Citation: | GUAN Lijun, ZHU Ling, WANG Kunlun, et al. Ancestral Sequence Reconstruction Enhances Thermal Stability of D-Allulose 3-Epimerase[J]. Science and Technology of Food Industry, 2024, 45(21): 121−128. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010227. |
[1] |
GUMULYA Y, GILLAM E M. Exploring the past and the future of protein evolution with ancestral sequence reconstruction:The 'retro' approach to protein engineering[J]. Biochemical Journal,2017,474(1):1−19. doi: 10.1042/BCJ20160507
|
[2] |
MERKL R, STERNER R. Ancestral protein reconstruction:techniques and applications[J]. Biological Chemistry,2016,397(1):1−21. doi: 10.1515/hsz-2015-0158
|
[3] |
SELBERG A G A, GAUCHER E A, LIBERLES D A. Ancestral sequence reconstruction:From chemical paleogenetics to maximum likelihood algorithms and beyond[J]. Journal of Molecular Evolution,2021,89(3):157−164. doi: 10.1007/s00239-021-09993-1
|
[4] |
RISSO V A, SANCHEZ-RUIZ J M, OZKAN S B. Biotechnological and protein-engineering implications of ancestral protein resurrection[J]. Current Opinion in Structural Biology,2018,51:106−115. doi: 10.1016/j.sbi.2018.02.007
|
[5] |
WHITFIELD J H, ZHANG W H, HERDE M K, et al. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction[J]. Protein Science,2015,24(9):1412−1422. doi: 10.1002/pro.2721
|
[6] |
WILDING M, PEAT T S, KALYAANAMOORTHY S, et al. Reverse engineering:Transaminase biocatalyst development using ancestral sequence reconstruction[J]. Green Chemistry,2017,19:5375−5380. doi: 10.1039/C7GC02343J
|
[7] |
BABKOVA P, SEBESTOVA E, BREZOVSKY J, et al. Ancestral haloalkane dehalogenases show robustness and unique substrate specificity[J]. Chembiochemistry,2017,18(14):1448−1456. doi: 10.1002/cbic.201700197
|
[8] |
JOHO Y, VONGSOUTHI V, SPENCE M A, et al. Ancestral sequence reconstruction identifies structural changes underlying the evolution of Ideonella sakaiensis petase and variants with improved stability and activity[J]. Biochemistry,2023,62(2):437−450. doi: 10.1021/acs.biochem.2c00323
|
[9] |
GUMULYA Y, BAEK J M, WUN S J, et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction[J]. Nature Catalysis,2018,1:878−888. doi: 10.1038/s41929-018-0159-5
|
[10] |
SPENCE M A, KACZMARSKI J A, SAUNDERS J W, et al. Ancestral sequence reconstruction for protein engineers[J]. Current Opinion in Structural Biology,2021,69:131−141. doi: 10.1016/j.sbi.2021.04.001
|
[11] |
FOLEY G, MORA A, ROSS C M, et al. Engineering indel and substitution variants of diverse and ancient enzymes using graphical representation of ancestral sequence predictions (GRASP)[J]. PLoS Computational Biology,2022,18(10):e1010633. doi: 10.1371/journal.pcbi.1010633
|
[12] |
GOLDENZWEIG A, GOLDSMITH M, HILL S E, et al. Automated structure and sequence-based design of proteins for high bacterial expression and stability[J]. Molecular Cell,2016,63(2):337−346. doi: 10.1016/j.molcel.2016.06.012
|
[13] |
YANG Z. PAML 4:Phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution,2007,24(8):1586−1591. doi: 10.1093/molbev/msm088
|
[14] |
CHEN X, DOU Z, LUO T, et al. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum[J]. Bioresource Technology,2022,363:127886. doi: 10.1016/j.biortech.2022.127886
|
[15] |
PRAMANIK S, CONTRERAS F, DAVARI M D, et al. Protein engineering by efficient sequence space exploration through combination of directed evolution and computational design methodologies[J]. Protein Engineering,2021:153−176.
|
[16] |
YU H, DALBY P A. Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(47):e11043−e11052.
|
[17] |
FUKADA K, ISHII T, TANAKA K, et al. Crystal structure, solubility, and mutarotation of the rare monosaccharide D-psicose[J]. Bulletin of the Chemical Society of Japan,2010,83:1193−1197. doi: 10.1246/bcsj.20100148
|
[18] |
MU W, ZHANG W, FENG Y, et al. Recent advances on applications and biotechnological production of D-psicose[J]. Applied Microbiology and Biotechnology,2012,94(6):1461−1467. doi: 10.1007/s00253-012-4093-1
|
[19] |
SHINTANI T, YAMADA T, HAYASHI N, et al. Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and insulin sensitivity partly via hepatic glucokinase translocation in wistar rats[J]. Journal of Agricultural and Food Chemistry,2017,65(13):2888−2894. doi: 10.1021/acs.jafc.6b05627
|
[20] |
ZHANG W, FANG D, XING Q, et al. Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704[J]. PLoS One,2013,8(4):e62987. doi: 10.1371/journal.pone.0062987
|
[21] |
ZHANG W, YU S, ZHANG T, et al. Recent advances in D-allulose:Physiological functionalities, applications, and biological production[J]. Trends in Food Science and Technology,2016,54:127−137. doi: 10.1016/j.jpgs.2016.06.004
|
[22] |
KIM S E, KIM S J, KIM H J, et al. D-Psicose, a sugar substitute, suppresses body fat deposition by altering networks of inflammatory response and lipid metabolism in C57BL/6J-ob/ob mice[J]. Journal of Functional Foods,2017,28:265−274. doi: 10.1016/j.jff.2016.11.029
|
[23] |
SUNA S, YAMAGUCHI F, KIMURA S, et al. Preventive effect of D-psicose, one of rare ketohexoses, on di-(2-ethylhexyl) phthalate (DEHP)-induced testicular injury in rat[J]. Toxicology Letters,2007,173(2):107−117. doi: 10.1016/j.toxlet.2007.06.015
|
[24] |
IZUMORI K. Bioproduction strategies for rare hexose sugars[J]. Naturwissenschaften,2002,89(3):120−124. doi: 10.1007/s00114-002-0297-z
|
[25] |
KIM H J, HYUN E K, KIM Y S, et al. Characterization of an agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose[J]. Applied and Environmental Microbiology,2006,72(2):981−985. doi: 10.1128/AEM.72.2.981-985.2006
|
[26] |
CHEN Z, GAO X D, LI Z. Recent advances regarding the physiological functions and biosynthesis of D-allulose[J]. Frontiers in Microbiology,2022,13:881037. doi: 10.3389/fmicb.2022.881037
|
[27] |
ZHANG W, WEI M, SUN X, et al. Fine-tuning of carbon flux and artificial promoters in Bacillus subtilis enables high-level biosynthesis of D-allulose[J]. Journal of Agricultural and Food Chemistry,2022,70(43):13935−13944. doi: 10.1021/acs.jafc.2c05585
|
[28] |
ZHANG W, ZHANG T, JIANG B, et al. Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose[J]. Journal of the Science of Food and Agriculture,2016,96(1):49−56. doi: 10.1002/jsfa.7187
|
[29] |
MU W, CHU F, XING Q, et al. Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10[J]. Journal of Agricultural and Food Chemistry,2011,59:7785−7792. doi: 10.1021/jf201356q
|
[30] |
WANG Y, RAVIKUMAR Y, ZHANG G, et al. Biocatalytic synthesis of D-allulose using novel D-tagatose 3-epimerase from Christensenella minuta[J]. Frontiers in Chemistry,2020,8:622325. doi: 10.3389/fchem.2020.622325
|
[31] |
SAKODA M, HIROMI K. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion[J]. The Journal of Biochemistry,1976,80(3):547−555. doi: 10.1093/oxfordjournals.jbchem.a131310
|
[32] |
QI H, WANG T, LI H, et al. Sequence- and structure-based mining of thermostable D-allulose 3-epimerase and computer-guided protein engineering to improve enzyme activity[J]. Journal of Agricultural and Food Chemistry,2023,71(47):18431−18442. doi: 10.1021/acs.jafc.3c07204
|
[33] |
PATEL S N, KAUSHAL G, SINGH S P. A novel D-allulose 3-epimerase gene from the metagenome of a thermal aquatic habitat and D-allulose production by Bacillus subtilis whole-cell catalysis[J]. Applied and Environmental Microbiology,2020,86(5):e02605−19.
|
[34] |
CHEN S, XU Z, DING B, et al. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery[J]. Science Advances,2023,9(5):1−16.
|
[35] |
THOMSON R E S, CARRERA-PACHECO S E, GILLAM E M J. Engineering functional thermostable proteins using ancestral sequence reconstruction[J]. Journal of Biological Chemistry,2022:102435.
|
[36] |
LIVADA J, VARGAS A M, MARTINEZ C A, et al. Ancestral sequence reconstruction enhances gene mining efforts for industrial ene reductases by expanding enzyme panels with thermostable catalysts[J]. ACS Catalysis,2023,13(4):2576−2585. doi: 10.1021/acscatal.2c03859
|
[37] |
PIOVESAN D, MINERVINI G, TOSATTO S C. The RING 2.0 web server for high quality residue interaction networks[J]. Nucleic Acids Research,2016,44(W1):W367−374. doi: 10.1093/nar/gkw315
|
[38] |
TOMPA D R, GROMIHA M M, SARABOJI K. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins[J]. Journal of Molecular Graphics & Modelling,2016,64:85−93.
|
[39] |
WANG Q, CEN Z, ZHAO J. The survival mechanisms of thermophiles at high temperatures:An angle of omics[J]. Physiology (Bethesda),2015,30(2):97−106. doi: 10.1152/physiol.00066.2013
|
[40] |
HARADA T, KURIMOTO E, TOKUHIRO K, et al. Disulfide bond formation in refolding of thermophilic fungal protein disulfide isomerase[J]. Journal of Bioscience and Bioengineering,2001,91(6):596−598. doi: 10.1016/S1389-1723(01)80180-8
|
[41] |
DIAS C L, ALA-NISSILA T, WONG-EKKABUT J, et al. The hydrophobic effect and its role in cold denaturation[J]. Cryobiology,2010,60(1):91−99. doi: 10.1016/j.cryobiol.2009.07.005
|
[42] |
BADIEYAN S, BEVAN D R, ZHANG C. Study and design of stability in GH5 cellulases[J]. Biotechnology and Bioengineering,2012,109(1):31−44. doi: 10.1002/bit.23280
|
[43] |
WEI M, GAO X, ZHANG W, et al. Enhanced thermostability of an L-rhamnose isomerase for D-allose synthesis by computation-based rational redesign of flexible regions[J]. Journal of Agricultural and Food Chemistry,2023,71(42):15713−15722. doi: 10.1021/acs.jafc.3c05736
|
[1] | FU Ruiqing, WANG Juan, GUO Yanyin, WANG Yujiang, HUANG Xue. Suitable Cooking Time of Morchella Soup Based on GC-MS and Amino Acid Analysis[J]. Science and Technology of Food Industry, 2022, 43(16): 290-297. DOI: 10.13386/j.issn1002-0306.2021110099 |
[2] | LI Min, KANG Li, TAN Suo, LONG Yin-qing, HE Yun-chuan. Texture Evaluation of Boiled Zhacai by Fuzzy Mathematic[J]. Science and Technology of Food Industry, 2020, 41(16): 43-46,53. DOI: 10.13386/j.issn1002-0306.2020.16.008 |
[3] | LIU Deng-yong, LIU Huan, ZHANG Qing-yong, QI Jun, XU Xing-lian. Cumulative Effect of Main Non-salt Taste Compounds on Braised Chicken Brine during Repeated Braising[J]. Science and Technology of Food Industry, 2018, 39(19): 64-69,75. DOI: 10.13386/j.issn1002-0306.2018.19.011 |
[4] | HE Li-chao, MA Su-min, LI Cheng-liang, YANG Hai-yan, SUN Xiu-xiu, WU Wen-min, JIN Guo-feng. Effect of different cooking time on the textural profile and lipid composition of hard-boiled egg[J]. Science and Technology of Food Industry, 2018, 39(6): 25-30,37. DOI: 10.13386/j.issn1002-0306.2018.06.005 |
[5] | LI Yun-bo, ZHANG Xiao-na, YAO Shuang-li, MA Han-jun, LIU Ben-guo, ZHAO Si-ming, XIONG Shan-bai. Processing optimization and textural properties of steamed egg[J]. Science and Technology of Food Industry, 2017, (09): 186-190. DOI: 10.13386/j.issn1002-0306.2017.09.027 |
[7] | ZHOU Ming, LI Dong- ming, SHEN Yong-gen, ZHENG Guo-dong. Study on processing optimization and texture properties of cold fresh noodle with west celery[J]. Science and Technology of Food Industry, 2016, (05): 217-221. DOI: 10.13386/j.issn1002-0306.2016.05.034 |
[8] | TANG Xiao, NI Cui-yang, WANG Li-ying, WANG Shan, WANG Yun, HUA Jia-tian. Effect of tea cooking time on antioxidant activities of Zijuan puer tea[J]. Science and Technology of Food Industry, 2015, (08): 141-147. DOI: 10.13386/j.issn1002-0306.2015.08.020 |
[9] | ZHENG Feng-jin, LIU Guo-ming, LI Jie-min, WEI Ping, SHENG Jin-feng, SUN Jian, LI Li, LING Dong-ning. Optimization processes and textural properties study of banana yogurt[J]. Science and Technology of Food Industry, 2015, (06): 299-303. DOI: 10.13386/j.issn1002-0306.2015.06.057 |