Citation: | FENG Siting, LIU Pei, ZHANG Yihe, et al. Screening of Anti-hyperuricemia Peptides from Oat Protein Based on High-throughput Transcriptome Sequencing and Network Pharmacology[J]. Science and Technology of Food Industry, 2024, 45(15): 10−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100096. |
[1] |
LIU N, XU H, SUN Q, et al. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1470380.
|
[2] |
ZHANG M, ZHU X, WU J, et al. Prevalence of hyperuricemia among Chinese adults:Findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19[J]. Frontiers in Immunology,2021,12:791983.
|
[3] |
YI B, SUN J, LIU Y, et al. Virtual screening and multi-targets investigation of novel diazine derivatives as potential xanthine oxidase inhibitors based on QSAR, molecular docking, ADMET properties, dynamics simulation and network pharmacology[J]. Journal of Medicinal Chemistry,2023,19(7):704−716. doi: 10.2174/1573406419666230209092231
|
[4] |
DALBETH N, GOSLING A L, GAFFO A, et al. Gout[J]. Lancet,2021,397(10287):1843−1855. doi: 10.1016/S0140-6736(21)00569-9
|
[5] |
ZHANG X, CUI J, HOU J, et al. Research progress of natural active substances with uric-acid-reducing activity[J]. Journal of Agricultural and Food Chemistry,2022,70(50):15647−15664. doi: 10.1021/acs.jafc.2c06554
|
[6] |
LIU N, WANG Y, ZENG L, et al. RDP3, a novel antigout peptide derived from water extract of rice[J]. Journal of Agricultural and Food Chemistry,2020,68(27):7143−7151. doi: 10.1021/acs.jafc.0c02535
|
[7] |
LI Q, KANG X, SHI C, et al. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides[J]. Food & Function,2018,9(1):107−116.
|
[8] |
HAN J, WANG X, TANG S, et al. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota[J]. FASEB Journal,2020,34(4):5061−5076. doi: 10.1096/fj.201902597RR
|
[9] |
FAN S, HUANG Y, LU G, et al. Novel anti-hyperuricemic hexapeptides derived from apostichopus japonicus hydrolysate and their modulation effects on the gut microbiota and host microrna profile[J]. Food & Function,2022,13(7):3865−3878.
|
[10] |
MAO Z, JIANG H, MAO X. Identification and anti-hyperuricemic activity of xanthine oxidase inhibitory peptides from pacific white shrimp and swimming crab based on molecular docking screening[J]. Journal of Agricultural and Food Chemistry,2023,71(3):1620−1627. doi: 10.1021/acs.jafc.2c07881
|
[11] |
KEILIN J. The biological significance of uric acid and guanine excretion[J]. Biological Reviews,1959,34:265−296.
|
[12] |
JANG I T, HYUN S H, SHIN J W, et al. Characterization of an anti-gout xanthine oxidase inhibitor from pleurotus ostreatus[J]. Mycobiology,2014,42(3):296−300. doi: 10.5941/MYCO.2014.42.3.296
|
[13] |
LI X, ZHOU L, YU Y, et al. The potential functions and mechanisms of oat on cancer prevention:A review[J]. Journal of Agricultural and Food Chemistry,2022,70(46):14588−14599. doi: 10.1021/acs.jafc.2c06518
|
[14] |
RAFIQUE H, DONG R, WANG X, et al. Dietary-nutraceutical properties of oat protein and peptides[J]. Frontiers in Nutrition,2022,9:950400. doi: 10.3389/fnut.2022.950400
|
[15] |
黄小清. 基于组学的动物药快速鉴定及活性肽筛选研究[D]. 武汉:武汉大学, 2020. [HUANG Xiaoqing. Rapid species identification and active peptide screening in Chinese medicinal animals based on omics technologies[D]. Wuhan:Wuhan University, 2020.]
HUANG Xiaoqing. Rapid species identification and active peptide screening in Chinese medicinal animals based on omics technologies[D]. Wuhan: Wuhan University, 2020.
|
[16] |
李安. 青环海蛇抗炎活性肽Hydrostatin-SN10的靶点拮抗机制及基于三代测序的青环海蛇多组学研究[D]. 上海:中国人民解放军海军军医大学, 2022. [LI An. Study on the target-antagonizing mechanism of the sea snake anti-inflammatory peptide Hydrostatin-SN10 and the multi-omics of Hydrophis cyanocinctus based on third-generation sequencing[D]. Shanghai:Naval Medical University, 2022.]
LI An. Study on the target-antagonizing mechanism of the sea snake anti-inflammatory peptide Hydrostatin-SN10 and the multi-omics of Hydrophis cyanocinctus based on third-generation sequencing[D]. Shanghai: Naval Medical University, 2022.
|
[17] |
LI A, WANG J, SUN K, et al. Two reference-quality sea snake genomes reveal their divergent evolution of adaptive traits and venom systems[J]. Molecular Biology and Evolution,2021,38(11):4867−4883. doi: 10.1093/molbev/msab212
|
[18] |
JIA L, WANG L, LIU C, et al. Bioactive peptides from foods:Production, function, and application[J]. Food & Function,2021,12(16):7108−7125.
|
[19] |
LIN K, ZHANG L W, HAN X, et al. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis[J]. Food Chemistry,2018,254:340−347. doi: 10.1016/j.foodchem.2018.02.051
|
[20] |
BLEAKLEY S, HAYES M, N O S, et al. Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis[J]. Foods (Basel, Switzerland),2017,6(12):108.
|
[21] |
LUO J J, CHEN X H, LIANG P Y, et al. Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking[J]. Computers in Biology and Medicine,2023,155:106637. doi: 10.1016/j.compbiomed.2023.106637
|
[22] |
YUAN Z, PAN Y, LENG T, et al. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine[J]. Journal of Pharmacy & Pharmaceutical Sciences,2022,25:218−226.
|
[23] |
GUTIERREZ-GONZALEZ J J, TU Z J, GARVIN D F. Analysis and annotation of the hexaploid oat seed transcriptome[J]. BMC Genomics,2013,14:471. doi: 10.1186/1471-2164-14-471
|
[24] |
PENG Y, YAN H, GUO L, et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat[J]. Nature Genetics,2022,54(8):1248−1258. doi: 10.1038/s41588-022-01127-7
|
[25] |
LI W, GODZIK A. CD-Hit:A fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics,2006,22(13):1658−1659. doi: 10.1093/bioinformatics/btl158
|
[26] |
WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology,1999,112:531−552.
|
[27] |
DU Z, LI Y. Computer-aided approaches for screening antioxidative dipeptides and application to sorghum proteins[J]. ACS Food Science & Technology,2022,2(11):1781−1788.
|
[28] |
MOONEY C, HASLAM N J, POLLASTRI G, et al. Towards the improved discovery and design of functional peptides:Common features of diverse classes permit generalized prediction of bioactivity[J]. PLoS One,2012,7(10):e45012. doi: 10.1371/journal.pone.0045012
|
[29] |
GUPTA S, KAPOOR P, CHAUDHARY K, et al. In silico approach for predicting toxicity of peptides and proteins[J]. PLoS One,2013,8(9):e73957. doi: 10.1371/journal.pone.0073957
|
[30] |
DAINA A, MICHIELIN O, ZOETE V. SwissADME:A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Scientific Reports,2017,7:42717. doi: 10.1038/srep42717
|
[31] |
胡百淳, 田金鑫, 张逸腾, 等. 化合物成药性的在线预测[J]. 中国药物化学杂志,2022,32(2):90−101. [HU Baichun, TIAN Jinxin, ZHANG Yiteng, et al. Online prediction of compound's druggability[J]. Chinese Journal of Medicinal Chemistry,2022,32(2):90−101.]
HU Baichun, TIAN Jinxin, ZHANG Yiteng, et al. Online prediction of compound's druggability[J]. Chinese Journal of Medicinal Chemistry, 2022, 32(2): 90−101.
|
[32] |
但文超, 刘红旭, 何庆勇, 等. 基于网络药理学与分子对接方法探讨黄山药干预冠心病的作用机制研究[J]. 世界科学技术-中医药现代化,2021,23(6):1829−1843. [DAN Wenchao, LIU Hongxu, HE Qingyong, et al. Based on the network pharmacology and molecular docking method to explore the mechanism of Dioscorea panthaica rhizoma in the intervention of coronary heart disease[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2021,23(6):1829−1843.]
DAN Wenchao, LIU Hongxu, HE Qingyong, et al. Based on the network pharmacology and molecular docking method to explore the mechanism of Dioscorea panthaica rhizoma in the intervention of coronary heart disease[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(6): 1829−1843.
|
[33] |
DAVIS A P, GRONDIN C J, JOHNSON R J, et al. Comparative toxicogenomics database (CTD):Update 2021[J]. Nucleic Acids Research,2021,49(D1):D1138−d1143. doi: 10.1093/nar/gkaa891
|
[34] |
但文超, 何庆勇, 曲艺, 等. 基于网络药理学的枳术丸调治血脂异常的分子机制研究[J]. 世界科学技术-中医药现代化,2019,21(11):2396−2405. [DAN Wenchao, HE Qingyong, QU Yi, et al. Molecular mechanism of ZHIZHU pill in treatment of dyslipidemia based on network pharmacology[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2019,21(11):2396−2405.]
DAN Wenchao, HE Qingyong, QU Yi, et al. Molecular mechanism of ZHIZHU pill in treatment of dyslipidemia based on network pharmacology[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2019, 21(11): 2396−2405.
|
[35] |
LI Y, KANG X, LI Q, et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity[J]. Peptides,2018,107:45−53. doi: 10.1016/j.peptides.2018.08.001
|
[36] |
OWEN P L, JOHNS T. Xanthine oxidase inhibitory activity of northeastern north American plant remedies used for gout[J]. Journal of Ethnopharmacology,1999,64(2):149−160. doi: 10.1016/S0378-8741(98)00119-6
|
[37] |
潘莹, 程时锋. 燕麦基因组学研究进展[J]. 植物遗传资源学报,2021,22(2):304−308. [PAN Ying, CHENG Shifeng. Research progress on oat genomics study[J]. Journal of Plant Genetic Resources,2021,22(2):304−308.]
PAN Ying, CHENG Shifeng. Research progress on oat genomics study[J]. Journal of Plant Genetic Resources, 2021, 22(2): 304−308.
|
[38] |
张曼, 张美莉, 郭军, 等. 中国燕麦分布、生产及营养价值与生理功能概述[J]. 内蒙古农业科技,2014(2):116−118,126. [ZHANG Man, ZHANG Meili, GUO Jun, et al. Summary of distribution, production, nutritional and physiological value of Avena sativa L. in China[J]. Journal of Northern Agriculture,2014(2):116−118,126.]
ZHANG Man, ZHANG Meili, GUO Jun, et al. Summary of distribution, production, nutritional and physiological value of Avena sativa L. in China[J]. Journal of Northern Agriculture, 2014(2): 116−118,126.
|
[39] |
LOSKUTOV I G, GNUTIKOV A A, BLINOVA E V, et al. The origin and resource potential of wild and cultivated species of the genus of oats (Avena L.)[J]. Russian Journal of Genetics,2021,57(6):642−661. doi: 10.1134/S1022795421060065
|
[40] |
郭明荣. 计算机辅助的蛋白质虚拟酶解和降血压肽构效机理研究及筛选[D]. 上海:华东理工大学, 2015. [GUO Mingrong. Computer-aided protein virtual enzymatic hydrolysis and study on the mechanism of ACE inhibitory peptides and their screening[D]. Shanghai:East China University of Science and Technology, 2015.]
GUO Mingrong. Computer-aided protein virtual enzymatic hydrolysis and study on the mechanism of ACE inhibitory peptides and their screening[D]. Shanghai: East China University of Science and Technology, 2015.
|
[41] |
FITZGERALD R J, CERME O M, KHALESI M, et al. Application of in silico approaches for the generation of milk protein-derived bioactive peptides[J]. Journal of Functional Foods,2020,64:103636. doi: 10.1016/j.jff.2019.103636
|
[42] |
YU Z, CAO Y, KAN R, et al. Identification of egg protein-derived peptides as xanthine oxidase inhibitors:Virtual hydrolysis, molecular docking, and in vitro activity evaluation[J]. Food Science and Human Wellness,2022,11(6):1591−1597. doi: 10.1016/j.fshw.2022.06.017
|
[43] |
MUDGIL P, KILARI B P, KAMAL H, et al. Multifunctional bioactive peptides derived from quinoa protein hydrolysates:Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes[J]. Journal of Cereal Science,2020,96:103130. doi: 10.1016/j.jcs.2020.103130
|
[44] |
FUENTES L R, RICHARD C, CHEN L. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein[J]. Journal of Functional Foods,2021,87:104829. doi: 10.1016/j.jff.2021.104829
|
[45] |
ZHAO L, AI X, PAN F, et al. Novel peptides with xanthine oxidase inhibitory activity identified from macadamia nuts:Integrated in silico and in vitro analysis[J]. European Food Research and Technology,2022,248(8):2031−2042. doi: 10.1007/s00217-022-04028-5
|
[46] |
WOITISKI C B, NEUFELD R J, RIBEIRO A J, et al. Colloidal carrier integrating biomaterials for oral insulin delivery:Influence of component formulation on physicochemical and biological parameters[J]. Acta Biomaterialia,2009,5(7):2475−2484. doi: 10.1016/j.actbio.2009.03.007
|
[47] |
HONG S-M, TANAKA M, KOYANAGI R, et al. Structural design of oligopeptides for intestinal transport model[J]. Journal of Agricultural and Food Chemistry,2016,64(10):2072−2079. doi: 10.1021/acs.jafc.6b00279
|
[48] |
SHEN W, MATSUI T. Current knowledge of intestinal absorption of bioactive peptides[J]. Food & Function,2017,8(12):4306−4314.
|
[49] |
SWEENEY P J, WALKER J M. Proteinase K (EC 3.4. 21.14)[J]. Methods in Molecular Biology,1993,16:305−311.
|
[50] |
ZHOU C, LI R, ZHANG S, et al. Association between serum albumin and new-onset hyperuricemia among participants with hypertension[J]. Precision Nutrition,2023,2(1):e00027.
|
[51] |
WENJING F, TINGTING T, QIAN Z, et al. The role of IL-1β in aortic aneurysm[J]. Clinica Chimica Acta,2020,504:7−14. doi: 10.1016/j.cca.2020.01.007
|
[52] |
曹文琼, 黄新梅, 高红梅, 等. 抑制NLRP3/IL-1β信号通路对高尿酸血症CKD大鼠肾功能的影响[J]. 西部医学,2023,35(6):830−836. [CAO Wenqiong, HUANG Xinmei, GAO Hongmei, et al. Effects of inhibition of NLRP3/IL-1β signaling pathway on renal function in hyperuricemic CKD rats[J]. Medical Journal of West China,2023,35(6):830−836.] doi: 10.3969/j.issn.1672-3511.2023.06.009
CAO Wenqiong, HUANG Xinmei, GAO Hongmei, et al. Effects of inhibition of NLRP3/IL-1β signaling pathway on renal function in hyperuricemic CKD rats[J]. Medical Journal of West China, 2023, 35(6): 830−836. doi: 10.3969/j.issn.1672-3511.2023.06.009
|
[53] |
KRISHNAN S M, LING Y H, HUUSKES B M, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension[J]. Cardiovascular Research,2019,115(4):776−787. doi: 10.1093/cvr/cvy252
|
[54] |
LEO C, CHEN J D. The SRC family of nuclear receptor coactivators[J]. Gene,2000,245(1):1−11. doi: 10.1016/S0378-1119(00)00024-X
|
[55] |
DASGUPTA S, LONARD D M, O'MALLEY B W. Nuclear receptor coactivators:Master regulators of human health and disease[J]. Annual Review of Medicine,2014,65:279−292. doi: 10.1146/annurev-med-051812-145316
|
[56] |
KIM D H, CHOI H I, PARK J S, et al. Src-mediated crosstalk between FXR and YAP protects against renal fibrosis[J]. FASEB Journal,2019,33(10):11109−11122. doi: 10.1096/fj.201900325R
|
[57] |
YAN Y, MA L, ZHOU X, et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis[J]. Kidney International,2016,89(1):68−81. doi: 10.1038/ki.2015.293
|
[58] |
SUZUKI T, ICHII O, NAKAMURA T, et al. Immune-associated renal disease found in caspase 3-deficient mice[J]. Cell and Tissue Research,2020,379(2):323−335. doi: 10.1007/s00441-019-03084-w
|
[59] |
PAN J, SHI M, GUO F, et al. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease[J]. Life Sciences,2021,285:119946. doi: 10.1016/j.lfs.2021.119946
|
[60] |
吴冕, 陈海冰. 高尿酸血症与癌症[J]. 中华内分泌代谢杂志,2016,32(5):429−432. [WU Mian, CHEN Haibing. Hyperuricemia and cancer[J]. Chinese Journal of Endocrinology and Metabolism,2016,32(5):429−432.] doi: 10.3760/cma.j.issn.1000-6699.2016.05.018
WU Mian, CHEN Haibing. Hyperuricemia and cancer[J]. Chinese Journal of Endocrinology and Metabolism, 2016, 32(5): 429−432. doi: 10.3760/cma.j.issn.1000-6699.2016.05.018
|
[61] |
XIE Y, XU P, LIU K, et al. Hyperuricemia and gout are associated with cancer incidence and mortality:A meta-analysis based on cohort studies[J]. Journal of Cellular Physiology,2019,234(8):14364−14376. doi: 10.1002/jcp.28138
|
[62] |
MENG J, LÜ Q, SUI A, et al. Hyperuricemia induces lipid disturbances by upregulating the CXCL-13 pathway[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2022,322(2):G256−g267. doi: 10.1152/ajpgi.00285.2021
|
[63] |
JAYACHANDRAN M, QU S. Harnessing hyperuricemia to atherosclerosis and understanding its mechanistic dependence[J]. Medicinal Research Reviews,2021,41(1):616−629. doi: 10.1002/med.21742
|
[64] |
HE W, SU G, SUN-WATERHOUSE D, et al. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions[J]. Food Chemistry,2019,272:453−461. doi: 10.1016/j.foodchem.2018.08.057
|
[65] |
HUANG X N, ZHANG Y M, WEN Y, et al. Protease-catalyzed rational synthesis of uric acid-lowering peptides in non-aqueous medium[J]. International Journal of Peptide Research and Therapeutics,2022,28(2):61. doi: 10.1007/s10989-022-10367-4
|
[66] |
胡晓, 周雅, 杨贤庆, 等. 食物蛋白源降尿酸活性肽的研究进展[J]. 食品与发酵工业,2020,46(4):287−293. [HU Xiao, ZHOU Ya, YANG Xianqing, et al. Research progress on anti-hyperuricemic peptides obtained from food proteins[J]. Food and Fermentation Industries,2020,46(4):287−293.]
HU Xiao, ZHOU Ya, YANG Xianqing, et al. Research progress on anti-hyperuricemic peptides obtained from food proteins[J]. Food and Fermentation Industries, 2020, 46(4): 287−293.
|
1. |
谭思远,阮兴阳,王园莉,惠和平,陈月星,范娜. 气相色谱-质谱/选择离子监测模式检测食用菌多糖中单糖组成方法的建立与质谱解析. 食品安全质量检测学报. 2025(02): 196-205 .
![]() | |
2. |
王帅,孔博洋,李婷,贾小艳,肖红,位张坤,张继,王俊龙. 微波处理对刺槐豆胶多糖结构特征的影响. 中国食品添加剂. 2024(01): 87-98 .
![]() | |
3. |
张弘弛,刘瑞,巴德方,李慧,杨阳,周凤. 恒山黄芪~1H-NMR指纹图谱的研究. 食品工业科技. 2022(01): 47-55 .
![]() | |
4. |
任一杰,赵小亮,王宝忠,向紫骏,杨超福,王海利,马君义,张伟杰. 油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性. 食品工业科技. 2022(23): 245-251 .
![]() |