Citation: | WANG Yong, LI Yue, CUI Lixian, et al. Advances in Understanding the Role Mechanism of Dietary Fiber in Mitigating Colitis[J]. Science and Technology of Food Industry, 2024, 45(15): 452−460. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100148. |
[1] |
SAMANTHA K G, MEGAN R, BALAZS B, et al. Dietary fibre in gastrointestinal health and disease[J]. Nature Reviews. Gastroenterology & Hepatology,2021,18(2):101−116.
|
[2] |
叶雪珂, 单国顺, 付郁, 等. 溃疡性结肠炎发病机制及中西医治疗的研究进展[J]. 中华中医药学刊,2022,40(9):158−162. [YE X K, SHAN G S, FU Y, et al. Research progress on the pathogenesis and treatment of ulcerative colitis with traditional Chinese and western medicine[J]. Chinese Journal of Traditional Chinese Medicine,2022,40(9):158−162.]
YE X K, SHAN G S, FU Y, et al. Research progress on the pathogenesis and treatment of ulcerative colitis with traditional Chinese and western medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2022, 40(9): 158−162.
|
[3] |
SURIANO F, NYSTROM E E. L, SERGI D, et al. Diet, microbiota, and the mucus layer:The guardians of our health[J]. Frontiers in Immunology,2022,13:953196. doi: 10.3389/fimmu.2022.953196
|
[4] |
LEE G J, HAN S D, JO V S, et al. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease:Potential impact on clinical outcomes[J]. PLoS One,2019,14(4):216165.
|
[5] |
贺雅静, 谢勇. Toll样受体信号通路与TAM受体在炎症性肠病中的作用[J]. 中国免疫学杂志,2021,37(10):1271−1273. [HE Y J, XIE Y. The role of toll like receptor signaling pathway and TAM receptor in inflammatory bowel disease[J]. Chinese Journal of Immunology,2021,37(10):1271−1273.] doi: 10.3969/j.issn.1000-484X.2021.10.024
HE Y J, XIE Y. The role of toll like receptor signaling pathway and TAM receptor in inflammatory bowel disease[J]. Chinese Journal of Immunology, 2021, 37(10): 1271−1273. doi: 10.3969/j.issn.1000-484X.2021.10.024
|
[6] |
ZHOU Y F, CUI C P, MA X Y, et al. Nuclear factor κB (NF-κB)-mediated inflammation in multiple sclerosis[J]. Frontiers in Immunology,2020,11:391−391. doi: 10.3389/fimmu.2020.00391
|
[7] |
SOCHA M W, MALINOWSKI B, PUK O, et al. The role of NF-κB in uterine spiral arteries remodeling, insight into the cornerstone of preeclampsia[J]. International Journal of Molecular Sciences,2021,22(2):704. doi: 10.3390/ijms22020704
|
[8] |
NICOLAS R, CLIFF V W, HERMAN W, et al. Pseudorabies virus infection of epithelial cells leads to persistent but aberrant activation of the NF-κB pathway, inhibiting hallmark NF-κB-induced pro-inflammatory gene expression[J]. Journal of Virology, 2020, 94(10): e00196.
|
[9] |
郭玲, 罗雪梅. 硫唑嘌呤治疗炎症性肠病的疗效及骨髓抑制相关不良反应分析研究[J]. 中南药学,2021,19(1):137−142. [GUO L, LUO X M. Study on the efficacy of azathioprine in the treatment of inflammatory bowel disease and the analysis of adverse reactions related to bone marrow suppression[J]. Zhongnan Pharmaceutical,2021,19(1):137−142.]
GUO L, LUO X M. Study on the efficacy of azathioprine in the treatment of inflammatory bowel disease and the analysis of adverse reactions related to bone marrow suppression[J]. Zhongnan Pharmaceutical, 2021, 19(1): 137−142.
|
[10] |
ARBOLEYA S, SANCHEZ B, SOLIS G, et al. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota:A functional inference study[J]. Ijms,2016,17(5):649. doi: 10.3390/ijms17050649
|
[11] |
YULLIIA H, TAISA D, IZUMI K, et al. The long-term consequences of antibiotic therapy:Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity[J]. PLoS One,2019,14(8):220642−220642.
|
[12] |
李珊, 孙万成, 罗毅皓. 非淀粉多糖对肠道菌群的调节作用及其对代谢疾病影响的研究概述[J]. 食品研究与开发,2021,42(19):219−224. [LI S, SUN W C, LUO Y H. Overview of the regulatory effects of non starch polysaccharides on gut microbiota and their effects on metabolic diseases[J]. Food Research and Development,2021,42(19):219−224.] doi: 10.12161/j.issn.1005-6521.2021.19.031
LI S, SUN W C, LUO Y H. Overview of the regulatory effects of non starch polysaccharides on gut microbiota and their effects on metabolic diseases[J]. Food Research and Development, 2021, 42(19): 219−224. doi: 10.12161/j.issn.1005-6521.2021.19.031
|
[13] |
王静, 李超君, 陆学洲, 等. 膳食纤维生理功能、制备方法及其在食品加工中的应用[J]. 保鲜与加工,2023,23(4):74−80. [WANG J, LI C J, LU X Z, et al. Physiological functions, preparation methods, and applications of dietary fiber in food processing[J]. Preservation and Processing,2023,23(4):74−80.] doi: 10.3969/j.issn.1009-6221.2023.04.012
WANG J, LI C J, LU X Z, et al. Physiological functions, preparation methods, and applications of dietary fiber in food processing[J]. Preservation and Processing, 2023, 23(4): 74−80. doi: 10.3969/j.issn.1009-6221.2023.04.012
|
[14] |
耿宁宁, 戴竹青, 牛丽影, 等. 膳食纤维调节肠道微生物对机体健康的影响研究进展[J]. 江苏农业科学,2021,49(7):51−56. [GENG N N, DAI Z Q, NIU L Y, et al. Research progress on the effects of dietary fiber regulation on gut microbiota and body health[J]. Jiangsu Agricultural Science,2021,49(7):51−56.]
GENG N N, DAI Z Q, NIU L Y, et al. Research progress on the effects of dietary fiber regulation on gut microbiota and body health[J]. Jiangsu Agricultural Science, 2021, 49(7): 51−56.
|
[15] |
VALCHEVA R, KOLEVA P, MARTINEZ I, et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes,2019,10(3):334−357. doi: 10.1080/19490976.2018.1526583
|
[16] |
廖勇, 贺海波, 李洁, 等. 基于TLR4/MyD88/NF-κB信号通路和肠黏膜屏障保护因子探讨魔芋润肠复合膳食纤维治疗便秘大鼠作用机制[J]. 中药药理与临床,2022,38(6):75−83. [LIAO Y, HE H B, LI J, et al. Based on TLR4/MyD88/NF- κB exploration of the signaling pathway and intestinal mucosal barrier protective factors in the treatment of constipation in rats using konjac runchang composite dietary fiber[J]. Pharmacology and Clinical Application of Traditional Chinese Medicine,2022,38(6):75−83.]
LIAO Y, HE H B, LI J, et al. Based on TLR4/MyD88/NF- κB exploration of the signaling pathway and intestinal mucosal barrier protective factors in the treatment of constipation in rats using konjac runchang composite dietary fiber[J]. Pharmacology and Clinical Application of Traditional Chinese Medicine, 2022, 38(6): 75−83.
|
[17] |
吕玉红, 郭瑞瑞, 孙心悦, 等. 肠道菌群利用膳食纤维及其与人体健康关系研究进展[J]. 中国酿造,2021,40(3):6−10. [LÜ Y H, GUO R R, SUN X Y, et al. Research progress on the utilization of dietary fiber by gut microbiota and its relationship with human health[J]. Brewing in China,2021,40(3):6−10.] doi: 10.11882/j.issn.0254-5071.2021.03.002
LÜ Y H, GUO R R, SUN X Y, et al. Research progress on the utilization of dietary fiber by gut microbiota and its relationship with human health[J]. Brewing in China, 2021, 40(3): 6−10. doi: 10.11882/j.issn.0254-5071.2021.03.002
|
[18] |
NOGALl A, VALDES A M, MENNI C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health[J]. Gut Microbes,2021,13(1):21−24.
|
[19] |
冯焱, 闫丽欢, 冯江浩, 等. 膳食纤维与短链脂肪酸对肠道微生物以及宿主健康的影响[J]. 粮食与饲料工业,2021(4):37−41. [FENG Y, YAN L H, FENG J H, et al. The effects of dietary fiber and short chain fatty acids on gut microbiota and host health[J]. The Grain and Feed Industry,2021(4):37−41.]
FENG Y, YAN L H, FENG J H, et al. The effects of dietary fiber and short chain fatty acids on gut microbiota and host health[J]. The Grain and Feed Industry, 2021(4): 37−41.
|
[20] |
MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705−715. doi: 10.1016/j.chom.2018.05.012
|
[21] |
施宇萌, 梁富强, 郭锐林, 等. 米糠不溶性膳食纤维结合酚结构特性及其对肠道菌群的影响[J]. 食品工业科技,2023,44(10):1−10. [SHI Y M, LIANG F Q, GUO R L, et al. The structural characteristics of insoluble dietary fiber bound phenols in rice bran and its impact on gut microbiota[J]. Science and Technology of Food Industry,2023,44(10):1−10.]
SHI Y M, LIANG F Q, GUO R L, et al. The structural characteristics of insoluble dietary fiber bound phenols in rice bran and its impact on gut microbiota[J]. Science and Technology of Food Industry, 2023, 44(10): 1−10.
|
[22] |
HAN X Y, YANG D, ZHANG S, et al. Characterization of insoluble dietary fiber from Pleurotus eryngii and evaluation of its effects on obesity-preventing or relieving effects via modulation of gut microbiota[J]. Journal of Future Foods,2023,3(1):55−56. doi: 10.1016/j.jfutfo.2022.09.009
|
[23] |
尼格尔热依·亚迪卡尔, 彭禛菲, 岳明, 等. 野山杏果肉不溶性膳食纤维对高脂血症大鼠肠道菌群及短链脂肪酸的影响[J]. 食品科技,2022,47(1):190−195. [NIAGARAI A, PENG S F, YUE M, et al. The effect of insoluble dietary fiber from wild apricot pulp on gut microbiota and short chain fatty acids in hyperlipidemic rats[J]. Food Technology,2022,47(1):190−195.] doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201029
NIAGARAI A, PENG S F, YUE M, et al. The effect of insoluble dietary fiber from wild apricot pulp on gut microbiota and short chain fatty acids in hyperlipidemic rats[J]. Food Technology, 2022, 47(1): 190−195. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201029
|
[24] |
黄苇, 黎力之, 廖晓鹏, 等. 菊粉通过肠道菌群调控动物脂代谢及其在动物生产中的应用[J]. 中国畜牧杂志,2021,57(6):36−40. [HUANG W, LI L Z, LIAO X P, et al. Inulin regulates animal lipid metabolism through gut microbiota and its application in animal production[J]. Chinese Journal of Animal Husbandry,2021,57(6):36−40.]
HUANG W, LI L Z, LIAO X P, et al. Inulin regulates animal lipid metabolism through gut microbiota and its application in animal production[J]. Chinese Journal of Animal Husbandry, 2021, 57(6): 36−40.
|
[25] |
赵文婧, 陈立英, 刘霞, 等. 膳食纤维经肠道微生态途径抑制结肠癌的研究进展[J]. 太原师范学院学报(自然科学版),2021,20(4):76−83. [ZHAO W J, CHEN L Y, LIU X, et al. Research progress on the inhibitory effect of dietary fiber on colon cancer through the gut microbiota pathway[J]. Journal of Taiyuan Normal University (Natural Science Edition),2021,20(4):76−83.]
ZHAO W J, CHEN L Y, LIU X, et al. Research progress on the inhibitory effect of dietary fiber on colon cancer through the gut microbiota pathway[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2021, 20(4): 76−83.
|
[26] |
WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43.[J]. Mucosal Immunology,2017,10(4):946−956. doi: 10.1038/mi.2016.114
|
[27] |
陈文轩, 张哲, 孙亚星, 等. 短链脂肪酸在炎症性肠病中的作用研究进展[J]. 中国免疫学杂志,2023,39(1):185−188. [CHEN W X, ZHANG Z, SUN Y X, et al. Research progress on the role of short chain fatty acids in inflammatory bowel disease[J]. Chinese Journal of Immunology,2023,39(1):185−188.]
CHEN W X, ZHANG Z, SUN Y X, et al. Research progress on the role of short chain fatty acids in inflammatory bowel disease[J]. Chinese Journal of Immunology, 2023, 39(1): 185−188.
|
[28] |
阿依木古丽·艾尼, 靳瑾. 短链脂肪酸在炎症性肠病中的作用研究进展[J]. 现代医药卫生,2023,39(10):1727−1731. [AINI A, JIN J. Research progress on the role of short chain fatty acids in inflammatory bowel disease[J]. Modern Medicine and Health,2023,39(10):1727−1731.]
AINI A, JIN J. Research progress on the role of short chain fatty acids in inflammatory bowel disease[J]. Modern Medicine and Health, 2023, 39(10): 1727−1731.
|
[29] |
RASTOGI S, MOHANTY S, SHARMA S, et al. Possible role of gut microbes and hosts immune response in gut–lung homeostasis[J]. Frontiers in Immunology,2022,13:954339. doi: 10.3389/fimmu.2022.954339
|
[30] |
SUN M M, WU M, CHENG L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis[J]. Nature Communications,2018,9(1):3555. doi: 10.1038/s41467-018-05901-2
|
[31] |
康宇婷, 赵志军, 安童童, 等. 短链脂肪酸对NR8383肺泡巨噬细胞炎性反应的影响[J]. 中国病原生物学杂志,2019,14(6):691−696. [KANG Y T, ZHA Z J, AN T T, et al. The effect of short chain fatty acids on the inflammatory response of NR8383 alveolar macrophages[J]. Chinese Journal of Pathogenic Biology,2019,14(6):691−696.]
KANG Y T, ZHA Z J, AN T T, et al. The effect of short chain fatty acids on the inflammatory response of NR8383 alveolar macrophages[J]. Chinese Journal of Pathogenic Biology, 2019, 14(6): 691−696.
|
[32] |
SHRIYA B, MAHESH G. Dietary fiber from fruit waste as a potential source of metabolites in maintenance of gut milieu during ulcerative colitis:A comprehensive review[J]. Food Research International,2023,164: 112329. doi: 10.1016/J.FOODRES.2022.112329
|
[33] |
黄超勇, 罗子林, 黎力之, 等. 菊粉对单胃动物肠道免疫功能的调节及应用研究进展[J]. 中国畜牧杂志,2022,58(5):77−81. [HUANG C Y, LUO Z L, LI L Z, et al. Research progress on the regulation and application of inulin on intestinal immune function in monogastric animals[J]. Chinese Journal of Animal Husbandry,2022,58(5):77−81.]
HUANG C Y, LUO Z L, LI L Z, et al. Research progress on the regulation and application of inulin on intestinal immune function in monogastric animals[J]. Chinese Journal of Animal Husbandry, 2022, 58(5): 77−81.
|
[34] |
SAHASRABUDHEN M, BEUKEMA M, TIAN L, et al. Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis[J]. Front in Immunol, 2018, 9:383.
|
[35] |
刘帅, 李红霞, 董秀山. 短链脂肪酸对肠道动力影响的研究进展[J]. 中国微生态学杂志,2021,33(12):1476−1482. [LIU S, LI H X, DONG X S. Research progress on the effects of short chain fatty acids on intestinal motility[J]. Chinese Journal of Microbiology,2021,33(12):1476−1482.]
LIU S, LI H X, DONG X S. Research progress on the effects of short chain fatty acids on intestinal motility[J]. Chinese Journal of Microbiology, 2021, 33(12): 1476−1482.
|
[36] |
WANG R X, LEE J S, CAMPBELL E L, et al. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11648−11657.
|
[37] |
GONZALEZ A, KRIEG R, MASSEY H D, et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression[J]. Nephrol Dial Transplant,2019,34(5):783−794. doi: 10.1093/ndt/gfy238
|
[38] |
TIAN M, LI D, MA C, et al. Barley leaf insoluble dietary fiber alleviated dextran sulfate sodium-induced mice colitis by modulating gut microbiota[J]. Nutrients,2021,13(3):846. doi: 10.3390/nu13030846
|
[39] |
TONG L C, WANG Y, WANG Z B, et al. Propionate ameliorates dextran sodium sulfate-Induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress[J]. Front Pharmacol,2016,7:253.
|
[40] |
CRISTOFORI F, DARGENIO V N, DARGENIO C, et al. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation:A door to the body[J]. Frontiers in Immunology,2021,12:578386. doi: 10.3389/fimmu.2021.578386
|
[41] |
AKIHITO N, SASAKI S, ITOH K, et al. A soluble fiber diet increases Bacteroides fragilis group abundance and immunoglobulin a production in the gut[J]. Applied and Environmental Microbiology,2020,86(13):e00405−20.
|
[42] |
尚玮璇, 刘璐, 雷素珍, 等. 功能性碳水化合物通过调节肠道菌群和代谢物改善非酒精性脂肪肝的作用机制[J]. 食品与发酵工业,2022,48(14):311−318. [SHANG W X, LIU L, LEI S Z, et al. The mechanism by which functional carbohydrates improve non-alcoholic fatty liver by regulating gut microbiota and metabolites[J]. Food and Fermentation Industry,2022,48(14):311−318.]
SHANG W X, LIU L, LEI S Z, et al. The mechanism by which functional carbohydrates improve non-alcoholic fatty liver by regulating gut microbiota and metabolites[J]. Food and Fermentation Industry, 2022, 48(14): 311−318.
|
[43] |
PAIK D, YAO L, ZHANG Y, et al. Human gut bacteria produce TH17-modulating bile acid metabolites[J]. Nature,2022,603(7903):907−912. doi: 10.1038/s41586-022-04480-z
|
[44] |
陈菁青, 郑建华, 董巧燕, 等. 嗜黏蛋白阿克曼氏菌在肠道疾病和代谢紊乱中的关键作用[J]. 实验动物科学, 2023, 40(5):80−85. [CHEN Q Q, ZHENG J H, DONG Q Y, et al. The key role of Actinobacteria mucophila in intestinal diseases and metabolic disorders[J]. Experimental Animal Science, 2023, 40(5):80−85.]
CHEN Q Q, ZHENG J H, DONG Q Y, et al. The key role of Actinobacteria mucophila in intestinal diseases and metabolic disorders[J]. Experimental Animal Science, 2023, 40(5): 80−85.
|
[45] |
张金秀, 胡新中, 马蓁. 不同类型抗性淀粉的多尺度结构特征与肠道菌群调节功能研究进展[J]. 食品科学,2022,43(17):24−35. [ZHANG J X, HU X Z, MA Q. Research progress on multi-scale structural characteristics and gut microbiota regulation function of different types of resistant starch[J]. Food Science,2022,43(17):24−35.] doi: 10.7506/spkx1002-6630-20220401-007
ZHANG J X, HU X Z, MA Q. Research progress on multi-scale structural characteristics and gut microbiota regulation function of different types of resistant starch[J]. Food Science, 2022, 43(17): 24−35. doi: 10.7506/spkx1002-6630-20220401-007
|
[46] |
BAI S F, CHEN H H, ZHU L Y, et al. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota[J]. PLoS One,2017,12(2):e0171576. doi: 10.1371/journal.pone.0171576
|
[47] |
QICHAO C, MIN L, PENGYU Z, et al. Fucoidan and galactooligosaccharides ameliorate high-fat diet induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism[J]. Nutrition,2019,65:50−59. doi: 10.1016/j.nut.2019.03.001
|
[48] |
MOEMI N T, TAKASHI K, MIYU T, et al. Detection and isolation of low molecular weight alginate and laminaran-susceptible gut indigenous bacteria from ICR mice[J]. Carbohydrate Polymers,2020,238:116−205.
|
[49] |
LIU F T, LI P, CHEN M X, et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population[J]. Scientific Reports,2017,7(1):11789. doi: 10.1038/s41598-017-10722-2
|
[50] |
王海松, 任鹏飞. 不同单糖组成的低聚糖对人肠道菌群的调节作用[J]. 中国食品学报,2020,20(7):44−52. [WANG H S, REN P F. The regulatory effect of oligosaccharides composed of different monosaccharides on human intestinal microbiota[J]. Chinese Journal of Food Science,2020,20(7):44−52.]
WANG H S, REN P F. The regulatory effect of oligosaccharides composed of different monosaccharides on human intestinal microbiota[J]. Chinese Journal of Food Science, 2020, 20(7): 44−52.
|
[51] |
SINGH R P, PRAKASH S, BHATIA R, et al. Generation of structurally diverse pectin oligosaccharides having prebiotic attributes[J]. Food Hydrocolloids,2020,108:105988. doi: 10.1016/j.foodhyd.2020.105988
|
[52] |
CHERBUTH C, MICHELC, LECANNU G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats[J]. The Journal of Nutrition,2003,133(1):21−7. doi: 10.1093/jn/133.1.21
|
[53] |
高珊, 杨镭镭, 施媛, 等. 饮食添加益生元菊粉改善烧伤大鼠肠道菌群紊乱和骨骼肌分解代谢[J]. 华中科技大学学报(医学版),2023,52(1):60−67. [GAO S, YANG L L, SHI Y, et al. Dietary supplementation of probiotic inulin improves intestinal microbiota disorder and skeletal muscle catabolism in burned rats[J]. Journal of Huazhong University of Science and Technology (Medical Edition),2023,52(1):60−67.]
GAO S, YANG L L, SHI Y, et al. Dietary supplementation of probiotic inulin improves intestinal microbiota disorder and skeletal muscle catabolism in burned rats[J]. Journal of Huazhong University of Science and Technology (Medical Edition), 2023, 52(1): 60−67.
|
[54] |
向岑, 赵玙璠, 荣耀, 等. 菊粉对小鼠抗疲劳作用及对肠道微生物的影响[J]. 食品研究与开发,2020,41(23):68−72. [XIANG C, ZHAO Y P, RONG Y, et al. The anti fatigue effect of inulin on mice and its effect on intestinal microbiota[J]. Food Research and Development,2020,41(23):68−72.] doi: 10.12161/j.issn.1005-6521.2020.23.012
XIANG C, ZHAO Y P, RONG Y, et al. The anti fatigue effect of inulin on mice and its effect on intestinal microbiota[J]. Food Research and Development, 2020, 41(23): 68−72. doi: 10.12161/j.issn.1005-6521.2020.23.012
|
[55] |
DALILE B, VAN O L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nature Reviews. Gastroenterology & Hepatology, 2019, 16(8) :461−478.
|
[56] |
赵萌菲, 王琳燚, 袁艳枝, 等. 小麦阿拉伯木聚糖的益生功能及对肠道微生态的调节[J]. 中国食物与营养,2019,25(4):12−16. [ZHAO M F, WANG L Y, YUAN Y Z, et al. The probiotic function of wheat arabinoxylan and its regulation on intestinal microbiota[J]. Chinese Food and Nutrition,2019,25(4):12−16.]
ZHAO M F, WANG L Y, YUAN Y Z, et al. The probiotic function of wheat arabinoxylan and its regulation on intestinal microbiota[J]. Chinese Food and Nutrition, 2019, 25(4): 12−16.
|
[57] |
穆晓燕, 郑艳, 朱新鹏. 魔芋低聚糖生理作用及应用的研究进展[J]. 现代商贸工业,2019,40(11):219−222. [MU X Y, ZHENG Y, ZHU X P. Research progress on the physiological effects and applications of konjac oligosaccharides[J]. Modern Commercial Industry,2019,40(11):219−222.]
MU X Y, ZHENG Y, ZHU X P. Research progress on the physiological effects and applications of konjac oligosaccharides[J]. Modern Commercial Industry, 2019, 40(11): 219−222.
|
[58] |
ZENG Y, ZHANG J G, ZHANG Y, et al. Prebiotic, immunomodulating, and antifatigue effects of konjac oligosaccharide[J]. Journal of Food Science,2018,83(12):3110−3117. doi: 10.1111/1750-3841.14376
|
[59] |
吴尘萱, 丰硕, 刘军, 等. 部分水解瓜尔豆胶对高脂高糖饮食诱导小鼠代谢紊乱的调节作用[J]. 食品科学技术学报,2021,39(5):63−73. [WU C X, FENG S, LIU J, et al. The regulatory effect of partially hydrolyzed guar gum on metabolic disorders induced by a high fat and high sugar diet in mice[J]. Journal of Food Science and Technology,2021,39(5):63−73.]
WU C X, FENG S, LIU J, et al. The regulatory effect of partially hydrolyzed guar gum on metabolic disorders induced by a high fat and high sugar diet in mice[J]. Journal of Food Science and Technology, 2021, 39(5): 63−73.
|
[60] |
林晓娟, 苏志琛, 陈继承. 海带多糖的结构特征、生物活性及其应用[J]. 现代食品,2021(24):49−52. [LIN X J, SU Z S, CHEN J C. The structural characteristics, biological activity, and application of kelp polysaccharides[J]. Modern Food,2021(24):49−52.]
LIN X J, SU Z S, CHEN J C. The structural characteristics, biological activity, and application of kelp polysaccharides[J]. Modern Food, 2021(24): 49−52.
|
[61] |
HYUNBIN S, JAE-HAN B, JI S S, et al. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation[J]. Journal of Functional Foods,2019,57:408−416. doi: 10.1016/j.jff.2019.04.014
|
[62] |
FATIMA E, THOMAS J. Linkage-specific detection and metabolism of human milk oligosaccharides in Escherichia coli[J]. Cell Chemical Biology,2018,25(10):1292−1303. doi: 10.1016/j.chembiol.2018.06.002
|
1. |
宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 .
![]() | |
2. |
梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
![]() | |
3. |
乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
![]() | |
4. |
汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
![]() | |
5. |
马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
![]() | |
6. |
钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
![]() | |
7. |
李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .
![]() |