Citation: | SHI Fan, HOU Yi, ZHAO Jinsong, et al. Preparation of Cyclic Lunasin by Heterologous Recombination Combined with Enzymatic Cyclization and Its Properties[J]. Science and Technology of Food Industry, 2025, 46(7): 133−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040501. |
[1] |
HAO Y Q, FAN X, GUO H M, et al. Overexpression of the bioactive lunasin peptide in soybean and evaluation of its anti-inflammatory and anti-cancer activities in vitro[J]. Journal of Bioscience and Bioengineering,2020,129(4):395−404. doi: 10.1016/j.jbiosc.2019.11.001
|
[2] |
HUANG P Y, CHIANG C C, HUANG C Y, et al. Lunasin ameliorates glucose utilization in C2C12 myotubes and metabolites profile in diet-induced obese mice benefiting metabolic disorders[J]. Life Sciences,2023,333:122180. doi: 10.1016/j.lfs.2023.122180
|
[3] |
ELVIRA G D, ERICK D, WANG T, et al. Potential health benefits associated with lunasin concentration in dietary supplements and lunasin-enriched soy extract[J]. Nutrients,2021,13(5):1618. doi: 10.3390/nu13051618
|
[4] |
SOUZA D, LEDESMA H. Lunasin as a promising plant-derived peptide for cancer therapy[J]. International Journal of Molecular Sciences,2022,23(17):9548. doi: 10.3390/ijms23179548
|
[5] |
SZYMC A K, KACZMR W, GAJE K L, et al. Lunasin and its epigenetic impact in cancer chemoprevention[J]. International Journal of Molecular Sciences,2023,24(11):9187. doi: 10.3390/ijms24119187
|
[6] |
MESSINA M, CASKILL W, LAMPE J W. Addressing the soy and breast cancer relationship:Review, commentary, and workshop proceedings[J]. Jnci-Journal of the National Cancer Institute,2006,98(18):1275−1284. doi: 10.1093/jnci/djj356
|
[7] |
KERWIN S M. Soy saponins and the anticancer effects of soybeans and soy-based foods[J]. Current Medicinal Chemistry Anti-cancer Agents,2004,4(3):263−72. doi: 10.2174/1568011043352993
|
[8] |
KHAN N, AFAQ F, MUKHTAR H. Cancer chemoprevention through dietary antioxidants:Progress and promise[J]. Antioxidants and Redox Signaling,2008,10(3):475−510. doi: 10.1089/ars.2007.1740
|
[9] |
LOSSO J N. The biochemical and functional food properties of the bowman-birk inhibitor[J]. Critical Reviews in Food Science and Nutrition,2008,48(1):94−118. doi: 10.1080/10408390601177589
|
[10] |
MEJIA E G, PRISECARU V I. Lectins as bioactive plant proteins:A potential in cancer treatment[J]. Critical Reviews in Food Science and Nutrition,2005,45(6):425−445. doi: 10.1080/10408390591034445
|
[11] |
FAN X, QIN P Y, HAO Y Q, et al. Overexpression of soybean-derived lunasin in wheat and assessment of its anti-proliferative activity in colorectal cancer HT-29 cells[J]. International Journal of Molecular Sciences,2020,21(24):9594. doi: 10.3390/ijms21249594
|
[12] |
SAMUEL F T, XU F, HAN Y H, et al. Inhibitory effects of peptide lunasin in colorectal cancer HCT-116 cells and their tumorsphere-derived subpopulation[J]. International Journal of Molecular Sciences,2020,21(2):537. doi: 10.3390/ijms21020537
|
[13] |
REYES E D, MEJIA E, PEREA F, et al. Liposomes loaded with unsaponifiable matter from Amaranthus hypochondriacus as a source of squalene and carrying soybean lunasin inhibited melanoma cells[J]. Nanomaterials,2021,11(8):1960. doi: 10.3390/nano11081960
|
[14] |
PATERSON S, TOME S, GALVEZ A, et al. Evaluation of the multifunctionality of soybean proteins and peptides in immune cell models[J]. Nutrients,2023,15(5):1220. doi: 10.3390/nu15051220
|
[15] |
GULLA K, KARTH A, SHIVA N, et al. Quantification of bioactive peptide lunasin from soybean, wheat, and their commercial products by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Journal of Food Measurement and Characterization,2023,17(5):4927−4937. doi: 10.1007/s11694-023-02008-1
|
[16] |
ZHAO J S, GE G, HUANG Y B, et al. Butelase 1 mediated enzymatic cyclization of antimicrobial peptides:Improvements on stability and bioactivity[J]. Journal of Agricultural and Food Chemistry,2022,70(50):15869−15878. doi: 10.1021/acs.jafc.2c06588
|
[17] |
LIU C F, PAN T M. Recombinant expression of bioactive peptide lunasin in Escherichia coli[J]. Applied Microbiology and Biotechnology,2010,88(1):177−186. doi: 10.1007/s00253-010-2754-5
|
[18] |
何佳彧, 梁菊, 宣茂松, 等. 提高多肽体内稳定性的有效策略[J]. 药学学报,2020,55(1):25−32. [HE J Y, LIANG J, XUAN M S, et al. Effective strategies to improve the stability of polypeptides in vivo[J]. Acta Pharmacologica Sinica,2020,55(1):25−32.]
HE J Y, LIANG J, XUAN M S, et al. Effective strategies to improve the stability of polypeptides in vivo[J]. Acta Pharmacologica Sinica, 2020, 55(1): 25−32.
|
[19] |
NI Z F, LI N, XU P, et al. Enhancement of thermostability and catalytic properties of ammonia lyase through disulfide bond construction and backbone cyclization[J]. International Journal of Biological Macromolecules,2022,219:804−811. doi: 10.1016/j.ijbiomac.2022.07.213
|
[20] |
NGUYEN G, WANG S, QIU Y, et al. Butelase 1 is an asx-specific ligase enabling peptide macrocyclization and synthesis[J]. Nature Chemical Biology,2014,10(9):732−738. doi: 10.1038/nchembio.1586
|
[21] |
SOUZA S, KALUME D, LIMA L, et al. Physicochemical and structural properties of lunasin revealed by spectroscopic, chromatographic and molecular dynamics approaches[J]. BBA Proteins and Proteomics,2020,1868(8):140−154.
|
[22] |
SOUZA S, FERRETTI G, KALUME D, et al. Novel method for the production, purification, and characterization of recombinant lunasin:Identification of disulfide cross-linked dimers[J]. International Journal of Peptide Research and Therapeutics,2022,28:159−162. doi: 10.1007/s10989-022-10466-2
|
[23] |
GILL H S. Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals[J]. Acta Crystallographica Section F-Structural Biology Communications,2010,66(3):364−372. doi: 10.1107/S1744309110002022
|
[24] |
BAHAR A A, REN D. Antimicrobial peptides[J]. Pharmaceuticals,2013,6(12):1543−1575. doi: 10.3390/ph6121543
|
[25] |
STEWART E J, ASLUND F, BECK J. Disulfide bond formation in the Escherichia coli cytoplasm:An in vivo role reversal for the thioredoxins[J]. Embo Journal,1998,17(19):5543−5550. doi: 10.1093/emboj/17.19.5543
|
[26] |
LOBSTEIN J, EMRICH C A, JEANS C, et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm[J]. Microbial Cell Factories,2012,11(56):506−510.
|
[27] |
VASSIL A A, KOZLOV S A, GRISHIN E V. Antimicrobial peptide precursor structures suggest effective production strategies[J]. Recent Patents on Inflammation & Allergy Drug Discovery,2008,2(1):58−63.
|
[28] |
NGUYEN G K, QIU Y, CAO Y, et al. Butelase-mediated cyclization and ligation of peptides and proteins[J]. Nature Protocols,2016,11(10):1977−1988. doi: 10.1038/nprot.2016.118
|
[29] |
MARTIN L A, GONG X, DUSZYK M, et al. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif[J]. Journal of Biological Chemistry,2009,284(42):28674−28681. doi: 10.1074/jbc.M109.036459
|
[30] |
HUANG L R, ZHANG W X, YAN D D, et al. Solubility and aggregation of soy protein isolate induced by different ionic liquids with the assistance of ultrasound[J]. International Journal of Biological Macromolecules,2020,164:2277−2283. doi: 10.1016/j.ijbiomac.2020.08.031
|
1. |
张彪,杨晓宽. 纳豆菌发酵板栗渣工艺优化及其多糖的抗氧化性. 食品研究与开发. 2025(03): 160-166 .
![]() | |
2. |
屈雅宁,李慧,向大松,郭瑞,曾长立,王红波. 两种细菌发酵豆粉粗多糖体外降血糖、降血脂活性比较. 食品工业科技. 2024(12): 140-150 .
![]() | |
3. |
许梦粤,余金毅,李慧,刘琴,曾长立,王红波. 不同品种纳豆的多种功能活性成分比较. 食品工业科技. 2024(13): 140-149 .
![]() | |
4. |
屈雅宁,吴子龙,陈禅友,万何平,王亚珍,曾长立,王红波. 食用豆类多糖提取纯化、结构特征与生物活性研究进展. 中国调味品. 2024(07): 200-207 .
![]() | |
5. |
王芳,刘红,李燕红,龚田. 大黄多糖的提取及其抗氧化和降血糖活性研究. 海峡药学. 2024(07): 8-12 .
![]() | |
6. |
屈雅宁,许梦粤,李慧,王璐,郭瑞,王红波. 干酪乳杆菌发酵豆粉粗多糖结构特征与抗氧化活性. 中国食品学报. 2024(08): 112-121 .
![]() | |
7. |
许梦粤,田鑫,王君可,武傲雪,邹芷怡,吴佳辉,王红波. 菜豆多糖与香菇多糖结构特征以及体外重要生物活性综合对比评价. 食品科学. 2024(23): 2318-2327 .
![]() | |
8. |
李雪艳,罗钰颖,杨华杰,张雄,金浩鑫,杨双玲,饶毅,魏惠珍. 六神曲微生物菌群及功能性成分研究进展. 江西中医药大学学报. 2024(06): 116-120+128 .
![]() | |
9. |
刘凯青,张涵,殷澳,张会佳,侯相竹,冯晨曦,高阳,徐多多. 苦碟子注射液中多糖的提取分离、结构表征及其抗氧化活性的研究. 中国医院药学杂志. 2023(23): 2618-2623 .
![]() |