Citation: | WANG Mengju, MA Chunmin, WU Qiaoyan, et al. Research Progress on Starch Digestibility Regulated by Multi-scale Structure and Physical Modification[J]. Science and Technology of Food Industry, 2024, 45(15): 443−451. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100136. |
[1] |
SAIKRISHNA A, DUTTA S, SUBRAMANIAN V, et al. Ageing of rice:A review[J]. Journal of Cereal Science,2018,81:161−170. doi: 10.1016/j.jcs.2018.04.009
|
[2] |
VAN HUNG P, CHAU H T, PHI N T L. In-vitro digestibility and in-vivo glucose response of native and physically modified rice starches varying amylose contents[J]. Food Chemistry,2016,191:74−80. doi: 10.1016/j.foodchem.2015.02.118
|
[3] |
KUMAR A, SAHOO U, BAISAKHA B, et al. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Science,2018,79:348−353. doi: 10.1016/j.jcs.2017.11.013
|
[4] |
WEE M S M, HENRY C J. Reducing the glycemic impact of carbohydrates on foods and meals:Strategies for the food industry and consumers with special focus on Asia[J]. Comprehensive Reviews in Food Science & Food Safety,2020,19:670−702.
|
[5] |
AHMED J, THOMAS L, TAHER A, et al. Impact of high pressure treatment on functional, rheological, pasting and structural properties of lentil starch dispersions[J]. Carbohydrate Polymers,2016,152:639−647. doi: 10.1016/j.carbpol.2016.07.008
|
[6] |
NEELAM K, VIJAY S, LALIT S. Various techniques for the modification of starch and the applications of its derivatives[J]. International Research Journal of Pharmacy,2012,3(5):25−31.
|
[7] |
QADIR N, WANI I A. In-vitro digestibility of rice starch and factors regulating its digestion process:A review[J]. Carbohydrate Polymers,2022,291:119600. doi: 10.1016/j.carbpol.2022.119600
|
[8] |
LEHMANN U, ROBIN F. Slowly digestible starch-its structure and health implications:A review[J]. Trends in Food Science & Technology,2007,18:346−355.
|
[9] |
BELLO-PEREZ L A, FLORES-SILVA P C, AGAMA-ACEVEDOA E, et al. Starch digestibility:Past, present, and future[J]. Journal of the Science of Food Agriculture,2020,100:5009−5016. doi: 10.1002/jsfa.8955
|
[10] |
NICHOLS B L, AVERY S, SEN P, et al. The maltase-glucoamylase gene:Common ancestry to sucrase-isomaltase with complementary starch digestion activities[J]. Proceedings of the National Academy of Sciences United States of America,2003,100:1432−1437. doi: 10.1073/pnas.0237170100
|
[11] |
ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46:S33−S50.
|
[12] |
HIRSCH S, BARRERA G, LEIVA L, et al. Variability of glycemic and insulin response to a standard meal, within and between healthy subjects[J]. Nutricion Hospitalaria,2013,28:541−544.
|
[13] |
LI C, YU W, GILBERT R G. The effects of starch molecular fine structure on thermal and digestion properties of rice starch[J]. Foods,2022,11:4012. doi: 10.3390/foods11244012
|
[14] |
黄峻榕, 任瑞珍, 蒲华寅, 等. 慢消化淀粉的消化特性, 测定及制备[J]. 中国粮油学报,2015,30(3):134−139. [HUANG J, REN R Z, PU H Y, et al. Digestibility, determination and preparation of slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association,2015,30(3):134−139.]
HUANG J, REN R Z, PU H Y, et al. Digestibility, determination and preparation of slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(3): 134−139.
|
[15] |
GIRI S, BANERJI A, LELE S S, et al. Starch digestibility and glycaemic index of selected Indian traditional foods:Effects of added ingredients[J]. International Journal of Food Properties,2017,20:S290−S305. doi: 10.1080/10942912.2017.1295387
|
[16] |
MEERA K, SMITA M, HARIPRIYA S, et al. Varietal influence on antioxidant properties and glycemic index of pigmented and non-pigmented rice[J]. Journal of Cereal Science,2019,87:202−208. doi: 10.1016/j.jcs.2019.03.005
|
[17] |
ZHONG Y, QU J, LI Z, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers,2022,275:118777. doi: 10.1016/j.carbpol.2021.118777
|
[18] |
LIU Z D, WANG J, LI L, et al. Mechanistic insights into the role of starch multi-level structures in functional properties of high-amylose rice cultivars[J]. Food Hydrocolloids,2021,113(80):106441.
|
[19] |
KUMAR A, SAHOO S, SAHU S, et al. Rice with pulses or cooking oils can be used to elicit lower glycemic response[J]. Journal of Food Composition and Analysis,2018,71:1−7. doi: 10.1016/j.jfca.2018.05.003
|
[20] |
APE D I, NWOGU N A, UWAKWE E I, et al. Comparative proximate analysis of maize and sorghum bought from ogbete main market of Enugu State, Nigeria[J]. Greener Journal of Agricultural Sciences,2016,6(9):272−275. doi: 10.15580/GJAS.2016.9.101516167
|
[21] |
CAI C, ZHAO L, HUANG J, et al. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize[J]. Carbohydrate Polymers,2014,102(1):606−614.
|
[22] |
BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch:Promise for improving human health[J]. Advances in Nutrition,2013,4(6):587−601. doi: 10.3945/an.113.004325
|
[23] |
SLADE A J, MCGUIRE C, LOEFFLER D, et al. Development of high amylose wheat through tilling[J]. BMC Plant Biology,2012,12(1):69. doi: 10.1186/1471-2229-12-69
|
[24] |
周淑蓝, 叶发银, 赵国华. 绿豆淀粉的性质, 改性及其应用[J]. 中国食品学报,2022,22(4):450−461. [ZHOU S L, YE F Y, ZHAO G H. The properties, modification and application of mung bean (Vigna radiata L. Wilczek) starch[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):450−461.]
ZHOU S L, YE F Y, ZHAO G H. The properties, modification and application of mung bean (Vigna radiata L. Wilczek) starch[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 450−461.
|
[25] |
王志倩, 李言, 钱海峰, 等. 豌豆成分对血糖的影响研究进展[J]. 中国食品学报,2023,23(9):430−438. [[WANG Z Q, LI Y, QIAN H F, et al. Effects of pea constituents on blood glucose:A review[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(9):430−438.]
[WANG Z Q, LI Y, QIAN H F, et al. Effects of pea constituents on blood glucose: A review[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(9): 430−438.
|
[26] |
AKYEREKO Y G, WIREKO-MANU F D, ODURO I. Influence of processing methods on food components and glycaemic index of cassava-based traditional foods[J]. Journal of Food and Nutrition Sciences,2020,8(1):6−14. doi: 10.11648/j.jfns.20200801.12
|
[27] |
ZHANG L, ZHAO Y, HU W, et al. Multiscale structures of cassava and potato starch fractions varying in granule size[J]. Carbohydrate Polymers,2018,200(15):400−407.
|
[28] |
NIU S, LI X Q, TANG R, et al. Starch granule sizes and degradation in sweet potatoes during storage[J]. Postharvest Biology and Technology,2019,150:137−147. doi: 10.1016/j.postharvbio.2019.01.004
|
[29] |
SINGH A, RAIGOND P, LAL M K, et al. Effect of cooking methods on glycemic index and in-vitro bioaccessibility of potato(Solanum tuberosum L.) carbohydrates[J]. LWT-Food Science and Technology,2020,127:109363. doi: 10.1016/j.lwt.2020.109363
|
[30] |
徐亚元, 沈素晴, 李大婧, 等. 青香蕉微波干燥中淀粉糊化行为及消化特性的研究[J]. 食品工业科技,2022,43(3):88−96. [XU Y Y, SHEN S Q, LI D J, et al. Study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry,2022,43(3):88−96.]
XU Y Y, SHEN S Q, LI D J, et al. Study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry, 2022, 43(3): 88−96.
|
[31] |
AGAMA-ACEVEDO E, NUÑEZ-SANTIAGO M C, ALVAREZ-RAMIREZ J, et al. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars[J]. Carbohydrate Polymers,2015,124:17. doi: 10.1016/j.carbpol.2015.02.003
|
[32] |
KONG B, KIM J, KIM M, et al. Porcine pancreatic α-amylase hydrolysis of native starch granules as a function of granule surface area[J]. Biotechnology Progress,2003,19:1162−1166.
|
[33] |
ALLER E, ABETE I, ASTRUP A, et al. Starches, sugars and obesity[J]. Nutrients,2011,3:341−369. doi: 10.3390/nu3030341
|
[34] |
TANG M, WANG L, CHENG X, et al. Non-starch constituents influence the in-vitro digestibility of naked oat (Avena nuda L.) starch[J]. Food Chemistry,2019,297:124953. doi: 10.1016/j.foodchem.2019.124953
|
[35] |
CHI C, LI X, ZHANG Y, et al. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates[J]. Food Hydrocolloids,2018,84:473−480. doi: 10.1016/j.foodhyd.2018.06.040
|
[36] |
COPELAND L, BLAZEK J, SALMAN H, et al. Form and functionality of starch[J]. Food Hydrocolloids,2009,23(6):1527−1534. doi: 10.1016/j.foodhyd.2008.09.016
|
[37] |
GUTIÉRREZ T J, TOVAR J. Update of the concept of type 5 resistant starch (RS5):Self-assembled starch V-type complexes[J]. Trends in Food Science & Technology,2021,109:711−724.
|
[38] |
HE H, ZHENG B, WANG H, et al. Insights into the multi-scale structure and in-vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment[J]. Food Research International,2020,137:109612. doi: 10.1016/j.foodres.2020.109612
|
[39] |
BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany,2011,62:4927−4941. doi: 10.1093/jxb/err188
|
[40] |
ZHANG G, AO Z, HAMAKER B. Slow digestion property of native cereal starches[J]. Biomacromolecules,2006,7:3252−3258. doi: 10.1021/bm060342i
|
[41] |
WANG H W, LIU Y F, CHEN L, et al. Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch[J]. Food Chemistry,2018,242:323−329. doi: 10.1016/j.foodchem.2017.09.014
|
[42] |
ZHU L J, LIU Q Q, WILSON J D, et al. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content[J]. Carbohydrate Polymers,2011,86:1751−1759. doi: 10.1016/j.carbpol.2011.07.017
|
[43] |
CHUNG H J, LIU Q A, LEE L, et al. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents[J]. Food Hydrocolloids,2011,25:968−975. doi: 10.1016/j.foodhyd.2010.09.011
|
[44] |
CAI J W, MAN J M, HUANG J, et al. Relationship between structure and functional properties of normal rice starches with different amylose contents[J]. Carbohydrate Polymers,2015,125:35−44. doi: 10.1016/j.carbpol.2015.02.067
|
[45] |
ZHANG G, HAMAKER B R. Review:Cereal carbohydrates and colon health[J]. Cereal Chemistry,2010,87:331−341. doi: 10.1094/CCHEM-87-4-0331
|
[46] |
ZHOU X, YING Y N, HU B L, et al. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants[J]. Carbohydrate Polymers,2018,195:1−8. doi: 10.1016/j.carbpol.2018.04.070
|
[47] |
YU W, TAO K, GILBERT R G. Improved methodology for analyzing relations between starch digestion kinetics and molecular structure[J]. Food Chemistry,2018,264:284−292. doi: 10.1016/j.foodchem.2018.05.049
|
[48] |
GONG B, CHENG L, GILBERT R, et al. Distribution of short to medium amylose chains are major controllers of in-vitro digestion of retrograded rice starch[J]. Food Hydrocolloids,2019,96:634−643. doi: 10.1016/j.foodhyd.2019.06.003
|
[49] |
ZHANG B, ZHOU W, QIAO D, et al. Changes in nanoscale chain assembly in sweet potato starch lamellae by downregulation of biosynthesis enzymes[J]. Journal of Agricultural and Food Chemistry,2019,67:6302−6312. doi: 10.1021/acs.jafc.8b06523
|
[50] |
ZHU F. Relationships between amylopectin internal molecular structure and physicochemical properties of starch[J]. Trends in Food Science & Technology,2018,78:234−242.
|
[51] |
ALHAMBRA C M, de GUZMAN M K, DHITAL S, et al. Long glucan chains reduce in vitro starch digestibility of freshly cooked and retrograded milled rice[J]. Journal of Cereal Science,2019,86:108−116. doi: 10.1016/j.jcs.2019.02.001
|
[52] |
MIAO M, XIONG S, JIANG B, et al. Improved the slow digestion property of maize starch using partially beta-amylolysis[J]. Food Chemistry,2014,152:128−132. doi: 10.1016/j.foodchem.2013.11.148
|
[53] |
DHITAL S, WARREN F J, BUTTERWORTH P J, et al. Mechanisms of starch digestion by α-amylase-structural basis for kinetic properties[J]. Critical Reviews in Food Science and Nutrition,2015,57:875−892.
|
[54] |
ZAVAREZE E D, STORCK C R, CASTRO L A S, et al. Effect of heat-moisture treatment on rice starch of varying amylose content[J]. Food Chemistry,2010,121:358−365. doi: 10.1016/j.foodchem.2009.12.036
|
[55] |
CAROLINA A A S, ALMEIDA M M A. Physicochemical properties, modifications and applications of starches from different botanical sources[J]. Food Science and Technology,2015,35(2):215−236. doi: 10.1590/1678-457X.6749
|
[56] |
SILVA W M F, BIDUSKI B, LIMA K O, et al. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment[J]. Food Chemistry,2017,219:260−267. doi: 10.1016/j.foodchem.2016.09.134
|
[57] |
DIAS A R G, ZAVAREZE E D, SPIER F, et al. Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents[J]. Food Chemistry,2010,123:711−719. doi: 10.1016/j.foodchem.2010.05.040
|
[58] |
ZENG F, MA F, KONG F S, et al. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch[J]. Food Chemistry,2015,172:92−98. doi: 10.1016/j.foodchem.2014.09.020
|
[59] |
DEKA D, SIT N. Dual modification of taro starch by microwave and other heat moisture treatments[J]. International Journal of Biological Macromolecules,2016,92:416−422. doi: 10.1016/j.ijbiomac.2016.07.040
|
[60] |
SUN X, SALEH A S M, SUN Z, et al. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch through microwave and cold plasma treatments[J]. LWT-Food Science & Technology,2022,153:112483.
|
[61] |
FAN D, WANG L, CHEN W, et al. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering[J]. Food Hydrocolloids,2014,35:620−626. doi: 10.1016/j.foodhyd.2013.08.003
|
[62] |
LIU T, ZHANG B, WANG L, et al. Microwave reheating increases the resistant starch content in cooked rice with high water contents[J]. International Journal of Biological Macromolecules,2021,184:804−811. doi: 10.1016/j.ijbiomac.2021.06.136
|
[63] |
LI Y, HU A, WANG X, et al. Physicochemical and in-vitro digestion of millet starch:Effect of moisture content in microwave[J]. International Journal of Biological Macromolecules,2019,134:308−315. doi: 10.1016/j.ijbiomac.2019.05.046
|
[64] |
ZHAO K, LI B, XU M, et al. Microwave pretreated esterification improved the substitution degree, structural and physicochemical properties of potato starch esters[J]. LWT-Food Science & Technology,2018,90:116−123.
|
[65] |
ALAM M S, KAUR J, KHAIRA H, et al. Extrusion and extruded products:Changes in quality attributes as affected by extrusion process parameters:A review[J]. Critical Reviews in Food Science & Nutrition,2016,56:445−473.
|
[66] |
YANG W, ZHENG Y, SUN W, et al. Effect of extrusion processing on the microstructure and in-vitro digestibility of broken rice[J]. LWT-Food Science & Technology,2020,119:108835.
|
[67] |
ZHANG B, DHITAL S, GIDLEY M J. Densely packed matrices as rate determining features in starch hydrolysis[J]. Trends in Food Science & Technology,2015,43:18−31.
|
[68] |
CASTELLANOS-GALLO L, GALICIA-GARCIA T, ESTRADA-MORENO I, et al. Development of an expanded snack of rice starch enriched with amaranth by extrusion process[J]. Molecules,2019,24:1−22.
|
[69] |
MENG S, MA Y, SUN D W, et al. Properties of starch palmitic acid complexes prepared by high pressure homogenization[J]. Journal of Cereal Science,2014,59(1):25−32. doi: 10.1016/j.jcs.2013.10.012
|
[70] |
OYEYINKA S A, SINGH S, MA Y, et al. Effect of high-pressure homogenization on structural, thermal and rheological properties of Bambara starch complexed with different fatty acids[J]. RSC Advances,2016,6:80174−80180. doi: 10.1039/C6RA16452H
|
[71] |
LIU Y, CHEN L, XU H, et al. Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization[J]. International Journal of Biological Macromolecules,2019,134:856−863. doi: 10.1016/j.ijbiomac.2019.05.083
|
[72] |
BONTO A P, TIOZON J R N, SREENIVASULU N, et al. Impact of ultrasonic treatment on rice starch and grain functional properties:A review[J]. Ultrasonics Sonochemistry,2021,71:105383. doi: 10.1016/j.ultsonch.2020.105383
|
[73] |
KUNYANEE K, LUANGSAKUL N. The effects of ultrasound-assisted recrystallization followed by chilling to produce the lower glycemic index of rice with different amylose content[J]. Food Chemistry,2020,323:126843. doi: 10.1016/j.foodchem.2020.126843
|
[74] |
KUNYANEE K, LUANGSAKUL N. The utilization of ultrasound and chilling treatment to reduce GI in Thai glutinous rice(RD6)[J]. International Journal of Agricultural Technology,2018,14:1365−1378.
|
[75] |
DANG L, THERDTHAI N, RATPHITAGSANTI W. Effects of ultrasonic and enzymatic treatment on physical and chemical properties of brown rice[J]. Journal of Food Process Engineering,2019,42:e13016. doi: 10.1111/jfpe.13016
|
[76] |
DING Y, LIANG Y, LUO F, et al. Understanding the mechanism of ultrasonication regulated the digestibility properties of retrograded starch following vacuum freeze drying[J]. Carbohydrate Polymers, 2020, 228:115350.
|
[77] |
KAUR H, GILL B S. Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals[J]. International Journal of Biological Macromolecules,2019,126:367−375. doi: 10.1016/j.ijbiomac.2018.12.149
|
[78] |
MOUTIQ R, MISRA N N, MENDONÇA A, et al. In-package decontamination of chicken breast using cold plasma technology:Microbial, quality and storage studies[J]. Meat Science,2020,159:107942. doi: 10.1016/j.meatsci.2019.107942
|
[79] |
OKYERE A Y, BOAKYE P G, BERTOFT E, et al. Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches[J]. Journal of Food Science,2022,87(2):686−698. doi: 10.1111/1750-3841.16037
|
[80] |
ZOU J J, LIU C J, ELIASSON B. Modification of starch by glow discharge plasma[J]. Carbohydrate Polymers,2004,55(1):23−26. doi: 10.1016/j.carbpol.2003.06.001
|
[81] |
ROVALINO-CÓRDOVA A M, FOGLIANO V, CAPUANO E. A closer look to cell structural barriers affecting starch digestibility in beans[J]. Carbohydrate Polymers,2018,181:994−1002. doi: 10.1016/j.carbpol.2017.11.050
|
[82] |
BHATTARAI R R, DHITAL S, MENSE A, et al. Intact cellular structure in cereal endosperm limits starch digestion in-vitro[J]. Food Hydrocolloids,2018,81:139−148. doi: 10.1016/j.foodhyd.2018.02.027
|
[83] |
CUI C, JIANG H, GUAN M, et al. Characterization and in-vitro digestibility of potato starch encapsulated in calcium alginate beads[J]. Food Hydrocolloids,2022,126:107458. doi: 10.1016/j.foodhyd.2021.107458
|
[84] |
CUI C, LI M, JI N, et al. Calcium alginate/curdlan/corn starch@calcium alginate macrocapsules for slowly digestible and resistant starch[J]. Carbohydrate Polymers,2022,285:119259. doi: 10.1016/j.carbpol.2022.119259
|
1. |
周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .
![]() |