ZHANG Shiqi, WANG Rui, LI Chengliang, et al. Hypoglycemic Effect of Moringa oleifera Leaf Polysaccharide on STZ-induced Diabetic Mice and Its Mechanism[J]. Science and Technology of Food Industry, 2024, 45(19): 357−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040369.
Citation: ZHANG Shiqi, WANG Rui, LI Chengliang, et al. Hypoglycemic Effect of Moringa oleifera Leaf Polysaccharide on STZ-induced Diabetic Mice and Its Mechanism[J]. Science and Technology of Food Industry, 2024, 45(19): 357−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040369.

Hypoglycemic Effect of Moringa oleifera Leaf Polysaccharide on STZ-induced Diabetic Mice and Its Mechanism

More Information
  • Received Date: April 23, 2024
  • Available Online: August 19, 2024
  • To explore the hypoglycemic effect of Moringa oleifera leaf polysaccharide (MOLP) on diabetic mice and its corresponding mechanism, a streptozotocin (STZ)-induced diabetic mouse was modeled. The mice were then divided into groups exposed to low (100 mg/kg·bw), medium (200 mg/kg·bw), and high dosage (400 mg/kg·bw) of MOLP, with a normal blank group, model group and a positive drug group (hydrochloric acid dimethylbiguanide, 200 mg/kg·bw). Eight mice in each group were gavaged for 28 d. Fasting blood glucose, serum glycated protein, serum insulin, hepatic/myocardial glycogen and other biochemical indexes were determined. Additionally, the key genes of glucose metabolism, including liver X receptor (LXR), pancreatic-duodenal homeobox-1 (PDX-1), glucokinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase), glucose transporter type 2 (GLUT2) and insulin receptor substrate 1/2 (IRS1/2) were measured in the liver and the pancreas. Furthermore, the mice's liver and pancreas tissues in each group were stained with HE to observe their histomorphology. The results showed that MOLP exhibited a significant hypoglycemic effect and a dose-response relationship. The level of blood glucose reduction in the MOLP high-dose group (400 mg/kg·bw) was closest to that of the positive drug group. The underlying mechanism was that the significantly upregulated expression of LXR and PDX-1 ameliorated the glucose metabolism disorders in diabetic mice by regulating the expression of their downstream genes including PEPCK, G6Pase, GK, GLUT2 and IRS1/2 mRNA. This regulation facilitated the improvement of the damaged liver and pancreatic tissues, increased serum insulin and hepatic glycogen content and ultimately resulted in a hypoglycemic effect.
  • [1]
    AYIPO Y O, CHONG C F, ABDULAMEED H T, et al. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2:A review of recent development[J]. Fitoterapia,2024,175:105922−105922.
    [2]
    ENGLAND C Y, ANDREWS R C. James Lind alliance research priorities:Should diet and exercise be used as an alternative to drugs for the management of type 2 diabetes or alongside them?[J]. Diabetic Medicine,2020,37(4):564−572. doi: 10.1111/dme.14217
    [3]
    张世奇, 徐嘉洛, 杨晓东, 等. 辣木叶抗糖尿病效果及其作用机制研究进展[J]. 食品与发酵工业,2024,50(3):374−382. [ZHANG S Q, XU J L, YANG X D, et al. Research progress on antidiabetic effect and mechanism of Moringa oleifera leaves[J]. Food and Fermentation Industry,2024,50(3):374−382.]

    ZHANG S Q, XU J L, YANG X D, et al. Research progress on antidiabetic effect and mechanism of Moringa oleifera leaves[J]. Food and Fermentation Industry, 2024, 50(3): 374−382.
    [4]
    ALNIDAWI A, ALI F, ABDELGAYED S, et al. Moringa oleifera leaves in broiler diets:Effect on chicken performance and health[J]. Food Science and Quality Management,2016,58:40−48.
    [5]
    ONYENIBE N S, ISREAL F, BABATUNJI O. Moringa oleifera leaves modulate blood glucose concentration, lipid profile and carbohydrate metabolizing enzymes in streptozotocin diabetic rats[J]. World Heart Journal,2018,10(3):213−222.
    [6]
    ABBAS M, MAHMOUD A H. Evaluation of antioxidant and antitumor activities of Moringa extract in mice[J]. Egyptian Journal of Radiation Sciences and Applications,2022,35(1):29−37.
    [7]
    LANDÁZURI A C, GUALLE A, CASTAÑEDA V, et al. Moringa oleifera Lam. leaf powder antioxidant activity and cytotoxicity in human primary fibroblasts[J]. Natural Product Research,2021,35(24):6194−6199. doi: 10.1080/14786419.2020.1837804
    [8]
    KUMARI R, SINGH A K, KUMAR R, et al. Phytoremedial effect of fruit extract of Moringa oleifera on alloxan induced diabetic model in Swiss albino mice:Phytoremedial effect of fruit extract of Moringa oleifera on alloxan induced diabetes[J]. Journal of Applied and Natural Science,2021,13(4):1420−1429.
    [9]
    CARRIE W, PATRICIO R S, TUGBA BOYUNEGMEZ T, et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice[J]. Molecular Nutrition & Food Research,2015,59(6):1013−1024.
    [10]
    TOMA A, MAKONNEN E, MEKONNEN Y, et al. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats[J]. BMC Complementary and Alternative Medicine,2015,15(1):242−248.
    [11]
    WOLDEKIDAN S, MULU A, ERGETIE W, et al. Evaluation of antihyperglycemic effect of extract of Moringa stenopetala (Baker f.) aqueous leaves on alloxan-induced diabetic rats[J]. Diabetes, Metabolic Syndrome and Obesity, 2021:185−192.
    [12]
    AL-MALKI A L, EL RABEY H A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats[J]. BioMed Research International, 2015:381040.
    [13]
    GHIRIDHARI V V A, MALHATI D, GEETHA K. Anti diabetic property of drumstick (Moringa oleifera) leaf tablets[J]. International Journal of Health & Nutrition,2011,2(1):1−5.
    [14]
    SISSOKO L, DIARRA N, NIENTAO I, et al. Moringa oleifera leaf powder for type 2 diabetes:a pilot clinical trial[J]. African Journal of Traditional, Complementary and Alternative Medicines,2020,17(2):29−36. doi: 10.21010/ajtcam.v17i2.3
    [15]
    张世奇, 刘颖柳, 谭兆平. 响应面法优化辣木叶总黄酮提取工艺的研究[J]. 化学工程与技术,2021,11(6):364−376. [ZHANG S Q, LIU Y L, TAN Z P. Optimization of extraction technology of total flavonoids from Moringa oleifera leaf by response surface methodology[J]. Chemical Engineering and Technology,2021,11(6):364−376.]

    ZHANG S Q, LIU Y L, TAN Z P. Optimization of extraction technology of total flavonoids from Moringa oleifera leaf by response surface methodology[J]. Chemical Engineering and Technology, 2021, 11(6): 364−376.
    [16]
    张世奇, 杨娟, 惠永海, 等. 响应面法优化超声波辅助提取辣木叶多糖工艺[J]. 食品研究与开发,2020,41(16):69−74. [ZHANG S Q, YANG J, HUI Y H, et al. Optimization of ultrasound-assisted extraction of polysaccharide from Moringa oleifera leaf by response surface methodology[J]. Food Research and Development,2020,41(16):69−74.] doi: 10.12161/j.issn.1005-6521.2020.16.011

    ZHANG S Q, YANG J, HUI Y H, et al. Optimization of ultrasound-assisted extraction of polysaccharide from Moringa oleifera leaf by response surface methodology[J]. Food Research and Development, 2020, 41(16): 69−74. doi: 10.12161/j.issn.1005-6521.2020.16.011
    [17]
    孙劲毅, 卢彦轩, 惠永海, 等. 响应面优化泡沫法提取辣木叶蛋白工艺[J]. 食品工业科技,2020,41(12):150−154. [SUN J Y, LU Y X, HUI Y H, et al. Optimization of foaming extraction of a Moringa oleifera leaf protein by response surface methodology[J]. Science and Technology of Food Industry,2020,41(12):150−154.]

    SUN J Y, LU Y X, HUI Y H, et al. Optimization of foaming extraction of a Moringa oleifera leaf protein by response surface methodology[J]. Science and Technology of Food Industry, 2020, 41(12): 150−154.
    [18]
    汪芳, 包伊凡, 张羽, 等. 辣木叶多糖的分离纯化及其体外降糖活性研究[J]. 食品安全质量检测学报,2018,9(7):1592−1598. [WANG F, BAO Y F, ZHANG Y, et al. Isolation and purification of polysaccharides from Moringa oleifera leaves and in vitro hypoglycemic activity[J]. Journal of Food Safety and Quality,2018,9(7):1592−1598.] doi: 10.3969/j.issn.2095-0381.2018.07.022

    WANG F, BAO Y F, ZHANG Y, et al. Isolation and purification of polysaccharides from Moringa oleifera leaves and in vitro hypoglycemic activity[J]. Journal of Food Safety and Quality, 2018, 9(7): 1592−1598. doi: 10.3969/j.issn.2095-0381.2018.07.022
    [19]
    李巧琳. 辣木叶提取物的制备, 降血糖活性评价及降糖功效因子结构解析[D]. 广州:华南理工大学, 2019:28−48. [LI Q L. Preparation, evaluation of hypoglycemic activity and structure analysis of hypoglycemic effect factors of Moringa oleifera leaf extract[D]. Guangzhou:South China University of Technology, 2019:28−48.]

    LI Q L. Preparation, evaluation of hypoglycemic activity and structure analysis of hypoglycemic effect factors of Moringa oleifera leaf extract[D]. Guangzhou: South China University of Technology, 2019: 28−48.
    [20]
    SHARMA K, KUMAR M, WAGHMARE R, et al. Moringa (Moringa oleifera Lam.) polysaccharides:Extraction, characterization, bioactivities, and industrial application[J]. International Journal of Biological Macromolecules,2022,209:763−778. doi: 10.1016/j.ijbiomac.2022.04.047
    [21]
    郑淑娟, 黄昆仑, 仝涛. 橄榄苦苷对高脂饮食联合链脲佐菌素诱导的糖尿病小鼠的降血糖作用研究[J]. 食品安全质量检测学报,2023,14(3):44−49. [ZHENG S J, HUANG K L, TONG T. Hypoglycemic effect of oleuropein on diabetes mice induced by high-fat diet combined with streptozotocin[J]. Journal of Food Safety and Quality,2023,14(3):44−49.] doi: 10.3969/j.issn.2095-0381.2023.3.spaqzljcjs202303006

    ZHENG S J, HUANG K L, TONG T. Hypoglycemic effect of oleuropein on diabetes mice induced by high-fat diet combined with streptozotocin[J]. Journal of Food Safety and Quality, 2023, 14(3): 44−49. doi: 10.3969/j.issn.2095-0381.2023.3.spaqzljcjs202303006
    [22]
    陈瑞娇, 朱必凤, 王玉珍, 等. 辣木叶总黄酮的提取及其降血糖作用[J]. 食品与生物技术学报,2007,26(4):42−45. [CHEN R J, ZHU B F, WANG Y Z, et al. Extraction and hypolycemic effect of the total flavonoid from leaves of Moringa oleifera[J]. Journal of Food Science and Biotechnology,2007,26(4):42−45.] doi: 10.3321/j.issn:1673-1689.2007.04.009

    CHEN R J, ZHU B F, WANG Y Z, et al. Extraction and hypolycemic effect of the total flavonoid from leaves of Moringa oleifera[J]. Journal of Food Science and Biotechnology, 2007, 26(4): 42−45. doi: 10.3321/j.issn:1673-1689.2007.04.009
    [23]
    CHAMBERLAND V, RIOUX P. Not only students can express alcohol dehydrogenase:goldfish can too![J]. Advances in Physiology Education,2010,34(4):222−227. doi: 10.1152/advan.00088.2009
    [24]
    QIU H Y, HOU N N, SHI J F, et al. Comprehensive overview of human serum albumin glycation in diabetes mellitus[J]. World Journal of Diabetes,2021,12(7):1057. doi: 10.4239/wjd.v12.i7.1057
    [25]
    BONNEFOND A, ROBERT K. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes[J]. Diabetologia,2022,65(11):1782−1795. doi: 10.1007/s00125-022-05720-7
    [26]
    GWYNETH S, MICHAEL T. The liver and glycogen:In sickness and in health[J]. International Journal of Molecular Sciences,2023,24(7):6133. doi: 10.3390/ijms24076133
    [27]
    KTARI N, MNAFGUI K, NASRI R, et al. Hypoglycemic and hypolipidemic effects of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats[J]. Food and Function,2013,4(11):1691−1699. doi: 10.1039/c3fo60264h
    [28]
    JAISWAL D, RAI P K, KUMAR A, et al. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats[J]. Journal of Ethnopharmacology,2009,123(3):392−396. doi: 10.1016/j.jep.2009.03.036
    [29]
    EDGERTON D S, LAUTZ M, SCOTT M, et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production[J]. Journal of Clinical Investigation,2006,116(2):521−527. doi: 10.1172/JCI27073
    [30]
    BISCHOF M G, BERNROIDER E, KRSSAK M, et al. Hepatic glycogenmetabolism in type 1 diabetes after long-term near normoglycemia[J]. Diabetes,2002,51(1):49−54. doi: 10.2337/diabetes.51.1.49
    [31]
    HE J, KELLEY D E. Muscle glycogen content in type 2 diabetes mellitus[J]. American Journal of Physiology Endocrinology & Metabolism,2004,287(5):E1002−1007.
    [32]
    SHEPHERD P, WITHERS D, SIDDLE K. Phosphoinositide 3-kinase:the key switch mechanism in insulin signaling[J]. Biochemical Journal,1998,333(3):471−490. doi: 10.1042/bj3330471
    [33]
    MORAN A, ZHANG H J, OLSON L K, et al. Differentiation of glucose tox-icity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15[J]. Journal of Clinical Investigation,1997,99(3):534−539. doi: 10.1172/JCI119190
    [34]
    ZHANG S Q, MA X H, ZHANG L, et al. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats[J]. Journal of Agricultural and Food Chemistry,2017,65(11):2323−2330. doi: 10.1021/acs.jafc.7b00132
    [35]
    RAJNI S, SWASTI T. Renal gluconeogenesis in insulin resistance:A culprit for hyperglycemia in diabetes[J]. World Journal of Diabetes,2021,12(5):556−558. doi: 10.4239/wjd.v12.i5.556
    [36]
    HENNIGE A M, BURKS D J, OZCAN U, et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes[J]. Journal of Clinical Investigation,2003,112(10):1521−1532. doi: 10.1172/JCI18581
    [37]
    ZHANG S Q, TANG L L, XU S F, et al. TRPV1 receptor-mediated hypoglycemic mechanism of capsaicin in streptozotocin-induced diabetic rats[J]. Frontiers in Nutrition,2021,8:1−15.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 李娟,张源,张子桐,王淼,张东杰. 基于CiteSpace食品抗菌膜领域研究态势分析. 包装工程. 2025(01): 89-96 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (74) PDF downloads (15) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return