XIAO Lin, LIU Qian, LIANG Huipeng, et al. Analysis of Volatile Organic Compounds and Sensory Characteristics of Hops[J]. Science and Technology of Food Industry, 2024, 45(16): 292−300. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100052.
Citation: XIAO Lin, LIU Qian, LIANG Huipeng, et al. Analysis of Volatile Organic Compounds and Sensory Characteristics of Hops[J]. Science and Technology of Food Industry, 2024, 45(16): 292−300. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100052.

Analysis of Volatile Organic Compounds and Sensory Characteristics of Hops

More Information
  • Received Date: October 10, 2023
  • Available Online: June 19, 2024
  • To examine the variances in volatile organic compounds (VOCs) and sensory attributes across various hop cultivars, an analytical approach was employed. Specifically, gas chromatography-ion mobility spectroscopy (GC-IMS), gas chromatography-mass spectrometry (GC-MS), and quantitative descriptive analysis (QDA) were employed to scrutinize the VOCs and sensory characteristics of four distinct hop varieties, namely Magnum, Palisade, Saaz, and Hersbrucker. The outcomes of QDA revealed a diverse array of sensory profiles in the hops, encompassing citrus and non-citrus fruit aromas, woody, floral, herbal, spicy, and green aromas, with noticeable distinctions in sensory attributes discernible among the various hop cultivars. The results showed that 79 VOCs were identified in the GC-IMS spectra of different varieties of hops, including terpenes, alcohols, esters, aldehydes, and ketones. 140 VOCs were identified in the GC-MS spectra of different varieties of hops, including terpenes, alcohols, ketones, esters, acids, and aldehydes, with terpenes and esters emerging as the prevailing constituents in hops. The principal component analysis (PCA) of different hop VOCs was performed to effectively identify the differences among hop varieties. This study can provide a valuable reference for the comprehensive analysis of VOCs and sensory attributes in hops. Furthermore, it contributes theoretical underpinnings to inform the precise application of hops in the context of beer brewing.
  • [1]
    CHEN X Y, WANG M Y, DENG C H, et al. The hops (Humulus lupulus L.) genome contains a mid-sized terpene synthase family that shows wide functional and allelic diversity[J]. BMC Plant Biology,2023,23(1):280. doi: 10.1186/s12870-023-04283-y
    [2]
    周煜, 薛璐, 吴子健, 等. 啤酒挥发性有机化合物(VOCs)风味成分研究进展[J]. 食品研究与开发,2021,42(1):210−219. [ZHOU Y, XUE L, WU Z J, et al. Research progress on beer volatile flavor components[J]. Food Research and Development,2021,42(1):210−219.] doi: 10.12161/j.issn.1005-6521.2021.01.035

    ZHOU Y, XUE L, WU Z J, et al. Research progress on beer volatile flavor components[J]. Food Research and Development, 2021, 42(1): 210−219. doi: 10.12161/j.issn.1005-6521.2021.01.035
    [3]
    宋文杰, 李慧帆, 姜俊羽, 等. 基于高效液相色谱技术的啤酒花指纹图谱研究[J]. 食品与发酵工业,2022,48(22):279−284. [SONG W J, LI H F, JIANG J Y, et al. Study on fingerprint of hops based on high performance liquid chromatography[J]. Food and Fermentation Industry,2022,48(22):279−284.]

    SONG W J, LI H F, JIANG J Y, et al. Study on fingerprint of hops based on high performance liquid chromatography[J]. Food and Fermentation Industry, 2022, 48(22): 279−284.
    [4]
    EYRES G T, MARRIOTT P J, DUFOUR J P. Comparison of odor-active compounds in the spicy fraction of hop (Humulus lupulus L.) essential oil from four different varieties[J]. Journal of Agricultural and Food Chemistry, 2007, 55(15):6252−6261.
    [5]
    VAN OPSTAELE F, DE CAUSMAECKER B, AERTS G, et al. Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry[J]. Journal of Agricultural and Food Chemistry,2012,60(50):12270−12281. doi: 10.1021/jf304421d
    [6]
    ROBERTS M T, DUFOUR J P, LEWIS A. C. Application of comprehensive multidimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) for high resolution analysis of hop essential oil[J]. Journal of Separation Science,2004,27(5-6):473−478. doi: 10.1002/jssc.200301669
    [7]
    KOVAČEVIČ M, KAČ M. Determination and verification of hop varieties by analysis of essential oils[J]. Food Chemistry,2002,77(4):489−494. doi: 10.1016/S0308-8146(02)00114-0
    [8]
    张敬文, 潘磊庆, 屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. [ZHANG J W, PAN L Q, TU K. Aroma Determination of three freshly squeezed strawberry juice based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry,2023,44(3):286−296.]

    ZHANG J W, PAN L Q, TU K. Aroma Determination of three freshly squeezed strawberry juice based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2023, 44(3): 286−296.
    [9]
    WANG S Q, CHEN H T, SUN B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158
    [10]
    金文刚, 赵萍, 金晶, 等. 基于顶空气相-离子迁移谱分析洋县不同色泽糙米蒸煮后挥发性有机化合物(VOCs)风味物质差异[J]. 食品科学,2022,43(18):258−264. [JIN W G, ZHAO P, JIN J, et al. Analysis of volatile flavor components in cooked unpolished rice of different colors from yangxian county by headspace-gas chromatography-ion mobility spectroscopy[J]. Food Sci,2022,43(18):258−264.] doi: 10.7506/spkx1002-6630-20210927-324

    JIN W G, ZHAO P, JIN J, et al. Analysis of volatile flavor components in cooked unpolished rice of different colors from yangxian county by headspace-gas chromatography-ion mobility spectroscopy[J]. Food Sci, 2022, 43(18): 258−264. doi: 10.7506/spkx1002-6630-20210927-324
    [11]
    徐永霞, 白旭婷, 冯媛, 等. 基于 GC-IMS 和化学计量学分析海鲈鱼肉蒸制过程中风味物质的变化[J]. 食品科学,2021,42(22):270−275. [XU Y X, BAI X T, FENG Y, et al. Changes of flavor compounds in sea bass during steaming process as analyzed by gas chromatography-ion mobility spectroscopy and chemometrics[J]. Food Sci,2021,42(22):270−275.] doi: 10.7506/spkx1002-6630-20201219-221

    XU Y X, BAI X T, FENG Y, et al. Changes of flavor compounds in sea bass during steaming process as analyzed by gas chromatography-ion mobility spectroscopy and chemometrics[J]. Food Sci, 2021, 42(22): 270−275. doi: 10.7506/spkx1002-6630-20201219-221
    [12]
    倪瑞洁, 詹萍, 田洪磊. 基于 GC-IMS 结合多元统计方法分析炸制时间对花椒调味油挥发性有机化合物(VOCs)物质的影响[J]. 食品科学,2022,43(6):279−286. [NI R J, ZHAN P, TIAN H L. Effects of frying time on volatile flavor compounds in fried pepper (Zanthoxylum bungeanum) oil as analyzed by gas chromatography-ion mobility spectrometry and multivariate statistical analysis[J]. Food Sci,2022,43(6):279−286.] doi: 10.7506/spkx1002-6630-20210429-417

    NI R J, ZHAN P, TIAN H L. Effects of frying time on volatile flavor compounds in fried pepper (Zanthoxylum bungeanum) oil as analyzed by gas chromatography-ion mobility spectrometry and multivariate statistical analysis[J]. Food Sci, 2022, 43(6): 279−286. doi: 10.7506/spkx1002-6630-20210429-417
    [13]
    CHEN Y P, CHEN H, CUI D, et al. Fast and non-destructive profiling of commercial coffee aroma under three conditions (beans, powder, and brews) using GC-IMS[J]. Molecules,2022,27(19):6262. doi: 10.3390/molecules27196262
    [14]
    刘振平, 龙道崎, 甘芳瑗, 等. 基于GC-IMS技术的油菜花蜂蜜产地溯源模型鉴别[J]. 中国食品学报,2023,23(8):379−388. [LIU Z P, LONG D Q, GAN F Y, et al. Identification of rapeseed honey origin tracing model based on GC-IMS[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(8):379−388.]

    LIU Z P, LONG D Q, GAN F Y, et al. Identification of rapeseed honey origin tracing model based on GC-IMS[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(8): 379−388.
    [15]
    王奕博, 张浩, 任培芳, 等. GC-IMS比较米泔水制苍术炮制过程中挥发性有机物的变化[J]. 中国现代中药,2023,25(12):2576-2582. [WANG Y B, ZHANG H, REN P F, et al. Changes in volatile organic components in the processing of atractylodis rhizoma with rice-washed water based on GC-IMS[J]. Modern Chinese Medicine,2023,25(12):2576-2582.]

    WANG Y B, ZHANG H, REN P F, et al. Changes in volatile organic components in the processing of atractylodis rhizoma with rice-washed water based on GC-IMS[J]. Modern Chinese Medicine, 2023, 25(12): 2576-2582.
    [16]
    马宁原, 姚凌云, 孙敏, 等. 基于GC-IMS和GC-MS分析不同发酵方式对黄桃酒香气成分的影响[J]. 食品科学,2023,44(12):306−314. [MA N Y, YAO L Y, SUN M, et al. Effect of different fermentation methods on aroma composition of yellow peach wine analyzed by gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry[J]. Food Sci,2023,44(12):306−314.] doi: 10.7506/spkx1002-6630-20220901-019

    MA N Y, YAO L Y, SUN M, et al. Effect of different fermentation methods on aroma composition of yellow peach wine analyzed by gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry[J]. Food Sci, 2023, 44(12): 306−314. doi: 10.7506/spkx1002-6630-20220901-019
    [17]
    张文玉, 李雅, 马赫, 等. GC-MS结合化学计量法分析不同干燥方式对芫荽风味物质的影响[J/OL]. 食品与发酵工业, 2023:1−9[2023-11-24]. https://doi.org/10.13995/j.cnki.11-1802/ts.036172. [ZHANG W Y , LI Y, MA H, et al. Analysis of effects of different drying methods on flavor substances of coriander using GC-MS combined with stoichiometric method[J/OL]. Food and Fermentation Industries, 2023: 1−9[2023-11-24]. https://doi.org/10.13995/j.cnki.11-1802/ts.036172.]

    ZHANG W Y , LI Y, MA H, et al. Analysis of effects of different drying methods on flavor substances of coriander using GC-MS combined with stoichiometric method[J/OL]. Food and Fermentation Industries, 2023: 1−9[2023-11-24]. https://doi.org/10.13995/j.cnki.11-1802/ts.036172.
    [18]
    NEZI P, CICALONI V, TINTI L, et al. Metabolomic and proteomic profile of dried hop inflorescences (Humulus lupulus L. cv. chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS[J]. Food Chemistry,2022,9(8):204−204.
    [19]
    STONE H. Sensory evaluation by quantitative descriptive analysis[J]. Food Technology,1974,28(11):24.
    [20]
    李元一, 李倩倩, 张葆春, 等. 基于静态及动态感官分析的中法白兰地风味特征研究[J]. 食品与发酵工业,2022,48(1):227−232. [LI Y Y, LI Q Q, ZHANG B C, et al. Flavour characteristics of Chinese and French brandies based on static and dynamic sensory analysis[J]. Food and Fermentation Industries,2022,48(1):227−232.]

    LI Y Y, LI Q Q, ZHANG B C, et al. Flavour characteristics of Chinese and French brandies based on static and dynamic sensory analysis[J]. Food and Fermentation Industries, 2022, 48(1): 227−232.
    [21]
    谢雪华, 邱月, 王旭骅, 等. 基于QDA和GC-MS的热加工牛肉特征挥发性有机化合物(VOCs)风味物质分析[J]. 中国食品学报,2023,23(5):301−310. [XIE X H, QIU Y, WANG X H, et al. Analysis of characteristic volatile organic compounds (VOCs) in hot processed beef based on QDA and GC-MS[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(5):301−310.]

    XIE X H, QIU Y, WANG X H, et al. Analysis of characteristic volatile organic compounds (VOCs) in hot processed beef based on QDA and GC-MS[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(5): 301−310.
    [22]
    曾亮, 张博闻, 魏芳, 等. 南川大树茶红茶QDA分析条件优化与风味轮建立[J]. 茶叶通讯,2023,50(2):141−152. [ZENG L, ZHANG B W, WEI F, et al. Optimization of QDA analysis conditions and flavor wheel establishment for camellia nanchuanica black tea[J]. Journal of Tea Communication,2023,50(2):141−152.] doi: 10.3969/j.issn.1009-525X.2023.02.001

    ZENG L, ZHANG B W, WEI F, et al. Optimization of QDA analysis conditions and flavor wheel establishment for camellia nanchuanica black tea[J]. Journal of Tea Communication, 2023, 50(2): 141−152. doi: 10.3969/j.issn.1009-525X.2023.02.001
    [23]
    戴前颖, 安琪, 郑芳玲, 等. 基于定量描述分析法和适合项勾选法的黄大茶香气感官特性及喜好度分析[J]. 食品科学,2022,43(21):23−33. [DAI Q Y, AN Q, ZHENG F L, et al. Analysis of aroma sensory characteristics of and preference for large-leaf yellow tea using quantitative descriptive analysis and check-all-that-apply[J]. Food Sci,2022,43(21):23−33.] doi: 10.7506/spkx1002-6630-20210827-354

    DAI Q Y, AN Q, ZHENG F L, et al. Analysis of aroma sensory characteristics of and preference for large-leaf yellow tea using quantitative descriptive analysis and check-all-that-apply[J]. Food Sci, 2022, 43(21): 23−33. doi: 10.7506/spkx1002-6630-20210827-354
    [24]
    HOLLE A V, HILDE M, GEERT H, et al. Relevance of hop terroir for beer flavor[J]. Journal of the Institute of Brewing,2021,127(3):238−247. doi: 10.1002/jib.648
    [25]
    MACHADO J C, LEHNHARDT FLORIAN, MARTINS Z E, et al. Sensory and olfactometry chemometrics as valuable tools for assessing hops’ aroma impact on dry-hopped beers:a study with wild portuguese genotypes[J]. Foods,2021,10(6):1397. doi: 10.3390/foods10061397
    [26]
    陈丽兰, 陈祖明, 袁灿. 气相色谱-离子迁移谱结合化学计量法分析不同炒制时间对郫县豆瓣酱挥发性有机化合物(VOCs)有机物的影响[J]. 食品科学,2023,44(14):283−290. [CHEN L L, CHEN Z M, YUAN C. Effect of cooking time on volatile compounds of pixian bean paste determined by gas chromatography-ion mobility spectrometry combined with chemometrics[J]. Food Sci,2023,44(14):283−290.] doi: 10.7506/spkx1002-6630-20221103-025

    CHEN L L, CHEN Z M, YUAN C. Effect of cooking time on volatile compounds of pixian bean paste determined by gas chromatography-ion mobility spectrometry combined with chemometrics[J]. Food Sci, 2023, 44(14): 283−290. doi: 10.7506/spkx1002-6630-20221103-025
    [27]
    LI M Q, YANG R W, ZHANG H, et al. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry,2019,290:32−39. doi: 10.1016/j.foodchem.2019.03.124
    [28]
    李峰. 马革努门啤酒花品质特征研究[D]. 乌鲁木齐:新疆大学, 2013. [LI F. Study on the quality characteristics of Magnumen hops[D]. Urumqi:Xinjiang University, 2013.]

    LI F. Study on the quality characteristics of Magnumen hops[D]. Urumqi: Xinjiang University, 2013.
    [29]
    陈晨, 谢鑫, 任光辉, 等. 柑橘香类啤酒花的香气特征分析及评价[J]. 中外酒业,2022,157(5):5−10. [CHEN C, XIE X, REN G H, et al. Analysis and evaluation of aroma characteristics of citrus hops[J]. Global Alcinfo,2022,157(5):5−10.]

    CHEN C, XIE X, REN G H, et al. Analysis and evaluation of aroma characteristics of citrus hops[J]. Global Alcinfo, 2022, 157(5): 5−10.
    [30]
    SANCHEZ N B. Analytical and sensory evaluation of hop varieties[D]. Portland:Oregon State University, 1990.
    [31]
    FRITSCH H T, SCHIEBERLE P. Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilsner-type beer[J]. J Agric Food Chem,2005,53(19):7544−7551. doi: 10.1021/jf051167k
    [32]
    KALTNER D, STEINHAUS M, MITTER W, et al. (R)-Linalool as key flavour for hoparoma in beer and its behavior[J]. Monatsschr Brauwiss,2003,56(11-12):192−196.
    [33]
    金文刚, 刘俊霞, 孙海燕, 等. 基于GC-IMS结合化学计量学鉴别大鲵油掺伪不同比例花生油挥发性有机化合物(VOCs)有机物特征[J]. 食品科学,2023,44(10):368−376. [JIN W G, LIU J X, SUN H Y, et al. Characterization of volatile organic compounds of giant salamander (Andrias davidianus) oil adulterated with different amounts of peanut oil by gas chromatography-ion mobility spectrometry combined with chemometrics[J]. Food Sci,2023,44(10):368−376.] doi: 10.7506/spkx1002-6630-20220802-013

    JIN W G, LIU J X, SUN H Y, et al. Characterization of volatile organic compounds of giant salamander (Andrias davidianus) oil adulterated with different amounts of peanut oil by gas chromatography-ion mobility spectrometry combined with chemometrics[J]. Food Sci, 2023, 44(10): 368−376. doi: 10.7506/spkx1002-6630-20220802-013
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 洪梦杰,景奕文,于白音,张朝玉,石海英,常圣鑫. 基于网络药理学和分子对接探讨葛根素抗炎的关键靶点. 韶关学院学报. 2025(02): 41-46 .
    2. 鲁森,王瑞,高雄,林慧纯,陈忠正,张媛媛,陈旭洁,黄秋颜,李斌,林晓蓉. 基于高分辨质谱和网络药理学探究南昆山毛叶红茶的抗炎机理. 食品工业科技. 2024(02): 30-39 . 本站查看
    3. 李思蒙,田荣,殷明婧,谷巍. 基于网络药理学和分子对接探讨中药芫花治疗原发性痛经的作用机制. 亚热带植物科学. 2024(01): 31-39 .
    4. 李镁娟,张军,张云数,李乾伟,张娜,刘梦娇,张人平. 网络药理学结合分子对接技术揭示芹菜籽抑制痛风的潜在分子机制. 食品与机械. 2024(03): 44-51 .
    5. 张淼,黄菲,江思思,刘小芬. 闽台“一条根”类青草药次生代谢产物研究进展. 中国民族民间医药. 2023(16): 62-67 .
    6. 殷春燕,董占军,陈江魁. 基于网络药理学和分子对接技术研究花生红衣多酚抗动脉粥样硬化的作用机制. 食品与发酵工业. 2023(20): 242-249 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (102) PDF downloads (13) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return