ZHANG Xiaolei, ZHOU Hanchen, LIU Yaqin, et al. Metabolomics Analysis of Effects of Low-temperature Baking on the Flavor of Albino Green Tea[J]. Science and Technology of Food Industry, 2024, 45(17): 352−362. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020200.
Citation: ZHANG Xiaolei, ZHOU Hanchen, LIU Yaqin, et al. Metabolomics Analysis of Effects of Low-temperature Baking on the Flavor of Albino Green Tea[J]. Science and Technology of Food Industry, 2024, 45(17): 352−362. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020200.

Metabolomics Analysis of Effects of Low-temperature Baking on the Flavor of Albino Green Tea

More Information
  • Received Date: February 26, 2024
  • Available Online: June 30, 2024
  • To investigate the effect of baking on the flavor of albino green tea, Baiye 1 green tea samples with different treatment (0, 40, 80, and 120 min at 60 ℃) were conducted in the study. The dynamic changes of metabolites were detected and analyzed by UHPLC-Q-Exactive/MS and GC-MS. The result showed that green tea sample treated by 40 min at 60 ℃ exhibited a better quality than other green tea samples. The thickness of green tea infusions and the aroma intensity went a downtrend with the increase of baking time, while the intensity of astringency increased. The content of total free amino acids and caffeine increased remarkable with time up (P<0.05). Except for GC, C and GCG, the contents of catechins initially increased and then decreased during baking. A total of 61 nonvolatiles were identified in the study by UHPLC-Q-Exactive/MS, including 38 differential metabolites (P<0.05). Partial least squares discriminant analysis showed that there were 7 key metabolites (VIP>1, P<0.05, and FC≥1.1 or ≤0.9) among green tea samples. It contained 5 flavonoid glycosides, strictinin, and proanthocyanidin B4, which declined significantly after baking for 80 min and 120 min. The volatiles analysis showed that the total volatiles concentration increased significantly with time up. In addition, dimethyl sulfide, 2-methylbutanal, 3-methylbutanal, heptanal, 2-hexenal, nonanal, benzaldehyde, 1-octene-3-ol, linalool, trans-linalool oxide (furanoid), geraniol, β-ionone, and cedrol were identified as the key aroma components of Baiye 1 green tea in the study, which had relative odor activity values above one hundred. Aroma character impact values analysis showed that tea samples baked for 40 min had the lowest ACI of complex odor and the highest ACI of pleasant aroma, while tea samples baked for 120 min showed the opposite. This study provides a theoretical basis for understanding the effect of baking on albino green tea.
  • [1]
    YIN P, KONG Y S, LIU P P, et al. A critical review of key odorants in green tea:Identification and biochemical formation pathway[J]. Trends in Food Science& Technology,2022,129:221−232.
    [2]
    LIU N F, SHEN S S, HUANG L F, et al. Revelation of volatile contributions in green teas with different aroma types by GC–MS and GC–IMS[J]. Food Research International,2023,169:112845. doi: 10.1016/j.foodres.2023.112845
    [3]
    FU Y Q, WANG J Q, CHEN J X, et al. Effect of baking on the flavor stability of green tea beverages[J]. Food Chemistry,2020,331:127258. doi: 10.1016/j.foodchem.2020.127258
    [4]
    XU Y Q, ZHANG Y N, CHEN J X, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea[J]. Food Chemistry,2018,258:16−24. doi: 10.1016/j.foodchem.2018.03.042
    [5]
    徐玉婕, 戴晓晶, 吴纪忠, 等. 白化和黄化茶树品种绿茶游离氨基酸、儿茶素类及咖啡碱差异分析[J]. 热带亚热带植物学报,2023,31(5):643−652. [XU Y J, DAI X J, WU J Z, et al. Differences of free amino acids, catechins and caffeine between albino and etiolated tea varieties[J]. Journal of Tropical and Subtropical Botany,2023,31(5):643−652.]

    XU Y J, DAI X J, WU J Z, et al. Differences of free amino acids, catechins and caffeine between albino and etiolated tea varieties[J]. Journal of Tropical and Subtropical Botany, 2023, 31(5): 643−652.
    [6]
    LI C F, MA J Q, HUANG D J, et al. Comprehensive dissection of metabolic changes in albino and green tea cultivars[J]. Journal of Agricultural and Food Chemistry,2018,66(8):2040−2048. doi: 10.1021/acs.jafc.7b05623
    [7]
    薄佳慧, 张杨玲, 宫连瑾, 等. 多组学视角下白化茶树次生代谢产物的研究进展[J]. 分子植物育种,2023,21(6):1884−1889. [BO J H, ZHANG Y L, GONG L J, et al. Research progress on secondary metabolites of albino tea from the perspective of multiomics[J]. Molecular Plant Breeding,2023,21(6):1884−1889.]

    BO J H, ZHANG Y L, GONG L J, et al. Research progress on secondary metabolites of albino tea from the perspective of multiomics[J]. Molecular Plant Breeding, 2023, 21(6): 1884−1889.
    [8]
    娄艳华, 何卫中, 刘瑜, 等. 14个黄化、白化变异茶树品种(系)综合性状评价与分析[J]. 茶叶,2020,46(2):84−90. [LOU Y H, HE W Z, LIU Y, et al. Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. Journal of Tea,2020,46(2):84−90.] doi: 10.3969/j.issn.0577-8921.2020.02.004

    LOU Y H, HE W Z, LIU Y, et al. Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. Journal of Tea, 2020, 46(2): 84−90. doi: 10.3969/j.issn.0577-8921.2020.02.004
    [9]
    王松琳, 马春雷, 黄丹娟, 等. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学,2018,38(1):58−68. [WANG S L, MA C L, HUANG D J, et al. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science,2018,38(1):58−68.] doi: 10.3969/j.issn.1000-369X.2018.01.006

    WANG S L, MA C L, HUANG D J, et al. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science, 2018, 38(1): 58−68. doi: 10.3969/j.issn.1000-369X.2018.01.006
    [10]
    周汉琛, 刘亚芹, 雷攀登. 不同白化期的‘黄山白茶’代谢物差异分析[J]. 热带亚热带植物学报,2022,30(2):187−194. [ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshanbaicha No.1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany,2022,30(2):187−194.] doi: 10.11926/jtsb.4461

    ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshanbaicha No.1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany, 2022, 30(2): 187−194. doi: 10.11926/jtsb.4461
    [11]
    徐邢燕, 陈思, 俞晓敏, 等. 不同烘焙程度与等级武夷肉桂茶品质差异分析[J]. 食品科学,2020,41(13):22−28. [XU X Y, CHEN S, YU X M, et al. Quality differences of different grades of Wuyi Rougui tea with different baking degrees[J]. Food Science,2020,41(13):22−28.] doi: 10.7506/spkx1002-6630-20190619-220

    XU X Y, CHEN S, YU X M, et al. Quality differences of different grades of Wuyi Rougui tea with different baking degrees[J]. Food Science, 2020, 41(13): 22−28. doi: 10.7506/spkx1002-6630-20190619-220
    [12]
    YE F, QIAO X Y, GUI A H, et al. Characterization of roasting time on sensory quality, color, taste, and nonvolatile compounds of Yuan An yellow tea[J]. Molecules,2022,27(13):4119−4119. doi: 10.3390/molecules27134119
    [13]
    翁晶晶, 周承哲, 徐凯, 等. 烘焙温度对漳平水仙茶饼风味品质的影响[J]. 食品科学,2022,43(20):252−260. [WENG J J, ZHOU C Z, XU K, et al. Effect of baking temperature on flavor quality of Zhangping Shuixian tea cake[J]. Food Science,2022,43(20):252−260.] doi: 10.7506/spkx1002-6630-20211229-328

    WENG J J, ZHOU C Z, XU K, et al. Effect of baking temperature on flavor quality of Zhangping Shuixian tea cake[J]. Food Science, 2022, 43(20): 252−260. doi: 10.7506/spkx1002-6630-20211229-328
    [14]
    ZHOU J, WU Y, LONG P P, et al. LC-MS-based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of Large-Leaf yellow tea[J]. Journal of Agricultural and Food Chemistry,2019,67(19):5405−5412. doi: 10.1021/acs.jafc.8b05062
    [15]
    JIANG Z D, HAN Z S, WEN M C, et al. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics[J]. Food Science and Human Wellness,2022,11(3):606−617. doi: 10.1016/j.fshw.2021.12.017
    [16]
    WANG B Y, QU F F, WANG P Q, et al. Characterization analysis of flavor compounds in green teas at different drying temperature[J]. LWT,2022,161:113394. doi: 10.1016/j.lwt.2022.113394
    [17]
    LUO H Y, WANG Y, CHANG R, et al. Chemical composition and discrimination with volatile profiles of Yongchuan Xiuya green tea with different baking treatments[J]. Flavour and Fragrance Journal,2024,39(4):224−225. doi: 10.1002/ffj.3783
    [18]
    ZHUANG J H, DAI X L, ZHU M Q, et al. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols[J]. Food Chemistry,2020,305:125507. doi: 10.1016/j.foodchem.2019.125507
    [19]
    ZHOU H C, LIU Y Q, WU Q, et al. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature[J]. Food Chemistry:X,2024,22:101371.
    [20]
    HAN Z X, RANA M M, LIU G F, et al. Green tea flavour determinants and their changes over manufacturing processes[J]. Food Chemistry,2016,212(1):739−748.
    [21]
    XU Y J, LIU Y Q, YANG J H, et al. Manufacturing process differences give Keemun black teas their distinctive aromas[J]. Food Chemistry:X,2023,19:100865.
    [22]
    杨沅思, 坤吉瑞, 代洪苇, 等. 晒青绿茶加工过程香气物质及其部分前体变化分析[J]. 食品科学,2024,45(1):133−142. [YANG Y S, KUN J R, DAI H W, et al. Changes in the aroma compounds of sun-dried green tea and its partial precursor during processing[J]. Food Science,2024,45(1):133−142.] doi: 10.7506/spkx1002-6630-20230408-073

    YANG Y S, KUN J R, DAI H W, et al. Changes in the aroma compounds of sun-dried green tea and its partial precursor during processing[J]. Food Science, 2024, 45(1): 133−142. doi: 10.7506/spkx1002-6630-20230408-073
    [23]
    李国萍, 李家锋, 朱海燕. 盈江大理茶种与凤庆大叶种芽茶香气差异分析[J]. 食品工业科技,2024,45(5):281−291. [LI G P, LI J F, ZHU H Y. Analysis of aroma differences between Yingjiang Camellia taliensis and Fengqing large-leaved species bud tea[J]. Science and Technology of Food Industry,2024,45(5):281−291.]

    LI G P, LI J F, ZHU H Y. Analysis of aroma differences between Yingjiang Camellia taliensis and Fengqing large-leaved species bud tea[J]. Science and Technology of Food Industry, 2024, 45(5): 281−291.
    [24]
    YANG X G. Aroma constituents and alkylamides of red and green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium)[J]. Journal of Agricultural and Food Chemistry,2008,56:1689−1696. doi: 10.1021/jf0728101
    [25]
    钟秋生, 彭佳堃, 戴伟东, 等. 基于UHPLC-Q-Exactive/MS的不同烘焙处理岩茶化学成分差异分析[J]. 食品科学,2023,44(20):268−282. [ZHONG Q S, PENG J K, DAI W D, et al. Study on the chemical constituents of Rougui Rock Tea with different roasting degrees by UHPLC-Q-TOF/MS[J]. Food Science,2023,44(20):268−282.] doi: 10.7506/spkx1002-6630-20221205-052

    ZHONG Q S, PENG J K, DAI W D, et al. Study on the chemical constituents of Rougui Rock Tea with different roasting degrees by UHPLC-Q-TOF/MS[J]. Food Science, 2023, 44(20): 268−282. doi: 10.7506/spkx1002-6630-20221205-052
    [26]
    宛晓春. 茶叶生物化学[M]. 北京:中国农业出版社, 2003:20−21,213−230. [WAN X C. Tea biochemistry [M]. Beijing:China Agriculture Press, 2003:20−21, 213−230.]

    WAN X C. Tea biochemistry [M]. Beijing: China Agriculture Press, 2003: 20−21, 213−230.
    [27]
    杨伟丽, 肖文军, 邓克尼. 加工工艺对不同茶类主要生化成分的影响[J]. 湖南农业大学学报(自然科学版),2001(5):384−386. [YANG W L, XIAO W J, DENG K N. Effects of processing technology of different teas on the main biochemistry component[J]. Journal of Hunan Agricultural University(Natural Sciences),2001(5):384−386.] doi: 10.3321/j.issn:1007-1032.2001.05.016

    YANG W L, XIAO W J, DENG K N. Effects of processing technology of different teas on the main biochemistry component[J]. Journal of Hunan Agricultural University(Natural Sciences), 2001(5): 384−386. doi: 10.3321/j.issn:1007-1032.2001.05.016
    [28]
    罗红玉, 王奕, 谷雨, 等. 干燥工艺对重庆沱茶及其毛茶风味品质的影响[J]. 食品科学,2022,43(22):259−266. [LUO H Y, WANG Y, GU Y, et al. Effect of drying process on the flavor quality of Chongqing tuo tea and crude tea for making it[J]. Food Science,2022,43(22):259−266.] doi: 10.7506/spkx1002-6630-20220122-228

    LUO H Y, WANG Y, GU Y, et al. Effect of drying process on the flavor quality of Chongqing tuo tea and crude tea for making it[J]. Food Science, 2022, 43(22): 259−266. doi: 10.7506/spkx1002-6630-20220122-228
    [29]
    张慧文, 张玉, 马超美. 原花青素的研究进展[J]. 食品科学,2015,36(5):296−304. [ZHANG H W, ZHANG Y, MA C M. Progress in procyanidins research[J]. Food Science,2015,36(5):296−304.] doi: 10.7506/spkx1002-6630-201505052

    ZHANG H W, ZHANG Y, MA C M. Progress in procyanidins research[J]. Food Science, 2015, 36(5): 296−304. doi: 10.7506/spkx1002-6630-201505052
    [30]
    HANNA P, KARLNE G, PASCAL S, et al. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers[J]. Journal of the Science of Food and Agriculture,1999,79:1123−1128. doi: 10.1002/(SICI)1097-0010(199906)79:8<1123::AID-JSFA336>3.0.CO;2-D
    [31]
    KOHLER N, WRAY V, WINTERHALTER P. New approach for the synthesis and isolation of dimeric procyanidins[J]. Journal of Agricultural and Food Chemistry,2008,56:5374−5385. doi: 10.1021/jf7036505
    [32]
    LIU F, TU Z, CHEN L, et al. Analysis of the metabolites in green tea during the roasting process using non-targeted metabolomics[J]. Journal of the Science of Food and Agriculture,2022,103(1):213−220.
    [33]
    张英娜, 陈根生, 刘阳, 等. 烘青绿茶苦涩味及其滋味贡献物质分析[J]. 茶叶科学,2015,35(4):377−383. [ZHANG Y N, CHEN G S, LIU Y, et al. Analysis of the bitter and astringent taste of baked green tea and their chemical contributors[J]. Journal of Tea Science,2015,35(4):377−383.] doi: 10.3969/j.issn.1000-369X.2015.04.016

    ZHANG Y N, CHEN G S, LIU Y, et al. Analysis of the bitter and astringent taste of baked green tea and their chemical contributors[J]. Journal of Tea Science, 2015, 35(4): 377−383. doi: 10.3969/j.issn.1000-369X.2015.04.016
    [34]
    BAI W X, WANG C, WANG Y J, et al. Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3t3-L1 cells from Lu'an guapian tea and quantification of flavonoid glycosides in six major processing types of tea[J]. Journal of Agricultural and Food Chemistry,2017,65(14):2999−3005. doi: 10.1021/acs.jafc.7b00239
    [35]
    LIU Z B, CHEN F C, SUN J Y, et al. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea[J]. Food Chemistry,2022,367:130624. doi: 10.1016/j.foodchem.2021.130624
    [36]
    张晓磊, 刘亚芹, 周汉琛, 等. 烘焙对祁门红茶香气品质的影响[J]. 中国茶叶加工,2023(3):13−19. [ZHANG X L, LIU Y Q, ZHOU H C, et al. Effect of baking on aroma quality of Keemun Black Tea[J]. China Tea Processing,2023(3):13−19.]

    ZHANG X L, LIU Y Q, ZHOU H C, et al. Effect of baking on aroma quality of Keemun Black Tea[J]. China Tea Processing, 2023(3): 13−19.
    [37]
    ZHU Y, LV H P, SHAO C Y, et al. Identification of key odorants responsible for chestnut-like aroma quality of green teas[J]. Food Research International,2018,108:74−82. doi: 10.1016/j.foodres.2018.03.026
    [38]
    PANG X L, QIN Z H, ZHAO L, et al. Development of regression model to differentiate quality of black tea (Dianhong):Correlate aroma properties with instrumental data using multiple linear regression analysis[J]. International Journal of Food Science and Technology,2012,47(11):2372−2379. doi: 10.1111/j.1365-2621.2012.03112.x
    [39]
    王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学,2019,40(23):341−349. [WANG M Q, ZHU Y, ZHANG Y, et al. A review of recent research on key aroma compounds in tea[J]. Food Science,2019,40(23):341−349.] doi: 10.7506/spkx1002-6630-20181015-132

    WANG M Q, ZHU Y, ZHANG Y, et al. A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341−349. doi: 10.7506/spkx1002-6630-20181015-132
    [40]
    舒畅. 龙井茶特征香气成分分析与鉴定研究[D]. 上海:上海应用技术学院, 2016. [SHU C. Characterization of aroma-active components of Longjing Tea[D]. Shanghai:Shanghai Institute of Technology, 2016.]

    SHU C. Characterization of aroma-active components of Longjing Tea[D]. Shanghai: Shanghai Institute of Technology, 2016.
  • Related Articles

    [1]LAI Maojia, MOU Yan, YI Yuwen, FAN Wenjiao, QIAO Xing. Correlation Analysis between Microbial Diversity and Flavor Compounds in Sichuan Fermented Sausage[J]. Science and Technology of Food Industry, 2025, 46(6): 303-314. DOI: 10.13386/j.issn1002-0306.2024040421
    [2]ZHOU Wenwen, LIU Hui, XU Zhijia, XIAO Fengqin, LI Bo, YANG Yiliu, LI Guangzhe, YAN Mingming. Content and Antioxidant Activity of Components in Different Polar Parts of Semen Ziziphi Spinosae and Their Correlation Analysis[J]. Science and Technology of Food Industry, 2023, 44(16): 288-296. DOI: 10.13386/j.issn1002-0306.2022090054
    [3]QIAO Jian, LI Guopeng, DU Liqing, WEI Changbin, LI Tianzi, MA Zhiling. Quality Determination and Correlation Analysis of Mulberry Fruits during Different Development Stages[J]. Science and Technology of Food Industry, 2021, 42(17): 24-29. DOI: 10.13386/j.issn1002-0306.2020110206
    [4]WANG Ying, DU Yan, LI Rong, JIANG Zi-tao, CHAI Ran, WANG Juan-juan. Evaluation of Antioxidant Activities in Vitro of Ethanol Extract from Perilla frutescens(L.)Britt Leaves and Correlation Analysis[J]. Science and Technology of Food Industry, 2020, 41(9): 81-87. DOI: 10.13386/j.issn1002-0306.2020.09.013
    [5]LI Ci-li, YANG Yang, CHEN Feng-lian, LIU Lin-lin, ZHANG Guang, SUN Bing-yu, SHI Yan-guo. Study on correlation between composition of mixed powder and quality characteristics of fermented rice cake[J]. Science and Technology of Food Industry, 2017, (10): 103-107. DOI: 10.13386/j.issn1002-0306.2017.10.012
    [6]GONG Zi-wei, GUO Wei-jun, SUN Wei, WANG Fen-e, WU Jian-min. Study on the correlated experiment of mechanical properties and chemical compositions of potato buds[J]. Science and Technology of Food Industry, 2015, (19): 120-123. DOI: 10.13386/j.issn1002-0306.2015.19.016
    [7]QIU Ran, GUO Jian-hua, SHI Dian-yu, XU Kai, SU Hong-xu, LU Jian. Analysis of the correlations between antioxidant properties and the regular index of malt[J]. Science and Technology of Food Industry, 2015, (17): 67-71. DOI: 10.13386/j.issn1002-0306.2015.17.005
    [8]HU Shuang-fang, WEI Ya-xi, XING Jing-jing, TONG Shi-sheng, NIU Yin-xue, LIU Ping. Correlation analysis between chemical components and sensory quality of coffee[J]. Science and Technology of Food Industry, 2013, (24): 125-129. DOI: 10.13386/j.issn1002-0306.2013.24.057
    [9]Study on the correlation between total flavonoids and anti-oxidation in bee pollens[J]. Science and Technology of Food Industry, 2013, (01): 70-73. DOI: 10.13386/j.issn1002-0306.2013.01.007
    [10]Study on the correlation between freezing point and physic-chemical properties of buffalo milk[J]. Science and Technology of Food Industry, 2012, (16): 170-173. DOI: 10.13386/j.issn1002-0306.2012.16.076
  • Other Related Supplements

  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (100) PDF downloads (18) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return