JIANG Mengyao, YAN Yu, GUAN Jiao, et al. Inhibition of Human Serum Albumin Aggregation by Polyphenols with Similar Structures in Macromolecular Crowding Environment[J]. Science and Technology of Food Industry, 2024, 45(15): 34−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100246.
Citation: JIANG Mengyao, YAN Yu, GUAN Jiao, et al. Inhibition of Human Serum Albumin Aggregation by Polyphenols with Similar Structures in Macromolecular Crowding Environment[J]. Science and Technology of Food Industry, 2024, 45(15): 34−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100246.

Inhibition of Human Serum Albumin Aggregation by Polyphenols with Similar Structures in Macromolecular Crowding Environment

More Information
  • Received Date: October 31, 2023
  • Available Online: June 04, 2024
  • To reveal the anti-protein aggregation ability of brazilin (Bra), hematoxylin (Hto) and hematein (Hte) under physiological crowding environment, the macromolecular crowding reagent (polyethylene glycol) was used to construct a simulated crowding environment. Then the inhibition mechanisms of these three structurally similar polyphenol compounds on the aggregation behavior of human serum albumin (HSA) were investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering (DLS) and atomic force (AFM) microscope assay. The results showed that they could maintain the stability of the HSA structure, decrease the number of amyloid fibrils and shorten the length of aggregates in crowding environment. Therefore, they inhibited the aggregation process of HSA, and the sequence of the inhibition ability was in the order of Hto>Bra>Hte. Moreover, the presence of crowding reagents could lead to a decrease in the inhibitory activity of these three inhibitors compared to in vitro dilute solution. In conclusion, this study suggested that Hto could be used as a potential protein aggregation inhibitor and a functional food ingredient for the treatment and intervention of amyloid-related diseases.
  • [1]
    PINNEY J H, HAWKINS P N. Amyloidosis[J]. Annals of Clinical Biochemistry,2012,49:229−241. doi: 10.1258/acb.2011.011225
    [2]
    ANAND B G, PRAJAPATI K P, PUROHIT S, et al. Evidence of anti-amyloid characteristics of plumbagin via inhibition of protein aggregation and disassembly of protein fibrils[J]. Biomacromolecules,2021,22(9):3692−3703. doi: 10.1021/acs.biomac.1c00344
    [3]
    CIUDAD S, PUIG E, BOTZANOWSKI T, et al. Aβ (1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage[J]. Nature Communications,2020,11(1):14. doi: 10.1038/s41467-019-13635-y
    [4]
    HUGHES C, CHOI M L, YI J H, et al. Aβ amyloid aggregates induce sensitized TLR4 signaling causing long-term potentiation deficit and rat neuronal cell death[J]. Communications Biology,2020,3(1):7. doi: 10.1038/s42003-019-0737-3
    [5]
    HARD T, LENDEL C. Inhibition of amyloid formation[J]. Journal of Molecular Biology,2012,421(4-5):441−465. doi: 10.1016/j.jmb.2011.12.062
    [6]
    SUNNY L P, SRIKANTH P, SUNITHA A K, et al. Tryptophan-cardanol fluorescent nanoparticles inhibit α-synuclein aggregation and disrupt amyloid fibrils[J]. Journal of Peptide Science,2022,28(4):3374. doi: 10.1002/psc.3374
    [7]
    GANCAR M, KURIN E, BEDNARIKOVA Z, et al. Green tea leaf constituents inhibit the formation of lysozyme amyloid aggregates:An effect of mutual interactions[J]. International Journal of Biological Macromolecules,2023,242:9.
    [8]
    LERI M, CHAUDHARY H, IASHCHISHYN I, et al. Natural compound from olive oil inhibits S100A9 amyloid formation and cytotoxicity:Implications for preventing Alzheimer's disease[J]. ACS Chemical Neuroscience,2021,12(11):1905−1918. doi: 10.1021/acschemneuro.0c00828
    [9]
    SHARIATIZI S, MERATAN A, GHASEMI A, et al. Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols[J]. International Journal of Biological Macromolecules,2015,80:95−106. doi: 10.1016/j.ijbiomac.2015.06.030
    [10]
    JUAREZ J, TABOADA P, MOSQUERA V. Existence of different structural intermediates on the fibrillation pathway of human serum albumin[J]. Biophysical Journal,2009,96(6):2353−2370. doi: 10.1016/j.bpj.2008.12.3901
    [11]
    TABOADA P, BARBOSA S, CASTRO E, et al. Amyloid fibril formation and other aggregate species formed by human serum albumin association[J]. Journal of Physical Chemistry B,2006,110(42):20733−20736. doi: 10.1021/jp064861r
    [12]
    COLLINS S R, DOUGLASS A, VALE R D, et al. Mechanism of prion propagation:Amyloid growth occurs by monomer addition[J]. PLoS Biology,2004,2(10):1582−1590.
    [13]
    SHARMA N, SIVALINGAM V, MAURYA S, et al. New insights into in vitro amyloidogenic properties of human serum albumin suggest considerations for therapeutic precautions[J]. Febs Letters,2015,589(24):4033−4038.
    [14]
    CHAUDHURI P, PRAJAPATI K P, ANAND B G, et al. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism[J]. Ageing Research Reviews,2019,56:18.
    [15]
    GAUDREAULT R, MOUSSEAU N. Mitigating Alzheimer's disease with natural polyphenols:A review[J]. Current Alzheimer Research,2019,16(6):529−543. doi: 10.2174/1567205016666190315093520
    [16]
    GHOSH P, DE P. Modulation of amyloid protein fibrillation by synthetic polymers:Recent advances in the context of neurodegenerative diseases[J]. ACS Applied Biomaterials,2020,3(10):6598−6625. doi: 10.1021/acsabm.0c01021
    [17]
    ALI M S, AL-LOHEDAN H A, TARIQ M, et al. Modulation of amyloid fibril formation of plasma protein by saffron constituent "safranal":Spectroscopic and imaging analyses[J]. International Journal of Biological Macromolecules,2019,127:529−535. doi: 10.1016/j.ijbiomac.2019.01.052
    [18]
    BHATTACHARYA S, PANDEY N K, ROY A, et al. Effect of (-)-epigallocatechin gallate on the fibrillation of human serum albumin[J]. International Journal of Biological Macromolecules,2014,70:312−319. doi: 10.1016/j.ijbiomac.2014.07.003
    [19]
    COOKSEY C J. Hematoxylin in the 21st century[J]. Biotechnic & Histochemistry,2021,96(3):242−249.
    [20]
    YIN H H, HAN Y L, YAN X, et al. Hematoxylin modulates tau-RD protein fibrillization and ameliorates Alzheimer's disease-like symptoms in a yeast model[J]. International Journal of Biological Macromolecules,2023,250:126140. doi: 10.1016/j.ijbiomac.2023.126140
    [21]
    TU Y L, MA S, LIU F F, et al. Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity[J]. Journal of Physical Chemistry B,2016,120(44):11360−11368. doi: 10.1021/acs.jpcb.6b06878
    [22]
    RIVAS G, FERRONE F, HERZFELD J. Life in a crowded world[J]. EMBO Reports,2004,5(1):23−27. doi: 10.1038/sj.embor.7400056
    [23]
    ELLIS R J. Macromolecular crowding:Obvious but underappreciated[J]. Trends in Biochemical Sciences,2001,26(10):597−604. doi: 10.1016/S0968-0004(01)01938-7
    [24]
    GORENSEK-BENITEZ A H, KIRK B, MYERS J K. Protein fibrillation under crowded conditions[J]. Biomolecules,2022,12(7):21.
    [25]
    ZHANG C Y, GUAN J, ZHANG J X, et al. Protective effects of three structurally similar polyphenolic compounds against oxidative damage and their binding properties to human serum albumin[J]. Food Chemistry,2021,349:10.
    [26]
    MAJID N, SIDDIQI M K, ALAM A, et al. Cholic acid inhibits amyloid fibrillation:Interplay of protonation and deprotonation[J]. International Journal of Biological Macromolecules,2022,221:900−912. doi: 10.1016/j.ijbiomac.2022.09.019
    [27]
    ZIELENKIEWICZ W, SWIERZEWSKI R, ATTANASIO F, et al. Thermochemical, volumetric and spectroscopic properties of lysozyme-poly (ethylene) glycol system[J]. Journal of Thermal Analysis and Calorimetry,2006,83(3):587−595. doi: 10.1007/s10973-005-7417-x
    [28]
    DAI J H, CHEN C, YIN M, et al. Interactions between gold nanoparticles with different morphologies and human serum albumin[J]. Frontiers in Chemistry,2023,11:15.
    [29]
    JIA J, WANG Y X, LIU Y Y, et al. Exploration of interaction of canthaxanthin with human serum albumin by spectroscopic and molecular simulation methods[J]. Luminescence,2018,33(2):425−432. doi: 10.1002/bio.3430
    [30]
    OTA C, TAKANO K. Behavior of bovine serum albumin molecules in molecular crowding environments investigated by raman spectroscopy[J]. Langmuir,2016,32(29):7372−7382. doi: 10.1021/acs.langmuir.6b01228
  • Related Articles

    [1]FAN Rui, WANG Wenwen, WEI Linna, WANG Tengbin, WEI Sijia, LIU Jinrong, LI Fang. Metagenomic Analysis of Microbial Community Structure and Functional Profiling during Different Fermentation Stages of Xinjiang Sea Buckthorn Jiaosu[J]. Science and Technology of Food Industry, 2025, 46(8): 173-181. DOI: 10.13386/j.issn1002-0306.2024050247
    [2]SONG Lulu, LI Yunfei, LIU Xinyuan, XU Ruiqi, ZHENG Guofang, QIN Nan. Extraction, Purification, Functional Properties and Antioxidant Activity Analysis of Donkey Serum Albumin from Asini Corii Colla[J]. Science and Technology of Food Industry, 2024, 45(23): 179-188. DOI: 10.13386/j.issn1002-0306.2023120165
    [3]NING Bo, WANG Ling, LU Hongzhao, ZHANG Tao. Research Status and Hotspot Analysis of Microorganism on Meat Products Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(21): 71-82. DOI: 10.13386/j.issn1002-0306.2022120244
    [4]CHEN Yu, CAO Shinuo, SHEN Yijie, LI Chang, DU Jian, WANG Fengjun. Preparation of Glycosylated Walnut Protein Isolate-Inulin Conjugate and Analysis of Its Properties[J]. Science and Technology of Food Industry, 2023, 44(18): 268-275. DOI: 10.13386/j.issn1002-0306.2022110144
    [5]SONG Weiyu, YIN Hao, ZHONG Yu, WANG Danfeng, DENG Yun. Analysis of Protein Structure and Functional Properties of Hemp Seeds of Different Varieties[J]. Science and Technology of Food Industry, 2023, 44(10): 47-53. DOI: 10.13386/j.issn1002-0306.2022070122
    [6]ZHAO Yifei, ZHANG Rentang, YAN Jingyan, LIU Jing. Research Progress on Separation, Purification, Structure Analysis and Function of Melanoidins from Plants[J]. Science and Technology of Food Industry, 2023, 44(4): 454-461. DOI: 10.13386/j.issn1002-0306.2022040090
    [7]YU Jian, SUN Jiadi, SUN Xiulan, HUANG Yaoguang, HUANG Heyang, LIU Zhongsi, ZHANG Yinzhi, JI Jian. Research Progress of Microorganism Identification Methods and Functions in Fermented Food[J]. Science and Technology of Food Industry, 2022, 43(14): 409-416. DOI: 10.13386/j.issn1002-0306.2021050244
    [8]LIU Shuang, WANG Yingying, GUO Ailiang, ZHOU Chenxia, LI Huijing. Analysis on Quality Properties of Different Varieties of Potato Flour[J]. Science and Technology of Food Industry, 2022, 43(7): 59-66. DOI: 10.13386/j.issn1002-0306.2021070096
    [9]GUO Shuai. Analysis on functional properties of coconut glutelin-1[J]. Science and Technology of Food Industry, 2017, (16): 75-78. DOI: 10.13386/j.issn1002-0306.2017.16.015
    [10]LIU Cheng-mei, WANG Fang, ZHONG Jun-zhen, XIONG Yang, DUN Ru-yan, ZHONG Ye-jun. Functional properties and amino acid composition of cashew nut protein[J]. Science and Technology of Food Industry, 2016, (02): 88-92. DOI: 10.13386/j.issn1002-0306.2016.02.009
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 韩蓉,马燕,敖羽,张婷,孟新涛,许铭强,潘俨. 基于多元分析法综合评价新疆不同品种大果沙棘汁品质特性及加工适宜性. 食品工业科技. 2025(03): 322-332 . 本站查看
    2. 屈凝伊,赵轶轩,梁丽,王丽娜. 沙棘果不同极性部位体外及体内抗氧化作用研究. 辽宁中医药大学学报. 2024(03): 13-17 .
    3. 李纪彤,褚金国,丁丁. 沙棘多糖抗衰老的研究进展. 实用老年医学. 2024(03): 228-231 .
    4. 于淼. 黑龙江省沙棘资源开发及其药理作用探究. 现代园艺. 2024(14): 122-124 .
    5. 冯丹琦,王向红,吴迪,连运河,程鑫颖,刘卫华,米思. 基于RAW264.7细胞模型的槲皮万寿菊素与叶黄素协同改善急性肺损伤的作用机制. 食品科学. 2024(17): 96-104 .
    6. 吴越,关磊,黎秋杞,杨婧娟,张希,冯凤琴,邵云东,程勇. 药食同源中药材抗衰老作用研究. 中国中医基础医学杂志. 2023(06): 1049-1055 .
    7. 任李成城,刘振华,董琦,王洪伦,胡娜. 沙棘黄酮类成分及其药理作用的研究进展. 中国药物化学杂志. 2023(08): 598-617 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (95) PDF downloads (14) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return