WANG Mengju, MA Chunmin, WU Qiaoyan, et al. Research Progress on Starch Digestibility Regulated by Multi-scale Structure and Physical Modification[J]. Science and Technology of Food Industry, 2024, 45(15): 443−451. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100136.
Citation: WANG Mengju, MA Chunmin, WU Qiaoyan, et al. Research Progress on Starch Digestibility Regulated by Multi-scale Structure and Physical Modification[J]. Science and Technology of Food Industry, 2024, 45(15): 443−451. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100136.

Research Progress on Starch Digestibility Regulated by Multi-scale Structure and Physical Modification

More Information
  • Received Date: October 18, 2023
  • Available Online: May 29, 2024
  • Starch provides essential calories for the body's vital activities, but it usually has a high glycemic index. The digestion of starch tends to lead to a steep increase in blood sugar levels, insulin resistance and health risk. The digestibility of starch is related to its multi-scale structure. The regulations of starch digestibility can be achieved by altering its multi-scale structure through the modifications. However, the physical modification has received more and more attention due to its safety, simplicity and environmental friendliness. Based on this, the digestibility of starch is outlined. The relationship between the multi-scale structure and digestive properties of starch is analyzed. The digestive properties of starch regulated by physical modifications, such as hydrothermal treatment, microwave, extrusion, high-pressure homogenization, ultrasonic, cold plasma and physical encapsulation are reviewed. The future research directions on starch digestibility are also provided.
  • [1]
    SAIKRISHNA A, DUTTA S, SUBRAMANIAN V, et al. Ageing of rice:A review[J]. Journal of Cereal Science,2018,81:161−170. doi: 10.1016/j.jcs.2018.04.009
    [2]
    VAN HUNG P, CHAU H T, PHI N T L. In-vitro digestibility and in-vivo glucose response of native and physically modified rice starches varying amylose contents[J]. Food Chemistry,2016,191:74−80. doi: 10.1016/j.foodchem.2015.02.118
    [3]
    KUMAR A, SAHOO U, BAISAKHA B, et al. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Science,2018,79:348−353. doi: 10.1016/j.jcs.2017.11.013
    [4]
    WEE M S M, HENRY C J. Reducing the glycemic impact of carbohydrates on foods and meals:Strategies for the food industry and consumers with special focus on Asia[J]. Comprehensive Reviews in Food Science & Food Safety,2020,19:670−702.
    [5]
    AHMED J, THOMAS L, TAHER A, et al. Impact of high pressure treatment on functional, rheological, pasting and structural properties of lentil starch dispersions[J]. Carbohydrate Polymers,2016,152:639−647. doi: 10.1016/j.carbpol.2016.07.008
    [6]
    NEELAM K, VIJAY S, LALIT S. Various techniques for the modification of starch and the applications of its derivatives[J]. International Research Journal of Pharmacy,2012,3(5):25−31.
    [7]
    QADIR N, WANI I A. In-vitro digestibility of rice starch and factors regulating its digestion process:A review[J]. Carbohydrate Polymers,2022,291:119600. doi: 10.1016/j.carbpol.2022.119600
    [8]
    LEHMANN U, ROBIN F. Slowly digestible starch-its structure and health implications:A review[J]. Trends in Food Science & Technology,2007,18:346−355.
    [9]
    BELLO-PEREZ L A, FLORES-SILVA P C, AGAMA-ACEVEDOA E, et al. Starch digestibility:Past, present, and future[J]. Journal of the Science of Food Agriculture,2020,100:5009−5016. doi: 10.1002/jsfa.8955
    [10]
    NICHOLS B L, AVERY S, SEN P, et al. The maltase-glucoamylase gene:Common ancestry to sucrase-isomaltase with complementary starch digestion activities[J]. Proceedings of the National Academy of Sciences United States of America,2003,100:1432−1437. doi: 10.1073/pnas.0237170100
    [11]
    ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46:S33−S50.
    [12]
    HIRSCH S, BARRERA G, LEIVA L, et al. Variability of glycemic and insulin response to a standard meal, within and between healthy subjects[J]. Nutricion Hospitalaria,2013,28:541−544.
    [13]
    LI C, YU W, GILBERT R G. The effects of starch molecular fine structure on thermal and digestion properties of rice starch[J]. Foods,2022,11:4012. doi: 10.3390/foods11244012
    [14]
    黄峻榕, 任瑞珍, 蒲华寅, 等. 慢消化淀粉的消化特性, 测定及制备[J]. 中国粮油学报,2015,30(3):134−139. [HUANG J, REN R Z, PU H Y, et al. Digestibility, determination and preparation of slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association,2015,30(3):134−139.]

    HUANG J, REN R Z, PU H Y, et al. Digestibility, determination and preparation of slowly digestible starch[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(3): 134−139.
    [15]
    GIRI S, BANERJI A, LELE S S, et al. Starch digestibility and glycaemic index of selected Indian traditional foods:Effects of added ingredients[J]. International Journal of Food Properties,2017,20:S290−S305. doi: 10.1080/10942912.2017.1295387
    [16]
    MEERA K, SMITA M, HARIPRIYA S, et al. Varietal influence on antioxidant properties and glycemic index of pigmented and non-pigmented rice[J]. Journal of Cereal Science,2019,87:202−208. doi: 10.1016/j.jcs.2019.03.005
    [17]
    ZHONG Y, QU J, LI Z, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers,2022,275:118777. doi: 10.1016/j.carbpol.2021.118777
    [18]
    LIU Z D, WANG J, LI L, et al. Mechanistic insights into the role of starch multi-level structures in functional properties of high-amylose rice cultivars[J]. Food Hydrocolloids,2021,113(80):106441.
    [19]
    KUMAR A, SAHOO S, SAHU S, et al. Rice with pulses or cooking oils can be used to elicit lower glycemic response[J]. Journal of Food Composition and Analysis,2018,71:1−7. doi: 10.1016/j.jfca.2018.05.003
    [20]
    APE D I, NWOGU N A, UWAKWE E I, et al. Comparative proximate analysis of maize and sorghum bought from ogbete main market of Enugu State, Nigeria[J]. Greener Journal of Agricultural Sciences,2016,6(9):272−275. doi: 10.15580/GJAS.2016.9.101516167
    [21]
    CAI C, ZHAO L, HUANG J, et al. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize[J]. Carbohydrate Polymers,2014,102(1):606−614.
    [22]
    BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch:Promise for improving human health[J]. Advances in Nutrition,2013,4(6):587−601. doi: 10.3945/an.113.004325
    [23]
    SLADE A J, MCGUIRE C, LOEFFLER D, et al. Development of high amylose wheat through tilling[J]. BMC Plant Biology,2012,12(1):69. doi: 10.1186/1471-2229-12-69
    [24]
    周淑蓝, 叶发银, 赵国华. 绿豆淀粉的性质, 改性及其应用[J]. 中国食品学报,2022,22(4):450−461. [ZHOU S L, YE F Y, ZHAO G H. The properties, modification and application of mung bean (Vigna radiata L. Wilczek) starch[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):450−461.]

    ZHOU S L, YE F Y, ZHAO G H. The properties, modification and application of mung bean (Vigna radiata L. Wilczek) starch[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 450−461.
    [25]
    王志倩, 李言, 钱海峰, 等. 豌豆成分对血糖的影响研究进展[J]. 中国食品学报,2023,23(9):430−438. [[WANG Z Q, LI Y, QIAN H F, et al. Effects of pea constituents on blood glucose:A review[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(9):430−438.]

    [WANG Z Q, LI Y, QIAN H F, et al. Effects of pea constituents on blood glucose: A review[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(9): 430−438.
    [26]
    AKYEREKO Y G, WIREKO-MANU F D, ODURO I. Influence of processing methods on food components and glycaemic index of cassava-based traditional foods[J]. Journal of Food and Nutrition Sciences,2020,8(1):6−14. doi: 10.11648/j.jfns.20200801.12
    [27]
    ZHANG L, ZHAO Y, HU W, et al. Multiscale structures of cassava and potato starch fractions varying in granule size[J]. Carbohydrate Polymers,2018,200(15):400−407.
    [28]
    NIU S, LI X Q, TANG R, et al. Starch granule sizes and degradation in sweet potatoes during storage[J]. Postharvest Biology and Technology,2019,150:137−147. doi: 10.1016/j.postharvbio.2019.01.004
    [29]
    SINGH A, RAIGOND P, LAL M K, et al. Effect of cooking methods on glycemic index and in-vitro bioaccessibility of potato(Solanum tuberosum L.) carbohydrates[J]. LWT-Food Science and Technology,2020,127:109363. doi: 10.1016/j.lwt.2020.109363
    [30]
    徐亚元, 沈素晴, 李大婧, 等. 青香蕉微波干燥中淀粉糊化行为及消化特性的研究[J]. 食品工业科技,2022,43(3):88−96. [XU Y Y, SHEN S Q, LI D J, et al. Study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry,2022,43(3):88−96.]

    XU Y Y, SHEN S Q, LI D J, et al. Study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry, 2022, 43(3): 88−96.
    [31]
    AGAMA-ACEVEDO E, NUÑEZ-SANTIAGO M C, ALVAREZ-RAMIREZ J, et al. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars[J]. Carbohydrate Polymers,2015,124:17. doi: 10.1016/j.carbpol.2015.02.003
    [32]
    KONG B, KIM J, KIM M, et al. Porcine pancreatic α-amylase hydrolysis of native starch granules as a function of granule surface area[J]. Biotechnology Progress,2003,19:1162−1166.
    [33]
    ALLER E, ABETE I, ASTRUP A, et al. Starches, sugars and obesity[J]. Nutrients,2011,3:341−369. doi: 10.3390/nu3030341
    [34]
    TANG M, WANG L, CHENG X, et al. Non-starch constituents influence the in-vitro digestibility of naked oat (Avena nuda L.) starch[J]. Food Chemistry,2019,297:124953. doi: 10.1016/j.foodchem.2019.124953
    [35]
    CHI C, LI X, ZHANG Y, et al. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates[J]. Food Hydrocolloids,2018,84:473−480. doi: 10.1016/j.foodhyd.2018.06.040
    [36]
    COPELAND L, BLAZEK J, SALMAN H, et al. Form and functionality of starch[J]. Food Hydrocolloids,2009,23(6):1527−1534. doi: 10.1016/j.foodhyd.2008.09.016
    [37]
    GUTIÉRREZ T J, TOVAR J. Update of the concept of type 5 resistant starch (RS5):Self-assembled starch V-type complexes[J]. Trends in Food Science & Technology,2021,109:711−724.
    [38]
    HE H, ZHENG B, WANG H, et al. Insights into the multi-scale structure and in-vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment[J]. Food Research International,2020,137:109612. doi: 10.1016/j.foodres.2020.109612
    [39]
    BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany,2011,62:4927−4941. doi: 10.1093/jxb/err188
    [40]
    ZHANG G, AO Z, HAMAKER B. Slow digestion property of native cereal starches[J]. Biomacromolecules,2006,7:3252−3258. doi: 10.1021/bm060342i
    [41]
    WANG H W, LIU Y F, CHEN L, et al. Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch[J]. Food Chemistry,2018,242:323−329. doi: 10.1016/j.foodchem.2017.09.014
    [42]
    ZHU L J, LIU Q Q, WILSON J D, et al. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content[J]. Carbohydrate Polymers,2011,86:1751−1759. doi: 10.1016/j.carbpol.2011.07.017
    [43]
    CHUNG H J, LIU Q A, LEE L, et al. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents[J]. Food Hydrocolloids,2011,25:968−975. doi: 10.1016/j.foodhyd.2010.09.011
    [44]
    CAI J W, MAN J M, HUANG J, et al. Relationship between structure and functional properties of normal rice starches with different amylose contents[J]. Carbohydrate Polymers,2015,125:35−44. doi: 10.1016/j.carbpol.2015.02.067
    [45]
    ZHANG G, HAMAKER B R. Review:Cereal carbohydrates and colon health[J]. Cereal Chemistry,2010,87:331−341. doi: 10.1094/CCHEM-87-4-0331
    [46]
    ZHOU X, YING Y N, HU B L, et al. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants[J]. Carbohydrate Polymers,2018,195:1−8. doi: 10.1016/j.carbpol.2018.04.070
    [47]
    YU W, TAO K, GILBERT R G. Improved methodology for analyzing relations between starch digestion kinetics and molecular structure[J]. Food Chemistry,2018,264:284−292. doi: 10.1016/j.foodchem.2018.05.049
    [48]
    GONG B, CHENG L, GILBERT R, et al. Distribution of short to medium amylose chains are major controllers of in-vitro digestion of retrograded rice starch[J]. Food Hydrocolloids,2019,96:634−643. doi: 10.1016/j.foodhyd.2019.06.003
    [49]
    ZHANG B, ZHOU W, QIAO D, et al. Changes in nanoscale chain assembly in sweet potato starch lamellae by downregulation of biosynthesis enzymes[J]. Journal of Agricultural and Food Chemistry,2019,67:6302−6312. doi: 10.1021/acs.jafc.8b06523
    [50]
    ZHU F. Relationships between amylopectin internal molecular structure and physicochemical properties of starch[J]. Trends in Food Science & Technology,2018,78:234−242.
    [51]
    ALHAMBRA C M, de GUZMAN M K, DHITAL S, et al. Long glucan chains reduce in vitro starch digestibility of freshly cooked and retrograded milled rice[J]. Journal of Cereal Science,2019,86:108−116. doi: 10.1016/j.jcs.2019.02.001
    [52]
    MIAO M, XIONG S, JIANG B, et al. Improved the slow digestion property of maize starch using partially beta-amylolysis[J]. Food Chemistry,2014,152:128−132. doi: 10.1016/j.foodchem.2013.11.148
    [53]
    DHITAL S, WARREN F J, BUTTERWORTH P J, et al. Mechanisms of starch digestion by α-amylase-structural basis for kinetic properties[J]. Critical Reviews in Food Science and Nutrition,2015,57:875−892.
    [54]
    ZAVAREZE E D, STORCK C R, CASTRO L A S, et al. Effect of heat-moisture treatment on rice starch of varying amylose content[J]. Food Chemistry,2010,121:358−365. doi: 10.1016/j.foodchem.2009.12.036
    [55]
    CAROLINA A A S, ALMEIDA M M A. Physicochemical properties, modifications and applications of starches from different botanical sources[J]. Food Science and Technology,2015,35(2):215−236. doi: 10.1590/1678-457X.6749
    [56]
    SILVA W M F, BIDUSKI B, LIMA K O, et al. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment[J]. Food Chemistry,2017,219:260−267. doi: 10.1016/j.foodchem.2016.09.134
    [57]
    DIAS A R G, ZAVAREZE E D, SPIER F, et al. Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents[J]. Food Chemistry,2010,123:711−719. doi: 10.1016/j.foodchem.2010.05.040
    [58]
    ZENG F, MA F, KONG F S, et al. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch[J]. Food Chemistry,2015,172:92−98. doi: 10.1016/j.foodchem.2014.09.020
    [59]
    DEKA D, SIT N. Dual modification of taro starch by microwave and other heat moisture treatments[J]. International Journal of Biological Macromolecules,2016,92:416−422. doi: 10.1016/j.ijbiomac.2016.07.040
    [60]
    SUN X, SALEH A S M, SUN Z, et al. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch through microwave and cold plasma treatments[J]. LWT-Food Science & Technology,2022,153:112483.
    [61]
    FAN D, WANG L, CHEN W, et al. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering[J]. Food Hydrocolloids,2014,35:620−626. doi: 10.1016/j.foodhyd.2013.08.003
    [62]
    LIU T, ZHANG B, WANG L, et al. Microwave reheating increases the resistant starch content in cooked rice with high water contents[J]. International Journal of Biological Macromolecules,2021,184:804−811. doi: 10.1016/j.ijbiomac.2021.06.136
    [63]
    LI Y, HU A, WANG X, et al. Physicochemical and in-vitro digestion of millet starch:Effect of moisture content in microwave[J]. International Journal of Biological Macromolecules,2019,134:308−315. doi: 10.1016/j.ijbiomac.2019.05.046
    [64]
    ZHAO K, LI B, XU M, et al. Microwave pretreated esterification improved the substitution degree, structural and physicochemical properties of potato starch esters[J]. LWT-Food Science & Technology,2018,90:116−123.
    [65]
    ALAM M S, KAUR J, KHAIRA H, et al. Extrusion and extruded products:Changes in quality attributes as affected by extrusion process parameters:A review[J]. Critical Reviews in Food Science & Nutrition,2016,56:445−473.
    [66]
    YANG W, ZHENG Y, SUN W, et al. Effect of extrusion processing on the microstructure and in-vitro digestibility of broken rice[J]. LWT-Food Science & Technology,2020,119:108835.
    [67]
    ZHANG B, DHITAL S, GIDLEY M J. Densely packed matrices as rate determining features in starch hydrolysis[J]. Trends in Food Science & Technology,2015,43:18−31.
    [68]
    CASTELLANOS-GALLO L, GALICIA-GARCIA T, ESTRADA-MORENO I, et al. Development of an expanded snack of rice starch enriched with amaranth by extrusion process[J]. Molecules,2019,24:1−22.
    [69]
    MENG S, MA Y, SUN D W, et al. Properties of starch palmitic acid complexes prepared by high pressure homogenization[J]. Journal of Cereal Science,2014,59(1):25−32. doi: 10.1016/j.jcs.2013.10.012
    [70]
    OYEYINKA S A, SINGH S, MA Y, et al. Effect of high-pressure homogenization on structural, thermal and rheological properties of Bambara starch complexed with different fatty acids[J]. RSC Advances,2016,6:80174−80180. doi: 10.1039/C6RA16452H
    [71]
    LIU Y, CHEN L, XU H, et al. Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization[J]. International Journal of Biological Macromolecules,2019,134:856−863. doi: 10.1016/j.ijbiomac.2019.05.083
    [72]
    BONTO A P, TIOZON J R N, SREENIVASULU N, et al. Impact of ultrasonic treatment on rice starch and grain functional properties:A review[J]. Ultrasonics Sonochemistry,2021,71:105383. doi: 10.1016/j.ultsonch.2020.105383
    [73]
    KUNYANEE K, LUANGSAKUL N. The effects of ultrasound-assisted recrystallization followed by chilling to produce the lower glycemic index of rice with different amylose content[J]. Food Chemistry,2020,323:126843. doi: 10.1016/j.foodchem.2020.126843
    [74]
    KUNYANEE K, LUANGSAKUL N. The utilization of ultrasound and chilling treatment to reduce GI in Thai glutinous rice(RD6)[J]. International Journal of Agricultural Technology,2018,14:1365−1378.
    [75]
    DANG L, THERDTHAI N, RATPHITAGSANTI W. Effects of ultrasonic and enzymatic treatment on physical and chemical properties of brown rice[J]. Journal of Food Process Engineering,2019,42:e13016. doi: 10.1111/jfpe.13016
    [76]
    DING Y, LIANG Y, LUO F, et al. Understanding the mechanism of ultrasonication regulated the digestibility properties of retrograded starch following vacuum freeze drying[J]. Carbohydrate Polymers, 2020, 228:115350.
    [77]
    KAUR H, GILL B S. Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals[J]. International Journal of Biological Macromolecules,2019,126:367−375. doi: 10.1016/j.ijbiomac.2018.12.149
    [78]
    MOUTIQ R, MISRA N N, MENDONÇA A, et al. In-package decontamination of chicken breast using cold plasma technology:Microbial, quality and storage studies[J]. Meat Science,2020,159:107942. doi: 10.1016/j.meatsci.2019.107942
    [79]
    OKYERE A Y, BOAKYE P G, BERTOFT E, et al. Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches[J]. Journal of Food Science,2022,87(2):686−698. doi: 10.1111/1750-3841.16037
    [80]
    ZOU J J, LIU C J, ELIASSON B. Modification of starch by glow discharge plasma[J]. Carbohydrate Polymers,2004,55(1):23−26. doi: 10.1016/j.carbpol.2003.06.001
    [81]
    ROVALINO-CÓRDOVA A M, FOGLIANO V, CAPUANO E. A closer look to cell structural barriers affecting starch digestibility in beans[J]. Carbohydrate Polymers,2018,181:994−1002. doi: 10.1016/j.carbpol.2017.11.050
    [82]
    BHATTARAI R R, DHITAL S, MENSE A, et al. Intact cellular structure in cereal endosperm limits starch digestion in-vitro[J]. Food Hydrocolloids,2018,81:139−148. doi: 10.1016/j.foodhyd.2018.02.027
    [83]
    CUI C, JIANG H, GUAN M, et al. Characterization and in-vitro digestibility of potato starch encapsulated in calcium alginate beads[J]. Food Hydrocolloids,2022,126:107458. doi: 10.1016/j.foodhyd.2021.107458
    [84]
    CUI C, LI M, JI N, et al. Calcium alginate/curdlan/corn starch@calcium alginate macrocapsules for slowly digestible and resistant starch[J]. Carbohydrate Polymers,2022,285:119259. doi: 10.1016/j.carbpol.2022.119259
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return