. 光谱法结合分子对接技术研究柠檬苦素与牛血清白蛋白的相互作用[J]. 食品工业科技,2024,45(21):37−44. [LIANG X F, DONG Q L. Spectroscopic method combined with molecular docking technique to study the interaction of limonin with bovine serum albumin[J]. Food Industry Science and Technology,2024,45(21):37−44.]

    LIANG X F, DONG Q L. Spectroscopic method combined with molecular docking technique to study the interaction of limonin with bovine serum albumin[J]. Food Industry Science and Technology, 2024, 45(21): 37−44.
    [47]
    杨雯雁, 马秀兰, 张宇. 荧光光谱法结合分子对接研究邻苯二甲酸单环己酯与牛血清白蛋白的相互作用[J]. 分析试验室,2023,42(9):1236−1241. [YANG W Y, MA X L, ZHANG Y. Intermolecular interactions between monocyclohexyl phthalate and bovine serum albumin[J]. Chinese Journal of Analysis Laboratory,2023,42(9):1236−1241.]

    YANG W Y, MA X L, ZHANG Y. Intermolecular interactions between monocyclohexyl phthalate and bovine serum albumin[J]. Chinese Journal of Analysis Laboratory, 2023, 42(9): 1236−1241.
    [48]
    SHI J H, LOU Y Y, ZHOU K L, et al. Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid:A biophysical prospect[J]. Journal of Photchemistry and Photobiology B-biology,2018,180:125−133. doi: 10.1016/j.jphotobiol.2018.01.025
    [49]
    JIA J, GAO X, HAO M, et al. Comparison of binding interaction between beta-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods[J]. Food Chemistry,2017,228:143−151. doi: 10.1016/j.foodchem.2017.01.131
    [50]
    LIN H, LAN J F, GUAN M, et al. Spectroscopic investigation of interaction between mangiferin and bovine serum albumin[J]. Molecular and Biomolecular Spectroscopy,2009,73(5):936−941. doi: 10.1016/j.saa.2009.04.025
    [51]
    王晓萌. 四种植物活性成分与血清蛋白相互作用机理研究[D]. 杭州:浙江农林大学, 2020. [WANG X M. The study of binding mechanism between four plant active ingredients of ecotope and serum albumin[D]. Hangzhou:Zhejiang Agriculture&Forestry University, 2020.]

    WANG X M. The study of binding mechanism between four plant active ingredients of ecotope and serum albumin[D]. Hangzhou: Zhejiang Agriculture&Forestry University, 2020.
    [52]
    HUMENY A, KISLINGER T, BECKER C M, et al. Qualitative determination of specific protein glycation products by matrix-assisted laser desorption/ionization mass spectrometry peptide mapping[J]. Journal of Agriculture and Food Chemistry,2002,50(7):2153−2160. doi: 10.1021/jf011349o
  • Related Articles

    [1]LI Jingjing, LUO Tingting, HU Haiyue, GENG Dongyu, LIU Yaxuan, WANG Lina, YANG Chen, WANG Jianming. Effects of Different Extraction Methods on Structure and Functional Characteristics of Almond Protein[J]. Science and Technology of Food Industry, 2025, 46(5): 72-80. DOI: 10.13386/j.issn1002-0306.2024030197
    [2]Xiaoyu ZHANG, Zhenfeng GAO, Yaru HOU, Xinxian ZHANG, Yuanyuan CHEN, Lixin ZHANG. Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi[J]. Science and Technology of Food Industry, 2023, 44(13): 110-118. DOI: 10.13386/j.issn1002-0306.2022060099
    [3]MENG Jiajun, XU Shurong, DENG Sha, HE Guiping, LÜ Yuanping. Effects of Salt Marinating on Chicken Quality and Structure Characteristics, Function Characteristics of Chicken Myofibrin Protein[J]. Science and Technology of Food Industry, 2022, 43(24): 45-53. DOI: 10.13386/j.issn1002-0306.2022020270
    [4]HOU Yaru, GAO Zhenfeng, YANG Zhiguo, CHEN Tian, ZHANG Yang, GUAN Junfeng, ZHANG Lixin, ZHANG Xiaoyu. Isolation, Identification and Biological Characteristics of Postharvest Pathogens of Yuluxiang Pear[J]. Science and Technology of Food Industry, 2022, 43(18): 122-129. DOI: 10.13386/j.issn1002-0306.2021110364
    [5]LI Xiao-ying, LIU Hong, ZHANG Yan-ting, WANG Jing. Biological characteristics and safety evaluation of five Lactobacillus plantarum strains[J]. Science and Technology of Food Industry, 2017, (20): 115-119. DOI: 10.13386/j.issn1002-0306.2017.20.021
    [6]YANG Wei, LI Bo, XU Xiang, DENG Chu-jun, CHANG Jin-cui, CHEN Ru-yan, ZHAO Tong, GAO Yan-xiang. Advance in research on the structural and function characteristics of noncovalent interactions of protein, polyphenol and polysaccharide[J]. Science and Technology of Food Industry, 2017, (17): 329-334. DOI: 10.13386/j.issn1002-0306.2017.17.064
    [7]XIN Song-lin, JIAO Lu, XU Xiao-xue, WANG Hui, QIN Wen. Research on pathogen identification and biological characteristics of sclerotinia from Sichuan okra[J]. Science and Technology of Food Industry, 2017, (12): 186-190. DOI: 10.13386/j.issn1002-0306.2017.12.034
    [8]CHEN Pei, DANG Hui, WANG Wei, CHEN Wei. Biological characteristics of Lactobacillus rhamnosus with antidiabetic activity[J]. Science and Technology of Food Industry, 2016, (21): 162-165. DOI: 10.13386/j.issn1002-0306.2016.21.023
    [9]DU Xiao-qin, LI Jie, QIN Wen, LI Yu, HE Jing-liu, WANG Wei-qiong, CHEN Qin-yuan, YE Xin-yi. Isolation,identification and biological characteristics of pathogenic bacteria for sweet cherry[J]. Science and Technology of Food Industry, 2015, (18): 197-202. DOI: 10.13386/j.issn1002-0306.2015.18.031
    [10]BAO Guan-yuan, GUO Hai-yan, JIA Mu-tai, SU Shao-feng, HE Yin-feng, MANG Lai, WU Jing. Biological characteristics of antimicrobial substance produced by Enterococcus faecalis 8-1[J]. Science and Technology of Food Industry, 2015, (18): 147-151. DOI: 10.13386/j.issn1002-0306.2015.18.021

Catalog

    Article Metrics

    Article views (12) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return