Citation: | ZHANG Lijun, ZHAO Tiantian, CHEN Jieqiong, et al. Protective Effects of Enzymatic Products from Sturgeon Roe on Alcohol-induced Hepatic Cell Damage and Virtual Screening of Active Peptides[J]. Science and Technology of Food Industry, 2024, 45(19): 316−324. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100023. |
[1] |
李沛洋, 朱学芝, 李昭林, 等. 鲟鱼营养研究进展[J]. 广东饲料,2021,30(8):33−38. [LI P Y, ZHU X Z, LI Z L, et al. Progress in sturgeon nutrition[J]. Guangdong Feed,2021,30(8):33−38.] doi: 10.3969/j.issn.1005-8613.2021.08.010
LI P Y, ZHU X Z, LI Z L, et al. Progress in sturgeon nutrition[J]. Guangdong Feed, 2021, 30(8): 33−38. doi: 10.3969/j.issn.1005-8613.2021.08.010
|
[2] |
FARAG M A, ABIB B, TAWFIK S, et al. Caviar and fish roe substitutes:Current status of their nutritive value, bio-chemical diversity, authenticity and quality control methods with future perspectives[J]. Trends in Food Science & Technology,2021,110:405−417.
|
[3] |
TAVAKOLI S, LUO Y, REGENSTEIN J M, et al. Sturgeon, caviar, and caviar substitutes:From production, gastronomy, nutrition, and quality change to trade and commercial mimicry[J]. Reviews in Fisheries Science and Aquaculture,2021,29(4):753−768. doi: 10.1080/23308249.2021.1873244
|
[4] |
USMAN M, SAMEEN A, KHAN M I, et al. Introduction to world production of fish roe and processing[M]. Fish Roe:Elsevier, 2022:1–18.
|
[5] |
HWANG B B, CHANG M H, LEE J H, et al. The edible insect gryllus bimaculatus protects against gut-derived inflammatory responses and liver damage in mice after acute alcohol exposure[J]. Nutrients,2019,11(4):857. doi: 10.3390/nu11040857
|
[6] |
ZHENG J, TIAN X, ZHANG W, et al. Protective effects of fucoxanthin against alcoholic liver injury by activation of Nrf2-mediated antioxidant defense and inhibition of TLR4-mediated inflammation[J]. Marine Drugs,2019,17(10):552. doi: 10.3390/md17100552
|
[7] |
YANG Y M, CHO Y E, HWANG S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease[J]. International Journal of Molecular Sciences,2022,23(2):774. doi: 10.3390/ijms23020774
|
[8] |
WANG S, ZHAO M, FAN H, et al. Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits[J]. Current Opinion in Food Science,2022,48:100914. doi: 10.1016/j.cofs.2022.100914
|
[9] |
ETEMADIAN Y, GHAEMI V, SHAVIKLO A R, et al. Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries:State of the art[J]. Journal of Cleaner Production,2021,278:123219. doi: 10.1016/j.jclepro.2020.123219
|
[10] |
WANG K, SHI J, GAO S, et al. Oyster protein hydrolysates alleviated chronic alcohol-induced liver injury in mice by regulating hepatic lipid metabolism and inflammation response[J]. Food Research International,2022,160:111647. doi: 10.1016/j.foodres.2022.111647
|
[11] |
CONTRERAS-ZENTELLA M L, VILLALOBOS-GARCÍA D, HERNÁNDEZ-MUÑOZ R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system[J]. Antioxidants,2022,11(7):1258. doi: 10.3390/antiox11071258
|
[12] |
JIANG Y, ZHANG T, KUSUMANCHI P, et al. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease[J]. Biomedicines,2020,8(3):50. doi: 10.3390/biomedicines8030050
|
[13] |
XIAO C, TOLDRÁ F, ZHOU F, et al. Effect of cooking andin vitro digestion on the peptide profile of chicken breast muscle and antioxidant and alcohol dehydrogenase stabilization activity[J]. Food Research International,2020,136:109459. doi: 10.1016/j.foodres.2020.109459
|
[14] |
CHEN M F, ZHANG Y Y, DI H M, et al. Antioxidant peptide purified from enzymatic hydrolysates of Isochrysis zhanjiangensis and its protective effect against ethanol induced oxidative stress of HepG2 cells[J]. Biotechnology and Bioprocess Engineering,2019,24:308−317. doi: 10.1007/s12257-018-0391-5
|
[15] |
CHO H R, LEE S O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor)[J]. Food Research International,2020,133:109194. doi: 10.1016/j.foodres.2020.109194
|
[16] |
XIAO C, TOLDRÁ F, ZHOU F, et al. Chicken-derived tripeptide KPC (Lys-Pro-Cys) stabilizes alcohol dehydrogenase (ADH) through peptide-enzyme interaction[J]. LWT,2022,161:113376. doi: 10.1016/j.lwt.2022.113376
|
[17] |
ZHAO T, HUANG L, LUO D, et al. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion[J]. Food Chemistry,2021,351(5):129324.
|
[18] |
SAMAEI S P, GHORBANI M, TAGLIAZUCCHI D, et al. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba L.) seed protein hydrolysates and fortified apple juice[J]. Food Chemistry,2020,330:127120. doi: 10.1016/j.foodchem.2020.127120
|
[19] |
GONZALEZ-RODRIGUEZ M C, GONZALO C, SAN PRIMITIVO F, et al. Relationship between somatic cell count and lntramammary infection of the half udder in dairy ewes[J]. Journal of Dairy Science,1995,78(12):2753−2759. doi: 10.3168/jds.S0022-0302(95)76906-5
|
[20] |
TACIAS-PASCACIO V G, MORELLON-STERLING R, SIAR E H, et al. Use of alcalase in the production of bioactive peptides:A review[J]. International Journal of Biological Macromolecules,2020,165:2143−2196. doi: 10.1016/j.ijbiomac.2020.10.060
|
[21] |
MORA L, TOLDRÁ F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides[J]. Current Opinion in Food Science,2022,49:100973.
|
[22] |
ZAN R, ZHU L, WU G, et al. Identification of novel peptides with alcohol dehydrogenase (ADH) activating ability in chickpea protein hydrolysates[J]. Foods,2023,12(8):1574. doi: 10.3390/foods12081574
|
[23] |
ZHAO T, ZHENG L, ZHANG Q, et al. Stability towards the gastrointestinal simulated digestion and bioactivity of PAYCS and its digestive product PAY with cognitive improving properties[J]. Food and Function,2019,10(5):2439−2449. doi: 10.1039/C8FO02314J
|
[24] |
WU S, WANG X, QI W, et al. Bioactive protein/peptides of flaxseed:A review[J]. Trends in Food Science & Technology,2019,92:184−193.
|
[25] |
LEE S, LEE J, LEE H, et al. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury[J]. Journal of Food Biochemistry,2019,43(11):e13002.
|
[26] |
ALI S S, AHSAN H, ZIA M K, et al. Understanding oxidants and antioxidants:Classical team with new players[J]. Journal of Food Biochemistry,2020,44(3):e13145.
|
[27] |
EROL N, SAGLAM L, SAGLAM Y S, et al. The protection potential of antioxidant vitamins against acute respiratory distress syndrome:A rat trial[J]. Inflammation,2019,42:1585−1594. doi: 10.1007/s10753-019-01020-2
|
[28] |
ALIZADEH M, KHEIROURI S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions:A comprehensive meta-analysis of randomized controlled trials[J]. BioMedicine,2019,9(4):23. doi: 10.1051/bmdcn/2019090423
|
[29] |
ZHAO T, ZHONG S, XU J, et al. PAYCS alleviates scopolamine-induced memory deficits in mice by reducing oxidative and inflammatory stress and modulation of gut microbiota-fecal metabolites-brain neurotransmitter axis[J]. J Agric Food Chem,2022,70(9):2864−2875. doi: 10.1021/acs.jafc.1c06726
|
[30] |
CHEN M F, GONG F, ZHANG Y Y, et al. Preventive effect of YGDEY from tilapia fish skin gelatin hydrolysates against alcohol-induced damage in HepG2 cells through ROS-mediated signaling pathways[J]. Nutrients,2019,11(2):392. doi: 10.3390/nu11020392
|
[31] |
YANG K, ZHAN L, LU T, et al. Dendrobium officinale polysaccharides protected against ethanol-induced acute liver injury in vivo and in vitro via the TLR4/NF-κB signaling pathway[J]. Cytokine,2020,130:155058. doi: 10.1016/j.cyto.2020.155058
|
1. |
李娟,张源,张子桐,王淼,张东杰. 基于CiteSpace食品抗菌膜领域研究态势分析. 包装工程. 2025(01): 89-96 .
![]() |