ZHENG Yekun, DU Congcong, LI Honglin, et al. Investigation on the Recognition of Split Aflatoxin M1 Aptamer[J]. Science and Technology of Food Industry, 2024, 45(19): 296−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110024.
Citation: ZHENG Yekun, DU Congcong, LI Honglin, et al. Investigation on the Recognition of Split Aflatoxin M1 Aptamer[J]. Science and Technology of Food Industry, 2024, 45(19): 296−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110024.

Investigation on the Recognition of Split Aflatoxin M1 Aptamer

More Information
  • Received Date: November 05, 2023
  • Available Online: August 05, 2024
  • In this work, AFM1 was chosen as the target, and the aptamer was split to solve the low sensitivity due to unstable structure of the aptamer. The recognition ability and specificity of the split aptamer were evaluated using electrochemical methods, and the binding mechanism was explored through the circular dichroism. The results showed that the split aptamer employing a 1:1 split mode exhibited the best performance in the recognition and specificity for AFM1. The circular dichroism spectrum remained unchanged. The positive peak intensity of the circular dichroism spectrum increased significantly and the negative peak moved and the intensity increased, which demonstrated that the conformation of the aptamer changed. The sensitivity was enhanced by employing split aptamers. Superior recognition elements for the construction of sensors was obtained by the fragmentation of intact aptamers. The investigation provides a new idea to enhance the sensitivity of the detection mehtods based on the apatamer.
  • [1]
    CAMPAGNOLLO, FERNANDA BOVO, et al. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1:A review[J]. Food Control,2016,68:310−329. doi: 10.1016/j.foodcont.2016.04.007
    [2]
    LIU S G, ZHANG D, HE Y, et al. A split aptamer sensing platform for highly sensitive detection of theophylline based on dual-color fluorescence colocalization and single molecule photobleaching[J]. Biosensors & Bioelectronics,2020,166:112461.
    [3]
    AISSA S B, MARS A, CATANANTE G, et al. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk[J]. Talanta,2019,195:525−532. doi: 10.1016/j.talanta.2018.11.026
    [4]
    WEI X, MA P, IMRAN MAHMOOD K, et al. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J]. Journal of Agricultural and Food Chemistry,2023,71(19):7546−7556. doi: 10.1021/acs.jafc.3c01586
    [5]
    LIU R, ZHANG F, SANG Y, et al. Selection and characterization of DNA aptamers for constructing aptamer-AuNPs colorimetric method for detection of AFM1[J]. Foods,2022,11(12):1802. doi: 10.3390/foods11121802
    [6]
    PANDEY A K, RAJPUT Y S, SINGH D, et al. Prediction of shorter oligonucleotide sequences recognizing aflatoxin M1[J]. Biotechnology and Applied Biochemistry,2018,65(3):397−406. doi: 10.1002/bab.1586
    [7]
    AHMADI S F, HOJIATOLESLAMY M, KIANI H, et al. Monitoring of aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles[J]. Food Chemistry,2022,373:131321. doi: 10.1016/j.foodchem.2021.131321
    [8]
    PANG Y H, GUO L L, SHEN X F, et al. Rolling circle amplified DNAzyme followed with covalent organic frameworks:Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing[J]. Electrochimica Acta,2020,341:136055. doi: 10.1016/j.electacta.2020.136055
    [9]
    HE L, SHEN Z, WANG J, et al. Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes[J]. Microchimica Acta,2020,187:1−11. doi: 10.1007/s00604-019-3921-8
    [10]
    JALALIAN S H, RAMEZANI M, DANESH N M, et al. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J]. Biosensors and Bioelectronics,2018,117:487−492. doi: 10.1016/j.bios.2018.06.055
    [11]
    SAMEIYAN E, KHOSHBIN Z, LAVAEE P, et al. A bivalent binding aptamer-cDNA on MoS2 nanosheets based fluorescent aptasensor for detection of aflatoxin M1[J]. Talanta,2021,235:122779. doi: 10.1016/j.talanta.2021.122779
    [12]
    FAN Y Y, WEN J, LI J, et al. Structure-switching aptasensors for sensitive detection of ochratoxin A[J]. Luminescence,2023,38(9):1678−1685. doi: 10.1002/bio.4556
    [13]
    YU H, ZHU J, SHEN G, et al. Improving aptamer performance:Key factors and strategies[J]. Microchimica Acta,2023,190(7):255. doi: 10.1007/s00604-023-05836-6
    [14]
    GE G, WANG T, LLU Z, et al. A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1[J]. Talanta,2023,265:124908. doi: 10.1016/j.talanta.2023.124908
    [15]
    YADAV K, MOOVENDARAN K, DHENADHAYALAN N, et al. From food toxins to biomarkers:Multiplexed detection of aflatoxin B1 and aflatoxin M1 in milk and human serum using PEGylated ternary transition metal sulfides[J]. Sensors and Actuators Reports,2023,5:100156. doi: 10.1016/j.snr.2023.100156
    [16]
    YANG D, HUI Y, LIU Y, et al. Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk[J]. Food Chemistry, 2023:137362.
    [17]
    DONG Z, XU X, NI J, et al. Cruciate DNA probes for amplified multiplexed imaging of microRNAs in living cells[J]. Journal of Materials Chemistry B,2023,11(1):204−210. doi: 10.1039/D2TB02027K
    [18]
    BRINZA N D. Beyond the cycle:Investigating the sequencing, binding affinity, and utility of aptamers selected with CE-SELEX[D]. Minnesota:University of Minnesota, 2023.
    [19]
    YANO-OZAWA Y, LOBSIGER N, MUTO Y, et al. Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation[J]. RSC advances,2021,11(20):11984−11991. doi: 10.1039/D0RA05149G
    [20]
    SONG J, ZHENG Y, HUANG M, et al. A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning[J]. Analytical Chemistry,2019,92(4):3307−3314.
    [21]
    HU J, CHEN X, XU J, et al. A signal-enhanced regenerative electrochemical aptasensor for amyloid-β oligomers based on triple-helix aptamer probe[J]. Journal of the Electrochemical Society,2023,170(1):017507. doi: 10.1149/1945-7111/acb5c5
    [22]
    YE H, YANG Z, KHAN I M, et al. Split aptamer acquisition mechanisms and current application in antibiotics detection:A short review[J]. Critical Reviews in Food Science and Nutrition,2022:1−12.
    [23]
    ALKHAMIS O, CANOURA J, LY P T, et al. Using exonucleases for aptamer characterization, engineering, and sensing[J]. Accounts of Chemical Research,2023:e81-9971.
    [24]
    AHO A, VIRTA P. Assembly of split aptamers by dynamic pH-responsive covalent ligation[J]. Chemical Communications,2023,59(38):5689−5692. doi: 10.1039/D3CC01158E
    [25]
    ZHANG X, DU Y, LIU X, et al. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring[J]. Food Chemistry,2023,420:136083. doi: 10.1016/j.foodchem.2023.136083
    [26]
    DEBIAIS M, LELIEVRE A, SMIETANA M, et al. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors[J]. Nucleic Acids Research,2020,48(7):3400−3422. doi: 10.1093/nar/gkaa132
    [27]
    PARK H, KWON N, PARK G, et al. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum[J]. Bioelectrochemistry,2023,154:108540. doi: 10.1016/j.bioelechem.2023.108540
    [28]
    MA Y, GENG F, WANG Y, et al. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition[J]. Biosensors and Bioelectronics,2019,134:36−41. doi: 10.1016/j.bios.2019.03.047
    [29]
    YU H, CANOURA J, GUNTUPALLI B, et al. A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva[J]. Chemical Science,2017,8(1):131−141. doi: 10.1039/C6SC01833E
    [30]
    AFONIN K A, VIARD M, MARTINS A N, et al. Activation of different split functionalities on re-association of RNA–DNA hybrids[J]. Nature Nanotechnology,2013,8(4):296−304. doi: 10.1038/nnano.2013.44
    [31]
    QI X, YAN X, ZHAO Y, et al. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers:A review[J]. TrAC Trends in Analytical Chemistry,2020,133:116069. doi: 10.1016/j.trac.2020.116069
    [32]
    CHEN A, YAN M, YANG S. Split aptamers and their applications in sandwich aptasensors[J]. TrAC Trends in Analytical Chemistry,2016,80:581−593. doi: 10.1016/j.trac.2016.04.006
    [33]
    FENG L, LYU Z, OFFENHAUSSER A, et al. Multi-level logic gate operation based on amplified aptasensor performance[J]. Angewandte Chemie International Edition,2015,54(26):7693−7697. doi: 10.1002/anie.201502315
    [34]
    WALTER H K, BAUER J, STEINMEYER J, et al. “DNA origami traffic lights” with a split aptamer sensor for a bicolor fluorescence readout[J]. Nano Letters,2017,17(4):2467−2472. doi: 10.1021/acs.nanolett.7b00159
    [35]
    WEN Y, PEI H, WAN Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors[J]. Analytical Chemistry,2011,83(19):7418−7423. doi: 10.1021/ac201491p
    [36]
    BING T, MEI H, ZHANG N, et al. Exact tailoring of an ATP controlled streptavidin binding aptamer[J]. RSC Advances,2014,4(29):15111−15114. doi: 10.1039/c4ra00714j
    [37]
    ZHANG H, LIU Y, ZHANG K, et al. Single molecule fluorescent colocalization of split aptamers for ultrasensitive detection of biomolecules[J]. Analytical Chemistry,2018,90(15):9315−9321. doi: 10.1021/acs.analchem.8b01916
    [38]
    ZHENG X, PENG R, JIANG X, et al. Fluorescence resonance energy transfer-based DNA nanoprism with a split aptamer for adenosine triphosphate sensing in living cells[J]. Analytical Chemistry,2017,89(20):10941−10947. doi: 10.1021/acs.analchem.7b02763
    [39]
    GUO T, WU C, OFFENHAUSSER A, et al. A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations[J]. Physica Status Solidi (a),2020,217(13):1900924. doi: 10.1002/pssa.201900924
    [40]
    DUAN W, WANG X, WANG H, et al. Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments[J]. Talanta,2018,180:76−80. doi: 10.1016/j.talanta.2017.12.033
    [41]
    曾程. 物理打磨对玻碳电极性能影响的研究[J]. 广州化工,2020(9):73−74. [ZENG C. Study on the effect of physical grinding on the performance of glassy carbon electrode[J]. Guangzhou Chemical Industry,2020(9):73−74.] doi: 10.3969/j.issn.1001-9677.2020.09.026

    ZENG C. Study on the effect of physical grinding on the performance of glassy carbon electrode[J]. Guangzhou Chemical Industry, 2020(9): 73−74. doi: 10.3969/j.issn.1001-9677.2020.09.026
    [42]
    STEEL A B, HERNE T M, TARLOV M J. Electrochemical quantitation of DNA immobilized on gold[J]. Analytical Chemistry,1998,70(22):4670−4677. doi: 10.1021/ac980037q
    [43]
    ZHANG J, SONG S, ZHANG L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes[J]. Journal of the American Chemical Society,2006,128(26):8575−8580. doi: 10.1021/ja061521a
    [44]
    YING G, WANG M, YIY, et al. Construction and application of an electrochemical biosensor based on an endotoxin aptamer[J]. Biotechnology and Applied Biochemistry,2018,65(3):323−327.
    [45]
    HU Z, ZHU R, FIGUEROA-MIRANDA G, et al. Truncated electrochemical aptasensor with enhanced antifouling capability for highly sensitive serotonin detection[J]. Biosensors,2023,13(9):881.
    [46]
    ZIA-UR-REHMAN, SHAH A, MUHAMMAD N, et al. Synthesis, characterization and DNA binding studies of penta- and hexa-coordinated diorganotin(IV) 4-(4-nitrophenyl)piperazine-1-carbodithioates[J]. J Organomet Chem,2009,694(13):1998−2004.
    [47]
    FENG Q, LI N Q, JIANG Y Y. Electrochemical studies of porphyrin interacting with DNA and determination of DNA[J]. Anal Chim Acta,1997,344(1):97−104.
    [48]
    YUE F, LI H, KONG Q, et al. Selection of broad-spectrum aptamer and its application in fabrication of aptasensor for detection of aminoglycoside antibiotics residues in milk[J]. Sensors and Actuators B:Chemical,2022,351:130959.
    [49]
    DONG N, LI Y, MENG S, et al. Tetrahedral DNA nanostructure-based ratiometric electrochemical aptasensor for fumonisin B1:A unity of opposites in binding site and steric hindrance of large-sized DNA for signal amplification[J]. Sensors and Actuators B:Chemical,2023,394:134341.
    [50]
    SUBASTRI A, RAMAMURTHY C H, SUYAVARAN A, et al. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA[J]. International Journal of Biological Macromolecules,2015,78:122−129. doi: 10.1016/j.ijbiomac.2015.03.036
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (80) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return