Citation: | ZHANG Xiaolei, ZHOU Hanchen, LIU Yaqin, et al. Metabolomics Analysis of Effects of Low-temperature Baking on the Flavor of Albino Green Tea[J]. Science and Technology of Food Industry, 2024, 45(17): 352−362. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020200. |
[1] |
YIN P, KONG Y S, LIU P P, et al. A critical review of key odorants in green tea:Identification and biochemical formation pathway[J]. Trends in Food Science& Technology,2022,129:221−232.
|
[2] |
LIU N F, SHEN S S, HUANG L F, et al. Revelation of volatile contributions in green teas with different aroma types by GC–MS and GC–IMS[J]. Food Research International,2023,169:112845. doi: 10.1016/j.foodres.2023.112845
|
[3] |
FU Y Q, WANG J Q, CHEN J X, et al. Effect of baking on the flavor stability of green tea beverages[J]. Food Chemistry,2020,331:127258. doi: 10.1016/j.foodchem.2020.127258
|
[4] |
XU Y Q, ZHANG Y N, CHEN J X, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea[J]. Food Chemistry,2018,258:16−24. doi: 10.1016/j.foodchem.2018.03.042
|
[5] |
徐玉婕, 戴晓晶, 吴纪忠, 等. 白化和黄化茶树品种绿茶游离氨基酸、儿茶素类及咖啡碱差异分析[J]. 热带亚热带植物学报,2023,31(5):643−652. [XU Y J, DAI X J, WU J Z, et al. Differences of free amino acids, catechins and caffeine between albino and etiolated tea varieties[J]. Journal of Tropical and Subtropical Botany,2023,31(5):643−652.]
XU Y J, DAI X J, WU J Z, et al. Differences of free amino acids, catechins and caffeine between albino and etiolated tea varieties[J]. Journal of Tropical and Subtropical Botany, 2023, 31(5): 643−652.
|
[6] |
LI C F, MA J Q, HUANG D J, et al. Comprehensive dissection of metabolic changes in albino and green tea cultivars[J]. Journal of Agricultural and Food Chemistry,2018,66(8):2040−2048. doi: 10.1021/acs.jafc.7b05623
|
[7] |
薄佳慧, 张杨玲, 宫连瑾, 等. 多组学视角下白化茶树次生代谢产物的研究进展[J]. 分子植物育种,2023,21(6):1884−1889. [BO J H, ZHANG Y L, GONG L J, et al. Research progress on secondary metabolites of albino tea from the perspective of multiomics[J]. Molecular Plant Breeding,2023,21(6):1884−1889.]
BO J H, ZHANG Y L, GONG L J, et al. Research progress on secondary metabolites of albino tea from the perspective of multiomics[J]. Molecular Plant Breeding, 2023, 21(6): 1884−1889.
|
[8] |
娄艳华, 何卫中, 刘瑜, 等. 14个黄化、白化变异茶树品种(系)综合性状评价与分析[J]. 茶叶,2020,46(2):84−90. [LOU Y H, HE W Z, LIU Y, et al. Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. Journal of Tea,2020,46(2):84−90.] doi: 10.3969/j.issn.0577-8921.2020.02.004
LOU Y H, HE W Z, LIU Y, et al. Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. Journal of Tea, 2020, 46(2): 84−90. doi: 10.3969/j.issn.0577-8921.2020.02.004
|
[9] |
王松琳, 马春雷, 黄丹娟, 等. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学,2018,38(1):58−68. [WANG S L, MA C L, HUANG D J, et al. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science,2018,38(1):58−68.] doi: 10.3969/j.issn.1000-369X.2018.01.006
WANG S L, MA C L, HUANG D J, et al. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science, 2018, 38(1): 58−68. doi: 10.3969/j.issn.1000-369X.2018.01.006
|
[10] |
周汉琛, 刘亚芹, 雷攀登. 不同白化期的‘黄山白茶’代谢物差异分析[J]. 热带亚热带植物学报,2022,30(2):187−194. [ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshanbaicha No.1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany,2022,30(2):187−194.] doi: 10.11926/jtsb.4461
ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshanbaicha No.1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany, 2022, 30(2): 187−194. doi: 10.11926/jtsb.4461
|
[11] |
徐邢燕, 陈思, 俞晓敏, 等. 不同烘焙程度与等级武夷肉桂茶品质差异分析[J]. 食品科学,2020,41(13):22−28. [XU X Y, CHEN S, YU X M, et al. Quality differences of different grades of Wuyi Rougui tea with different baking degrees[J]. Food Science,2020,41(13):22−28.] doi: 10.7506/spkx1002-6630-20190619-220
XU X Y, CHEN S, YU X M, et al. Quality differences of different grades of Wuyi Rougui tea with different baking degrees[J]. Food Science, 2020, 41(13): 22−28. doi: 10.7506/spkx1002-6630-20190619-220
|
[12] |
YE F, QIAO X Y, GUI A H, et al. Characterization of roasting time on sensory quality, color, taste, and nonvolatile compounds of Yuan An yellow tea[J]. Molecules,2022,27(13):4119−4119. doi: 10.3390/molecules27134119
|
[13] |
翁晶晶, 周承哲, 徐凯, 等. 烘焙温度对漳平水仙茶饼风味品质的影响[J]. 食品科学,2022,43(20):252−260. [WENG J J, ZHOU C Z, XU K, et al. Effect of baking temperature on flavor quality of Zhangping Shuixian tea cake[J]. Food Science,2022,43(20):252−260.] doi: 10.7506/spkx1002-6630-20211229-328
WENG J J, ZHOU C Z, XU K, et al. Effect of baking temperature on flavor quality of Zhangping Shuixian tea cake[J]. Food Science, 2022, 43(20): 252−260. doi: 10.7506/spkx1002-6630-20211229-328
|
[14] |
ZHOU J, WU Y, LONG P P, et al. LC-MS-based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of Large-Leaf yellow tea[J]. Journal of Agricultural and Food Chemistry,2019,67(19):5405−5412. doi: 10.1021/acs.jafc.8b05062
|
[15] |
JIANG Z D, HAN Z S, WEN M C, et al. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics[J]. Food Science and Human Wellness,2022,11(3):606−617. doi: 10.1016/j.fshw.2021.12.017
|
[16] |
WANG B Y, QU F F, WANG P Q, et al. Characterization analysis of flavor compounds in green teas at different drying temperature[J]. LWT,2022,161:113394. doi: 10.1016/j.lwt.2022.113394
|
[17] |
LUO H Y, WANG Y, CHANG R, et al. Chemical composition and discrimination with volatile profiles of Yongchuan Xiuya green tea with different baking treatments[J]. Flavour and Fragrance Journal,2024,39(4):224−225. doi: 10.1002/ffj.3783
|
[18] |
ZHUANG J H, DAI X L, ZHU M Q, et al. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols[J]. Food Chemistry,2020,305:125507. doi: 10.1016/j.foodchem.2019.125507
|
[19] |
ZHOU H C, LIU Y Q, WU Q, et al. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature[J]. Food Chemistry:X,2024,22:101371.
|
[20] |
HAN Z X, RANA M M, LIU G F, et al. Green tea flavour determinants and their changes over manufacturing processes[J]. Food Chemistry,2016,212(1):739−748.
|
[21] |
XU Y J, LIU Y Q, YANG J H, et al. Manufacturing process differences give Keemun black teas their distinctive aromas[J]. Food Chemistry:X,2023,19:100865.
|
[22] |
杨沅思, 坤吉瑞, 代洪苇, 等. 晒青绿茶加工过程香气物质及其部分前体变化分析[J]. 食品科学,2024,45(1):133−142. [YANG Y S, KUN J R, DAI H W, et al. Changes in the aroma compounds of sun-dried green tea and its partial precursor during processing[J]. Food Science,2024,45(1):133−142.] doi: 10.7506/spkx1002-6630-20230408-073
YANG Y S, KUN J R, DAI H W, et al. Changes in the aroma compounds of sun-dried green tea and its partial precursor during processing[J]. Food Science, 2024, 45(1): 133−142. doi: 10.7506/spkx1002-6630-20230408-073
|
[23] |
李国萍, 李家锋, 朱海燕. 盈江大理茶种与凤庆大叶种芽茶香气差异分析[J]. 食品工业科技,2024,45(5):281−291. [LI G P, LI J F, ZHU H Y. Analysis of aroma differences between Yingjiang Camellia taliensis and Fengqing large-leaved species bud tea[J]. Science and Technology of Food Industry,2024,45(5):281−291.]
LI G P, LI J F, ZHU H Y. Analysis of aroma differences between Yingjiang Camellia taliensis and Fengqing large-leaved species bud tea[J]. Science and Technology of Food Industry, 2024, 45(5): 281−291.
|
[24] |
YANG X G. Aroma constituents and alkylamides of red and green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium)[J]. Journal of Agricultural and Food Chemistry,2008,56:1689−1696. doi: 10.1021/jf0728101
|
[25] |
钟秋生, 彭佳堃, 戴伟东, 等. 基于UHPLC-Q-Exactive/MS的不同烘焙处理岩茶化学成分差异分析[J]. 食品科学,2023,44(20):268−282. [ZHONG Q S, PENG J K, DAI W D, et al. Study on the chemical constituents of Rougui Rock Tea with different roasting degrees by UHPLC-Q-TOF/MS[J]. Food Science,2023,44(20):268−282.] doi: 10.7506/spkx1002-6630-20221205-052
ZHONG Q S, PENG J K, DAI W D, et al. Study on the chemical constituents of Rougui Rock Tea with different roasting degrees by UHPLC-Q-TOF/MS[J]. Food Science, 2023, 44(20): 268−282. doi: 10.7506/spkx1002-6630-20221205-052
|
[26] |
宛晓春. 茶叶生物化学[M]. 北京:中国农业出版社, 2003:20−21,213−230. [WAN X C. Tea biochemistry [M]. Beijing:China Agriculture Press, 2003:20−21, 213−230.]
WAN X C. Tea biochemistry [M]. Beijing: China Agriculture Press, 2003: 20−21, 213−230.
|
[27] |
杨伟丽, 肖文军, 邓克尼. 加工工艺对不同茶类主要生化成分的影响[J]. 湖南农业大学学报(自然科学版),2001(5):384−386. [YANG W L, XIAO W J, DENG K N. Effects of processing technology of different teas on the main biochemistry component[J]. Journal of Hunan Agricultural University(Natural Sciences),2001(5):384−386.] doi: 10.3321/j.issn:1007-1032.2001.05.016
YANG W L, XIAO W J, DENG K N. Effects of processing technology of different teas on the main biochemistry component[J]. Journal of Hunan Agricultural University(Natural Sciences), 2001(5): 384−386. doi: 10.3321/j.issn:1007-1032.2001.05.016
|
[28] |
罗红玉, 王奕, 谷雨, 等. 干燥工艺对重庆沱茶及其毛茶风味品质的影响[J]. 食品科学,2022,43(22):259−266. [LUO H Y, WANG Y, GU Y, et al. Effect of drying process on the flavor quality of Chongqing tuo tea and crude tea for making it[J]. Food Science,2022,43(22):259−266.] doi: 10.7506/spkx1002-6630-20220122-228
LUO H Y, WANG Y, GU Y, et al. Effect of drying process on the flavor quality of Chongqing tuo tea and crude tea for making it[J]. Food Science, 2022, 43(22): 259−266. doi: 10.7506/spkx1002-6630-20220122-228
|
[29] |
张慧文, 张玉, 马超美. 原花青素的研究进展[J]. 食品科学,2015,36(5):296−304. [ZHANG H W, ZHANG Y, MA C M. Progress in procyanidins research[J]. Food Science,2015,36(5):296−304.] doi: 10.7506/spkx1002-6630-201505052
ZHANG H W, ZHANG Y, MA C M. Progress in procyanidins research[J]. Food Science, 2015, 36(5): 296−304. doi: 10.7506/spkx1002-6630-201505052
|
[30] |
HANNA P, KARLNE G, PASCAL S, et al. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers[J]. Journal of the Science of Food and Agriculture,1999,79:1123−1128. doi: 10.1002/(SICI)1097-0010(199906)79:8<1123::AID-JSFA336>3.0.CO;2-D
|
[31] |
KOHLER N, WRAY V, WINTERHALTER P. New approach for the synthesis and isolation of dimeric procyanidins[J]. Journal of Agricultural and Food Chemistry,2008,56:5374−5385. doi: 10.1021/jf7036505
|
[32] |
LIU F, TU Z, CHEN L, et al. Analysis of the metabolites in green tea during the roasting process using non-targeted metabolomics[J]. Journal of the Science of Food and Agriculture,2022,103(1):213−220.
|
[33] |
张英娜, 陈根生, 刘阳, 等. 烘青绿茶苦涩味及其滋味贡献物质分析[J]. 茶叶科学,2015,35(4):377−383. [ZHANG Y N, CHEN G S, LIU Y, et al. Analysis of the bitter and astringent taste of baked green tea and their chemical contributors[J]. Journal of Tea Science,2015,35(4):377−383.] doi: 10.3969/j.issn.1000-369X.2015.04.016
ZHANG Y N, CHEN G S, LIU Y, et al. Analysis of the bitter and astringent taste of baked green tea and their chemical contributors[J]. Journal of Tea Science, 2015, 35(4): 377−383. doi: 10.3969/j.issn.1000-369X.2015.04.016
|
[34] |
BAI W X, WANG C, WANG Y J, et al. Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3t3-L1 cells from Lu'an guapian tea and quantification of flavonoid glycosides in six major processing types of tea[J]. Journal of Agricultural and Food Chemistry,2017,65(14):2999−3005. doi: 10.1021/acs.jafc.7b00239
|
[35] |
LIU Z B, CHEN F C, SUN J Y, et al. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea[J]. Food Chemistry,2022,367:130624. doi: 10.1016/j.foodchem.2021.130624
|
[36] |
张晓磊, 刘亚芹, 周汉琛, 等. 烘焙对祁门红茶香气品质的影响[J]. 中国茶叶加工,2023(3):13−19. [ZHANG X L, LIU Y Q, ZHOU H C, et al. Effect of baking on aroma quality of Keemun Black Tea[J]. China Tea Processing,2023(3):13−19.]
ZHANG X L, LIU Y Q, ZHOU H C, et al. Effect of baking on aroma quality of Keemun Black Tea[J]. China Tea Processing, 2023(3): 13−19.
|
[37] |
ZHU Y, LV H P, SHAO C Y, et al. Identification of key odorants responsible for chestnut-like aroma quality of green teas[J]. Food Research International,2018,108:74−82. doi: 10.1016/j.foodres.2018.03.026
|
[38] |
PANG X L, QIN Z H, ZHAO L, et al. Development of regression model to differentiate quality of black tea (Dianhong):Correlate aroma properties with instrumental data using multiple linear regression analysis[J]. International Journal of Food Science and Technology,2012,47(11):2372−2379. doi: 10.1111/j.1365-2621.2012.03112.x
|
[39] |
王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学,2019,40(23):341−349. [WANG M Q, ZHU Y, ZHANG Y, et al. A review of recent research on key aroma compounds in tea[J]. Food Science,2019,40(23):341−349.] doi: 10.7506/spkx1002-6630-20181015-132
WANG M Q, ZHU Y, ZHANG Y, et al. A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341−349. doi: 10.7506/spkx1002-6630-20181015-132
|
[40] |
舒畅. 龙井茶特征香气成分分析与鉴定研究[D]. 上海:上海应用技术学院, 2016. [SHU C. Characterization of aroma-active components of Longjing Tea[D]. Shanghai:Shanghai Institute of Technology, 2016.]
SHU C. Characterization of aroma-active components of Longjing Tea[D]. Shanghai: Shanghai Institute of Technology, 2016.
|
[1] | WANG Chenxi, LI Qianhong, LIU Yangzhou, ZHANG Yan. Transformation of Bitter Substances in Sea Buckthorn Juice by Fermentation with Lactiplantibacillus plantarum[J]. Science and Technology of Food Industry, 2024, 45(16): 159-167. DOI: 10.13386/j.issn1002-0306.2023080280 |
[2] | LIU Le, ZOU Kaixiang, SHAO Kaisheng, YU Hui, TAO Xueying, WEI Hua, ZHANG Zhihong. The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari[J]. Science and Technology of Food Industry, 2022, 43(15): 139-147. DOI: 10.13386/j.issn1002-0306.2021110013 |
[3] | LIU Chang, ZUO Changzhou, PENG Jing, CHEN Jikun, TU Kang, PAN Leiqing. Response Surface Optimization of the Fermentation Process of Tomato Juice by Lactobacillus plantarum and Its Quality Evaluation[J]. Science and Technology of Food Industry, 2022, 43(10): 246-253. DOI: 10.13386/j.issn1002-0306.2021080285 |
[4] | ZHOU Yingjun, XIE Chunliang, CHEN Baizhong, GONG Wenbing, ZHU Zuohua, XU Chao, YANG Qi, PENG Yuande. Effect of Different Yeast and Lactobacillus plantarum Combined Fermentation on the Quality of Xinhui Citrus Ferment[J]. Science and Technology of Food Industry, 2022, 43(6): 118-125. DOI: 10.13386/j.issn1002-0306.2021060189 |
[5] | REN Da-yong, YAN Wei, AN Bin, YANG Liu, WANG Guo-chao, FENG Shi-rong. Screening and in Vitro Tolerance Analysis of Lactobacillus plantarum with High Antioxidant Activity in Traditional Fermented Food of Northeast China[J]. Science and Technology of Food Industry, 2019, 40(18): 59-64. DOI: 10.13386/j.issn1002-0306.2019.18.010 |
[6] | LI Hong-fu, YANG Xin-yan, LIU Xin-yu, ZHANG Yu, MAN Chao-xin, JIANG Yu-jun. Fermentation Process Optimization of Blueberry Juice Fermented by Lactobacillus plantarum and Analysis of Antioxidant Capacity[J]. Science and Technology of Food Industry, 2019, 40(17): 127-133. DOI: 10.13386/j.issn1002-0306.2019.17.021 |
[7] | QUE Fei, HUANG Han-nian, ZHAO Lin. Change of Components and Antioxidant Activity of Banana Enzymes during Fermentation Process[J]. Science and Technology of Food Industry, 2019, 40(16): 290-293,303. DOI: 10.13386/j.issn1002-0306.2019.16.049 |
[8] | ZHANG Hai-ping, ZHU Yue, WEI Yu-long, LI Teng, YU Ning, ZHU Ning, GAN Zhi-lin, SUN Ai-dong. Optimization of Fermentation Process of Aronia melanocarpa Fruit Juice by Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2018, 39(17): 133-138,151. DOI: 10.13386/j.issn1002-0306.2018.17.023 |
[9] | 茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069 |
[10] | 柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006 |
1. |
张欣,刘峥,张颖,郭永胜,李建章,高强. 环氧化槲皮素合成及其对豆胶性能的影响. 林业工程学报. 2022(05): 87-92 .
![]() |