Citation: | YU Yiqun, XUE Luzhou, NI Hao, et al. Cloning and Expression of Marine α-Glucosidase and Its Preparation of High Purity Panose[J]. Science and Technology of Food Industry, 2024, 45(19): 158−165. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110185. |
[1] |
LIU X, WU D, WU J, et al. Optimization of the production of Aspergillus niger α-glucosidase expressed in Pichia pastoris[J]. World Journal of Microbiology and Biotechnology,2013,29(3):533−540. doi: 10.1007/s11274-012-1207-y
|
[2] |
董美宏. 嗜热毁丝霉α-葡萄糖苷酶的异源表达及酶学性质研究[D]. 济南:山东大学, 2022. [DONG M H. Heterologous expression and enzymatic properties of α-glucosidase from Rhizoctonia thermophilus[D]. Ji’nan:University of Shandong, 2022.]
DONG M H. Heterologous expression and enzymatic properties of α-glucosidase from Rhizoctonia thermophilus[D]. Ji’nan: University of Shandong, 2022.
|
[3] |
CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active enzymes database (CAZy):An expert resource for Glycogenomics[J]. Nucleic Acids Res,2009,37(Database issue):D233-8.
|
[4] |
翟星宇. 源于Qipengyuania seohaensis sp. SW-135的α-葡萄糖苷酶QsGH13的结构与功能研究[D]. 长沙:中南大学, 2022. [ZHAI X Y. Study on the structure and function of α-glucosidase QsGH13 from Qipengyuania seohaensis sp. SW-135[D]. Changsha:University of Zhongnan, 2022.]
ZHAI X Y. Study on the structure and function of α-glucosidase QsGH13 from Qipengyuania seohaensis sp. SW-135[D]. Changsha: University of Zhongnan, 2022.
|
[5] |
金其荣, 王晓晴. α-葡萄糖苷酶的初步研究及其在异麦芽低聚糖浆生产中的应用[J]. 食品科学,1995,16(4):20−24. [JIN Q R, WANG X Q. Preliminary study on α-glucosidase and its application in the production of isomaltooligosaccharide pulp[J]. Food Science,1995,16(4):20−24.]
JIN Q R, WANG X Q. Preliminary study on α-glucosidase and its application in the production of isomaltooligosaccharide pulp[J]. Food Science, 1995, 16(4): 20−24.
|
[6] |
MA M, OKUYAMA M, TAGAMI T, et al. Novel α-1, 3/α-1, 4-glucosidase from Aspergillus niger exhibits unique transglucosylation to generate high levels of nigerose and kojibiose[J]. J Agric Food Chem,2019,67(12):3380−3388. doi: 10.1021/acs.jafc.8b07087
|
[7] |
KAWANO A, FUKUI K, MATSUMOTO Y, et al. Analysis of transglucosylation products of Aspergillus niger α-glucosidase that catalyzes the formation of α-1, 2- and α-1, 3-linked oligosaccharides[J]. J Appl Glycosci (1999),2020,67(2):41−49. doi: 10.5458/jag.jag.JAG-2019_0015
|
[8] |
YAMAMOTO T, UNNO T, WATANABE Y, et al. Purification and characterization of Acremonium implicatum α-glucosidase having regioselectivity for α-1, 3-glucosidic linkage[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2004,1700(2):189−198. doi: 10.1016/j.bbapap.2004.05.002
|
[9] |
FANG Y, DONG M, VAN LEEUWEN S S, et al. Biochemical characterization of glycoside hydrolase family 31 α-glucosidases from Myceliophthora thermophila for α-glucooligosaccharide synthesis[J]. International Journal of Biological Macromolecules,2023,252:126452. doi: 10.1016/j.ijbiomac.2023.126452
|
[10] |
SHI Q, HOU Y, JUVONEN M, et al. Optimization of isomaltooligosaccharide size distribution by acceptor reaction of Weissella confusa dextransucrase and characterization of novel α-(1→2)-branched isomaltooligosaccharides[J]. Journal of Agricultural and Food Chemistry,2016,64(16):3276−3286. doi: 10.1021/acs.jafc.6b01356
|
[11] |
KUMAR S, BASU A, ANU-APPAIAH K A, et al. Identification and characterization of novel transglycosylating α-glucosidase from Aspergillus neoniger[J]. Journal of Applied Microbiology,2020,129(6):1644−1656. doi: 10.1111/jam.14757
|
[12] |
HUANG Z, ZHI L, SU Y, et al. Continuous production of isomalto-oligosaccharides by thermo-inactivated cells of Aspergillus niger J2 with coarse perlite as an immobilizing material[J]. Applied Biochemistry& Biotechnology,2018,185(3):1088−1099.
|
[13] |
LEI Z, YAN S, YANG Z, et al. Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides[J]. Bioresource Technology,2010,101(23):9144−9149. doi: 10.1016/j.biortech.2010.07.001
|
[14] |
SWATI O, SAROJ M, SUBHASH C, et al. Production of isomalto-oligosaccharides by cell bound α-glucosidase of Microbacterium sp[J]. LWT-Food Science& Technology,2015,60(1):486−494.
|
[15] |
易福生. 葡萄糖苷酶在啤酒酿造中的应用[J]. 啤酒科技,2005,31(1):82−83. [YI F S. Application of glucosidase in beer brewing[J]. Beer Technology,2005,31(1):82−83.]
YI F S. Application of glucosidase in beer brewing[J]. Beer Technology, 2005, 31(1): 82−83.
|
[16] |
岳振峰, 陈小霞, 彭志英. α-葡萄糖苷酶的研究现状及进展[J]. [J]. 食品与发酵工业,2000,26(3):63−67. [YUE Z F, CHEN X X, PENG Z Y. Research status and progress of α-glucosidase[J]. Food and Fermentation Industry,2000,26(3):63−67.] doi: 10.3321/j.issn:0253-990X.2000.03.013
YUE Z F, CHEN X X, PENG Z Y. Research status and progress of α-glucosidase[J]. Food and Fermentation Industry, 2000, 26(3): 63−67. doi: 10.3321/j.issn:0253-990X.2000.03.013
|
[17] |
徐燕杉. 黑曲霉α-葡萄糖苷酶在毕赤酵母的表面展示及催化合成低聚异麦芽糖的研究[D]. 广州:华南理工大学, 2018. [XU Y S. Surface display of Aspergillus niger α-glucosidase in Pichia pastoris and its catalytic synthesis of isomaltooligosaccharides[D]. Guangzhou:South China University of Technology, 2018.]
XU Y S. Surface display of Aspergillus niger α-glucosidase in Pichia pastoris and its catalytic synthesis of isomaltooligosaccharides[D]. Guangzhou: South China University of Technology, 2018.
|
[18] |
ZHANG F, WANG W, BAH F B M, et al. Heterologous expression of a thermostable α-glucosidase from Geobacillus sp. strain HTA-462 by Escherichia coli and its potential application for isomaltose-oligosaccharide synthesis[J]. Molecules,2019,24(7):1413. doi: 10.3390/molecules24071413
|
[19] |
王月宏. 嗜热厌氧乙醇杆菌Thermoanaerobacter ethanolicus JW200 α-葡萄糖苷酶的研究[D]. 无锡:江南大学, 2012. [WANG Y H. Studies on α-glucosidase from Thermoanaerobacter thermophilus JW200[D]. Wuxi:Jiangnan University, 2012.]
WANG Y H. Studies on α-glucosidase from Thermoanaerobacter thermophilus JW200[D]. Wuxi: Jiangnan University, 2012.
|
[20] |
PAN L, SHEN J, LIU H, et al. Molecular cloning and characterization of GLUT2 from pompano (Trachinotus ovatus), and its gene expression in response to exogenous enzymes supplementation in high carbohydrate diet[J]. Aquaculture Reports,2022,22:100999. doi: 10.1016/j.aqrep.2021.100999
|
[21] |
李林波, 张士双, 杨天佑, 等. α-葡萄糖苷酶的异源表达及应用研究进展[J]. 食品与发酵工业,2023,49(2):325−332. [LI L B, ZHANG S S, YANG T Y, et al. Research progress on heterologous expression and application of α-glucosidase[J]. Food and Fermentation Industry,2023,49(2):325−332.]
LI L B, ZHANG S S, YANG T Y, et al. Research progress on heterologous expression and application of α-glucosidase[J]. Food and Fermentation Industry, 2023, 49(2): 325−332.
|
[22] |
KAWANO A, MATSUMOTO Y, NIKAIDO N, et al. A novel α-glucosidase of the glycoside hydrolase family 31 from Aspergillus sojae[J]. J Appl Glycosci(1999),2019,66(2):73−81.
|
[23] |
黄培堂. 分子克隆实验指南精编版[J]. 生物技术通讯,2008(6):865. [HUANG P T. Guide to molecular cloning experiment-refined edition[J]. Letters in Biotechnology,2008(6):865.]
HUANG P T. Guide to molecular cloning experiment-refined edition[J]. Letters in Biotechnology, 2008(6): 865.
|
[24] |
王舒雅, 胡顿吉, 刘逸寒, 等. 两种α-葡萄糖苷酶的酶学性质及转苷作用[J]. 天津科技大学学报,2015,30(2):21−24. [WANG S Y, HU D J, LIU Y H, et al. Enzymatic properties and transglycosylation of two α-glucosidases[J]. Journal of Tianjin University of Science and Technology,2015,30(2):21−24.]
WANG S Y, HU D J, LIU Y H, et al. Enzymatic properties and transglycosylation of two α-glucosidases[J]. Journal of Tianjin University of Science and Technology, 2015, 30(2): 21−24.
|
[25] |
张梦辰. 定点突变改善耐热性β-葡萄糖苷酶转糖苷活性的研究[D]. 南京:南京师范大学, 2016. [ZHANG M C. Study on improving transglycosylation activity of heat-resistant β-glucosidase by site-directed mutation[D]. Nanjing:Nanjing Normal University, 2016.]
ZHANG M C. Study on improving transglycosylation activity of heat-resistant β-glucosidase by site-directed mutation[D]. Nanjing: Nanjing Normal University, 2016.
|
[26] |
杨磊, 吕明生, 王淑军, 等. 超嗜热古菌Thermococcus sp. HJ21产高温α-葡萄糖苷酶条件和酶学性质初步研究[J]. 食品与发酵工业,2008(7):1−6. [YANG L, LÜ M S, WANG S J, et al. Preliminary study on the conditions and enzymatic properties of thermophilic archaea Thermococcus sp. HJ21 for producing high-temperature α-glucosidase[J]. Food and Fermentation Industry,2008(7):1−6.]
YANG L, LÜ M S, WANG S J, et al. Preliminary study on the conditions and enzymatic properties of thermophilic archaea Thermococcus sp. HJ21 for producing high-temperature α-glucosidase[J]. Food and Fermentation Industry, 2008(7): 1−6.
|
[27] |
AHN K Y, PARK J S, HAN K Y, et al. YrhB is a highly stable small protein with unique chaperone-like activity in Escherichia coli BL21(DE3)[J]. FEBS Letters,2012,586(7):1044−1048. doi: 10.1016/j.febslet.2012.02.051
|
[28] |
ERONINA T B, MIKHAYLOVA V V, CHEBOTAREVA N A, et al. Combined action of chemical chaperones on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b[J]. International Journal of Biological Macromolecules,2022,203:406−416. doi: 10.1016/j.ijbiomac.2022.01.106
|
[29] |
TAN J, SASTRY A V, FREMMING K S, et al. Independent component analysis of E. coli's transcriptome reveals the cellular processes that respond to heterologous gene expression[J]. Metabolic Engineering,2020,61:360−368. doi: 10.1016/j.ymben.2020.07.002
|
[30] |
胡迪. 一种兼具蛋白解聚/降解活性的分子伴侣ClpK的基因克隆及其功能特性分析[D]. 昆明:云南师范大学, 2023. [HU D. Cloning and functional analysis of a molecular chaperone ClpK with protein depolymerization/degradation activity[D]. Kunming:Yunnan Normal University, 2023.]
HU D. Cloning and functional analysis of a molecular chaperone ClpK with protein depolymerization/degradation activity[D]. Kunming: Yunnan Normal University, 2023.
|
[31] |
ZAVILGELSKY G B, GNUCHIKH E Y, MELKINA O E. Thermostability and refolding of proteins in bacteria is determined by the activity of two different atp-dependent chaperone groups[J]. Mol Biol (Mosk),2020,54(2):300−307.
|
[32] |
钮成拓. 芽孢杆菌属来源1, 3-1, 4-β-葡聚糖酶的热稳定性研究[D]. 无锡:江南大学, 2017. [NIU C T. Study on thermal stability of 1, 3-1, 4-β-glucanase from Bacillus[D]. Wuxi:Jiangnan University, 2017.]
NIU C T. Study on thermal stability of 1, 3-1, 4-β-glucanase from Bacillus[D]. Wuxi: Jiangnan University, 2017.
|
[33] |
李同彪, 周晨妍, 朱新术, 等. N-端二硫键及芳香族氨基酸对木聚糖酶XynZF-2热稳定性的影响[J]. 食品与发酵工业,2016,42(1):26−30. [LI T B, ZHOU C Y, ZHU X S, et al. Effects of N-terminal disulfide bonds and aromatic amino acids on thermal stability of xylanase XynZF-2[J]. Food and Fermentation Industry,2016,42(1):26−30.]
LI T B, ZHOU C Y, ZHU X S, et al. Effects of N-terminal disulfide bonds and aromatic amino acids on thermal stability of xylanase XynZF-2[J]. Food and Fermentation Industry, 2016, 42(1): 26−30.
|
[34] |
马梅. 黑曲霉α-葡萄糖苷酶的克隆及其酶学性质研究[D]. 天津:天津科技大学, 2021. [MA M. Cloning and characterization of α-glucosidase from Aspergillus niger[D]. Tianjin:Tianjin University of Science and Technology, 2021.]
MA M. Cloning and characterization of α-glucosidase from Aspergillus niger[D]. Tianjin: Tianjin University of Science and Technology, 2021.
|
1. |
李娟,张源,张子桐,王淼,张东杰. 基于CiteSpace食品抗菌膜领域研究态势分析. 包装工程. 2025(01): 89-96 .
![]() |