Citation: | LUO Fangjian, LU Fengqin, LI Dajing, et al. Effect of Ultrasonic Modification on the Interaction between Blueberry Pectin and Cyanidin-3-O-Glucoside[J]. Science and Technology of Food Industry, 2024, 45(19): 49−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100124. |
[1] |
YANG W, GUO Y, LIU M, et al. Structure and function of blueberry anthocyanins:A review of recent advances[J]. Journal of Functional Foods,2022,88:104864. doi: 10.1016/j.jff.2021.104864
|
[2] |
TANG C, HAN J, CHEN D, et al. Recent advances on the biological activities of purple sweet potato anthocyanins[J]. Food Bioscience,2023,53:102670. doi: 10.1016/j.fbio.2023.102670
|
[3] |
CHENG Y, CHEN X, YANG T, et al. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH[J]. Food Chemistry,2023,425:136494. doi: 10.1016/j.foodchem.2023.136494
|
[4] |
RENARD C M G C, WATRELOT A A, LE BOURVELLEC C. Interactions between polyphenols and polysaccharides:Mechanisms and consequences in food processing and digestion[J]. Trends in Food Science & Technology,2017,60:43−51.
|
[5] |
SALLEH N, GOH K K T, WATERLAND M R, et al. The influence of anthocyanins in pectin-whey protein complexation using a natural pigmented blackcurrant pectin[J]. Food Hydrocolloids,2023,140:108672. doi: 10.1016/j.foodhyd.2023.108672
|
[6] |
KOH J, XU Z, WICKER L. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions[J]. Food Hydrocolloids,2020,99:105354. doi: 10.1016/j.foodhyd.2019.105354
|
[7] |
FERNANDES P A R, COIMBRA M A. The antioxidant activity of polysaccharides:A structure-function relationship overview[J]. Carbohydrate Polymers,2023,314:120965. doi: 10.1016/j.carbpol.2023.120965
|
[8] |
CHEN T T, ZHANG Z H, WANG Z W, et al. Effects of ultrasound modification at different frequency modes on physicochemical, structural, functional, and biological properties of citrus pectin[J]. Food Hydrocolloids,2021,113:106484. doi: 10.1016/j.foodhyd.2020.106484
|
[9] |
YUAN D, LI C, HUANG Q, et al. Ultrasonic degradation effects on the physicochemical, rheological and antioxidant properties of polysaccharide from Sargassum pallidum[J]. Carbohydrate Polymers,2020,239:116230. doi: 10.1016/j.carbpol.2020.116230
|
[10] |
QIU J, ZHANG H, WANG Z. Ultrasonic degradation of polysaccharides from Auricularia auricula and the antioxidant activity of their degradation products[J]. LWT-Food Science and Technology,2019,113:108266. doi: 10.1016/j.lwt.2019.108266
|
[11] |
PANWAR D, PANESAR P S, CHOPRA H K. Ultrasound-assisted extraction of pectin from Citrus limetta peels:Optimization, characterization, and its comparison with commercial pectin[J]. Food Bioscience,2023,51:102231. doi: 10.1016/j.fbio.2022.102231
|
[12] |
WANG W, CHEN W, ZOU M, et al. Applications of power ultrasound in oriented modification and degradation of pectin:A review[J]. Journal of Food Engineering,2018,234:98−107. doi: 10.1016/j.jfoodeng.2018.04.016
|
[13] |
ZHANG L, ZHANG X, LIU D, et al. Effect of degradation methods on the structural properties of citrus pectin[J]. LWT-Food Science and Technology,2015,61(2):630−637. doi: 10.1016/j.lwt.2014.11.002
|
[14] |
余安玲. 改性果胶与白藜芦醇互作机制及其活性研究[D]. 广州:华南理工大学, 2021. [YU A L. Study on the interaction mechanism and activity of modified pectin and resveratrol[D]. Guangzhou:South China University of Technology, 2021.]
YU A L. Study on the interaction mechanism and activity of modified pectin and resveratrol[D]. Guangzhou: South China University of Technology, 2021.
|
[15] |
LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry,2016,194:986−93. doi: 10.1016/j.foodchem.2015.08.113
|
[16] |
KOH J, XU Z, WICKER L. Blueberry pectin and increased anthocyanins stability under in vitro digestion[J]. Food Chemistry,2020,302:125343. doi: 10.1016/j.foodchem.2019.125343
|
[17] |
ZHANG L, YE X, DING T, et al. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin[J]. Ultrasonics Sonochemistry,2013,20(1):222−231. doi: 10.1016/j.ultsonch.2012.07.021
|
[18] |
TAN C, LI D, WANG H, et al. Effects of high hydrostatic pressure on the binding capacity, interaction, and antioxidant activity of the binding products of cyanidin-3-glucoside and blueberry pectin[J]. Food Chemistry,2021,344:128731. doi: 10.1016/j.foodchem.2020.128731
|
[19] |
WANG M, JIANG C, MA L, et al. Preparation, preliminary characterization and immunostimulatory activity of polysaccharide fractions from the peduncles of Hovenia dulcis[J]. Food Chemistry,2013,138(1):41−47. doi: 10.1016/j.foodchem.2012.09.098
|
[20] |
XING Y, WANG K, ZHANG M, et al. Pectin-interactions and the digestive stability of anthocyanins in thermal and non-thermal processed strawberry pulp[J]. Food Chemistry,2023,424:136456. doi: 10.1016/j.foodchem.2023.136456
|
[21] |
PAN X, ZHAO W, WANG Y, et al. Physicochemical and structural properties of three pectin fractions from muskmelon (Cucumis melo) and their correlation with juice cloud stability[J]. Food Hydrocolloids,2022,124:107313. doi: 10.1016/j.foodhyd.2021.107313
|
[22] |
FERNANDES P A R, LE BOURVELLEC C, RENARD C, et al. Interactions of arabinan-rich pectic polysaccharides with polyphenols[J]. Carbohydrate Polymers,2020,230:115644. doi: 10.1016/j.carbpol.2019.115644
|
[23] |
XIE C, HUANG M, YING R, et al. Olive pectin-chitosan nanocomplexes for improving stability and bioavailability of blueberry anthocyanins[J]. Food Chemistry,2023,417:135798. doi: 10.1016/j.foodchem.2023.135798
|
[24] |
ZHAO X, ZHANG X, TIE S, et al. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery:An in vitro and in vivo study[J]. Food Hydrocolloids,2020,109:106114. doi: 10.1016/j.foodhyd.2020.106114
|
[25] |
OGUTU F O, MU T H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity[J]. Ultrasonics Sonochemistry,2017,38:726−734. doi: 10.1016/j.ultsonch.2016.08.014
|
[26] |
GERSCHENSON L N, FISSORE E N, ROJAS A M, et al. Pectins obtained by ultrasound from agroindustrial by-products[J]. Food Hydrocolloids,2021,118:106799. doi: 10.1016/j.foodhyd.2021.106799
|
[27] |
LIU X, RENARD C M G C, ROLLAND-SABATÉ A, et al. Exploring interactions between pectins and procyanidins:Structure-function relationships[J]. Food Hydrocolloids,2021,113:106498. doi: 10.1016/j.foodhyd.2020.106498
|
[28] |
WATRELOT A A, LE BOURVELLEC C, IMBERTY A, et al. Neutral sugar side chains of pectins limit interactions with procyanidins[J]. Carbohydrate Polymers,2014,99:527−536. doi: 10.1016/j.carbpol.2013.08.094
|
[29] |
XU X J, FANG S, LI Y H, et al. Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid[J]. Food Hydrocolloids,2019,86:116−123. doi: 10.1016/j.foodhyd.2018.03.007
|
[30] |
QIU W Y, CAI W D, WANG M, et al. Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing[J]. Food Chemistry,2019,297:125021. doi: 10.1016/j.foodchem.2019.125021
|
[31] |
MNICH E, BJARNHOLT N, EUDES A, et al. Phenolic cross-links:Building and de-constructing the plant cell wall[J]. Natural Product Reports,2020,37(7):919−961. doi: 10.1039/C9NP00028C
|
[32] |
YU Q, LI X, HU J, et al. The effect of three pectin fractions variation on the browning of different dried apple products[J]. Food Hydrocolloids,2023,134:108052. doi: 10.1016/j.foodhyd.2022.108052
|
[33] |
SZYMANSKA-CHARGOT M, CHYLINSKA M, KRUK B, et al. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development[J]. Carbohydrate Polymers,2015,115:93−103. doi: 10.1016/j.carbpol.2014.08.039
|
[34] |
XU X, ZHANG L, YAGOUB A E A, et al. Effects of ultrasound, freeze-thaw pretreatments and drying methods on structure and functional properties of pectin during the processing of okra[J]. Food Hydrocolloids,2021,120:106965. doi: 10.1016/j.foodhyd.2021.106965
|
[35] |
WANG S, ZHANG X, AI J, et al. Interaction between black mulberry pectin-rich fractions and cyanidin-3-O-glucoside under in vitro digestion[J]. Food Hydrocolloids,2023,134:108110. doi: 10.1016/j.foodhyd.2022.108110
|