Citation: | ZHENG Yekun, DU Congcong, LI Honglin, et al. Investigation on the Recognition of Split Aflatoxin M1 Aptamer[J]. Science and Technology of Food Industry, 2024, 45(19): 296−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110024. |
[1] |
CAMPAGNOLLO, FERNANDA BOVO, et al. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1:A review[J]. Food Control,2016,68:310−329. doi: 10.1016/j.foodcont.2016.04.007
|
[2] |
LIU S G, ZHANG D, HE Y, et al. A split aptamer sensing platform for highly sensitive detection of theophylline based on dual-color fluorescence colocalization and single molecule photobleaching[J]. Biosensors & Bioelectronics,2020,166:112461.
|
[3] |
AISSA S B, MARS A, CATANANTE G, et al. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk[J]. Talanta,2019,195:525−532. doi: 10.1016/j.talanta.2018.11.026
|
[4] |
WEI X, MA P, IMRAN MAHMOOD K, et al. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J]. Journal of Agricultural and Food Chemistry,2023,71(19):7546−7556. doi: 10.1021/acs.jafc.3c01586
|
[5] |
LIU R, ZHANG F, SANG Y, et al. Selection and characterization of DNA aptamers for constructing aptamer-AuNPs colorimetric method for detection of AFM1[J]. Foods,2022,11(12):1802. doi: 10.3390/foods11121802
|
[6] |
PANDEY A K, RAJPUT Y S, SINGH D, et al. Prediction of shorter oligonucleotide sequences recognizing aflatoxin M1[J]. Biotechnology and Applied Biochemistry,2018,65(3):397−406. doi: 10.1002/bab.1586
|
[7] |
AHMADI S F, HOJIATOLESLAMY M, KIANI H, et al. Monitoring of aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles[J]. Food Chemistry,2022,373:131321. doi: 10.1016/j.foodchem.2021.131321
|
[8] |
PANG Y H, GUO L L, SHEN X F, et al. Rolling circle amplified DNAzyme followed with covalent organic frameworks:Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing[J]. Electrochimica Acta,2020,341:136055. doi: 10.1016/j.electacta.2020.136055
|
[9] |
HE L, SHEN Z, WANG J, et al. Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes[J]. Microchimica Acta,2020,187:1−11. doi: 10.1007/s00604-019-3921-8
|
[10] |
JALALIAN S H, RAMEZANI M, DANESH N M, et al. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J]. Biosensors and Bioelectronics,2018,117:487−492. doi: 10.1016/j.bios.2018.06.055
|
[11] |
SAMEIYAN E, KHOSHBIN Z, LAVAEE P, et al. A bivalent binding aptamer-cDNA on MoS2 nanosheets based fluorescent aptasensor for detection of aflatoxin M1[J]. Talanta,2021,235:122779. doi: 10.1016/j.talanta.2021.122779
|
[12] |
FAN Y Y, WEN J, LI J, et al. Structure-switching aptasensors for sensitive detection of ochratoxin A[J]. Luminescence,2023,38(9):1678−1685. doi: 10.1002/bio.4556
|
[13] |
YU H, ZHU J, SHEN G, et al. Improving aptamer performance:Key factors and strategies[J]. Microchimica Acta,2023,190(7):255. doi: 10.1007/s00604-023-05836-6
|
[14] |
GE G, WANG T, LLU Z, et al. A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1[J]. Talanta,2023,265:124908. doi: 10.1016/j.talanta.2023.124908
|
[15] |
YADAV K, MOOVENDARAN K, DHENADHAYALAN N, et al. From food toxins to biomarkers:Multiplexed detection of aflatoxin B1 and aflatoxin M1 in milk and human serum using PEGylated ternary transition metal sulfides[J]. Sensors and Actuators Reports,2023,5:100156. doi: 10.1016/j.snr.2023.100156
|
[16] |
YANG D, HUI Y, LIU Y, et al. Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk[J]. Food Chemistry, 2023:137362.
|
[17] |
DONG Z, XU X, NI J, et al. Cruciate DNA probes for amplified multiplexed imaging of microRNAs in living cells[J]. Journal of Materials Chemistry B,2023,11(1):204−210. doi: 10.1039/D2TB02027K
|
[18] |
BRINZA N D. Beyond the cycle:Investigating the sequencing, binding affinity, and utility of aptamers selected with CE-SELEX[D]. Minnesota:University of Minnesota, 2023.
|
[19] |
YANO-OZAWA Y, LOBSIGER N, MUTO Y, et al. Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation[J]. RSC advances,2021,11(20):11984−11991. doi: 10.1039/D0RA05149G
|
[20] |
SONG J, ZHENG Y, HUANG M, et al. A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning[J]. Analytical Chemistry,2019,92(4):3307−3314.
|
[21] |
HU J, CHEN X, XU J, et al. A signal-enhanced regenerative electrochemical aptasensor for amyloid-β oligomers based on triple-helix aptamer probe[J]. Journal of the Electrochemical Society,2023,170(1):017507. doi: 10.1149/1945-7111/acb5c5
|
[22] |
YE H, YANG Z, KHAN I M, et al. Split aptamer acquisition mechanisms and current application in antibiotics detection:A short review[J]. Critical Reviews in Food Science and Nutrition,2022:1−12.
|
[23] |
ALKHAMIS O, CANOURA J, LY P T, et al. Using exonucleases for aptamer characterization, engineering, and sensing[J]. Accounts of Chemical Research,2023:e81-9971.
|
[24] |
AHO A, VIRTA P. Assembly of split aptamers by dynamic pH-responsive covalent ligation[J]. Chemical Communications,2023,59(38):5689−5692. doi: 10.1039/D3CC01158E
|
[25] |
ZHANG X, DU Y, LIU X, et al. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring[J]. Food Chemistry,2023,420:136083. doi: 10.1016/j.foodchem.2023.136083
|
[26] |
DEBIAIS M, LELIEVRE A, SMIETANA M, et al. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors[J]. Nucleic Acids Research,2020,48(7):3400−3422. doi: 10.1093/nar/gkaa132
|
[27] |
PARK H, KWON N, PARK G, et al. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum[J]. Bioelectrochemistry,2023,154:108540. doi: 10.1016/j.bioelechem.2023.108540
|
[28] |
MA Y, GENG F, WANG Y, et al. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition[J]. Biosensors and Bioelectronics,2019,134:36−41. doi: 10.1016/j.bios.2019.03.047
|
[29] |
YU H, CANOURA J, GUNTUPALLI B, et al. A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva[J]. Chemical Science,2017,8(1):131−141. doi: 10.1039/C6SC01833E
|
[30] |
AFONIN K A, VIARD M, MARTINS A N, et al. Activation of different split functionalities on re-association of RNA–DNA hybrids[J]. Nature Nanotechnology,2013,8(4):296−304. doi: 10.1038/nnano.2013.44
|
[31] |
QI X, YAN X, ZHAO Y, et al. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers:A review[J]. TrAC Trends in Analytical Chemistry,2020,133:116069. doi: 10.1016/j.trac.2020.116069
|
[32] |
CHEN A, YAN M, YANG S. Split aptamers and their applications in sandwich aptasensors[J]. TrAC Trends in Analytical Chemistry,2016,80:581−593. doi: 10.1016/j.trac.2016.04.006
|
[33] |
FENG L, LYU Z, OFFENHAUSSER A, et al. Multi-level logic gate operation based on amplified aptasensor performance[J]. Angewandte Chemie International Edition,2015,54(26):7693−7697. doi: 10.1002/anie.201502315
|
[34] |
WALTER H K, BAUER J, STEINMEYER J, et al. “DNA origami traffic lights” with a split aptamer sensor for a bicolor fluorescence readout[J]. Nano Letters,2017,17(4):2467−2472. doi: 10.1021/acs.nanolett.7b00159
|
[35] |
WEN Y, PEI H, WAN Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors[J]. Analytical Chemistry,2011,83(19):7418−7423. doi: 10.1021/ac201491p
|
[36] |
BING T, MEI H, ZHANG N, et al. Exact tailoring of an ATP controlled streptavidin binding aptamer[J]. RSC Advances,2014,4(29):15111−15114. doi: 10.1039/c4ra00714j
|
[37] |
ZHANG H, LIU Y, ZHANG K, et al. Single molecule fluorescent colocalization of split aptamers for ultrasensitive detection of biomolecules[J]. Analytical Chemistry,2018,90(15):9315−9321. doi: 10.1021/acs.analchem.8b01916
|
[38] |
ZHENG X, PENG R, JIANG X, et al. Fluorescence resonance energy transfer-based DNA nanoprism with a split aptamer for adenosine triphosphate sensing in living cells[J]. Analytical Chemistry,2017,89(20):10941−10947. doi: 10.1021/acs.analchem.7b02763
|
[39] |
GUO T, WU C, OFFENHAUSSER A, et al. A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations[J]. Physica Status Solidi (a),2020,217(13):1900924. doi: 10.1002/pssa.201900924
|
[40] |
DUAN W, WANG X, WANG H, et al. Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments[J]. Talanta,2018,180:76−80. doi: 10.1016/j.talanta.2017.12.033
|
[41] |
曾程. 物理打磨对玻碳电极性能影响的研究[J]. 广州化工,2020(9):73−74. [ZENG C. Study on the effect of physical grinding on the performance of glassy carbon electrode[J]. Guangzhou Chemical Industry,2020(9):73−74.] doi: 10.3969/j.issn.1001-9677.2020.09.026
ZENG C. Study on the effect of physical grinding on the performance of glassy carbon electrode[J]. Guangzhou Chemical Industry, 2020(9): 73−74. doi: 10.3969/j.issn.1001-9677.2020.09.026
|
[42] |
STEEL A B, HERNE T M, TARLOV M J. Electrochemical quantitation of DNA immobilized on gold[J]. Analytical Chemistry,1998,70(22):4670−4677. doi: 10.1021/ac980037q
|
[43] |
ZHANG J, SONG S, ZHANG L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes[J]. Journal of the American Chemical Society,2006,128(26):8575−8580. doi: 10.1021/ja061521a
|
[44] |
YING G, WANG M, YIY, et al. Construction and application of an electrochemical biosensor based on an endotoxin aptamer[J]. Biotechnology and Applied Biochemistry,2018,65(3):323−327.
|
[45] |
HU Z, ZHU R, FIGUEROA-MIRANDA G, et al. Truncated electrochemical aptasensor with enhanced antifouling capability for highly sensitive serotonin detection[J]. Biosensors,2023,13(9):881.
|
[46] |
ZIA-UR-REHMAN, SHAH A, MUHAMMAD N, et al. Synthesis, characterization and DNA binding studies of penta- and hexa-coordinated diorganotin(IV) 4-(4-nitrophenyl)piperazine-1-carbodithioates[J]. J Organomet Chem,2009,694(13):1998−2004.
|
[47] |
FENG Q, LI N Q, JIANG Y Y. Electrochemical studies of porphyrin interacting with DNA and determination of DNA[J]. Anal Chim Acta,1997,344(1):97−104.
|
[48] |
YUE F, LI H, KONG Q, et al. Selection of broad-spectrum aptamer and its application in fabrication of aptasensor for detection of aminoglycoside antibiotics residues in milk[J]. Sensors and Actuators B:Chemical,2022,351:130959.
|
[49] |
DONG N, LI Y, MENG S, et al. Tetrahedral DNA nanostructure-based ratiometric electrochemical aptasensor for fumonisin B1:A unity of opposites in binding site and steric hindrance of large-sized DNA for signal amplification[J]. Sensors and Actuators B:Chemical,2023,394:134341.
|
[50] |
SUBASTRI A, RAMAMURTHY C H, SUYAVARAN A, et al. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA[J]. International Journal of Biological Macromolecules,2015,78:122−129. doi: 10.1016/j.ijbiomac.2015.03.036
|