SI Bo, GU Yating, YANG Chen, et al. Application of Ion Mobility Mass Spectrometry in Food Analysis[J]. Science and Technology of Food Industry, 2024, 45(19): 399−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100003.
Citation: SI Bo, GU Yating, YANG Chen, et al. Application of Ion Mobility Mass Spectrometry in Food Analysis[J]. Science and Technology of Food Industry, 2024, 45(19): 399−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100003.

Application of Ion Mobility Mass Spectrometry in Food Analysis

More Information
  • Received Date: October 08, 2023
  • Available Online: July 29, 2024
  • Ion mobility spectroscopy is a technique to characterize compounds based on the differences in the migration of sample ions under the combined action of electric field and air flow. Ions can be separated according to their quantity of electric charge, mass, size and shape. Meanwhile, the collision cross section of the ions can also be calculated to obtain chemical compound structural information, which has shown excellent performance in separating isomers of substances. In recent years, a variety of ion mobility technologies combined with mass spectrometry technology have emerged, and been widely used in food, biology, medicine, environment and other fields. In this paper, the types and working principles of ion mobility spectroscopy are introduced, the advantages and disadvantages of various types of instruments are analyzed, and the application of ion mobility spectrometry, liquid chromatography and mass spectrometry multidimensional combination in analyzing and identifying nutritive and active ingredients and chemical hazards in food is reviewed. The application prospect and development trend of this technology are also prospected.
  • [1]
    ARMENTA S, ALCALA M, BLANCO M. A review of recent, unconventional applications of ion mobility spectrometry (IMS)[J]. Analytica Chimica Acta,2011,703(2):114−123. doi: 10.1016/j.aca.2011.07.021
    [2]
    ELDRID C, THALASSINOS K. Developments in tandem ion mobility mass spectrometry[J]. Biochemical Society Transactions,2020,48(6):2457−2466. doi: 10.1042/BST20190788
    [3]
    龚晓芸. 利用离子淌度质谱解析配体对蛋白质结构的影响[D]. 南京:南京理工大学, 2017. [GONG X Y. The effect of ligand on protein conformation:Insight from ion mobility mass spectrum[D]. Nanjing:Nanjing University of Science and Technology, 2017.]

    GONG X Y. The effect of ligand on protein conformation: Insight from ion mobility mass spectrum[D]. Nanjing: Nanjing University of Science and Technology, 2017.
    [4]
    王玉娜, 孟宪双, 刘丽娟, 等. 离子淌度质谱技术及其应用研究进展[J]. 分析测试学报,2018,37(10):1130−1138. [WANG Y N, MENG X S, LIU L J, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis,2018,37(10):1130−1138.] doi: 10.3969/j.issn.1004-4957.2018.10.003

    WANG Y N, MENG X S, LIU L J, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis, 2018, 37(10): 1130−1138. doi: 10.3969/j.issn.1004-4957.2018.10.003
    [5]
    窦民娜. 离子淌度-飞行时间质谱在VGO分子表征中的应用[D]. 北京:中国石油大学, 2020. [DOU M N. Application of ion mobility-time-of-flight mass spectrometry in characterization of VGO[D]. Beijing:China University of Petroleum, 2020.]

    DOU M N. Application of ion mobility-time-of-flight mass spectrometry in characterization of VGO[D]. Beijing: China University of Petroleum, 2020.
    [6]
    KOOMEN D C, MAY J C, MCLEAN J A. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry[J]. Expert Review of Proteomics,2022,19(1):17−31. doi: 10.1080/14789450.2022.2026218
    [7]
    PHILLIPS S T, DODDS J N, MAY J C, et al. Isomeric and conformational analysis of small drug and drug-like molecules by ion mobility-mass spectrometry (IM-MS)[J]. Methods in Molecular Biology,2019,1939:161−178.
    [8]
    窦民娜, 喻昊, 刘为民, 等. 离子淌度-飞行时间质谱测定减压蜡油芳香分及胶质中的碱性氮化物[J]. 石油炼制与化工,2021,52(1):103−110. [DOU M Y, YU H, LIU W M, et al. Characterization of basic nitrogen compounds in aromatic and resin fractions in vaccum gas oils by ion mobility-time-of-flight mass spectrometry[J]. Petroleum Processing and Petrochemicals,2021,52(1):103−110.] doi: 10.3969/j.issn.1005-2399.2021.01.023

    DOU M Y, YU H, LIU W M, et al. Characterization of basic nitrogen compounds in aromatic and resin fractions in vaccum gas oils by ion mobility-time-of-flight mass spectrometry[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 103−110. doi: 10.3969/j.issn.1005-2399.2021.01.023
    [9]
    LETERTRE M, MUNJOMA N C, SLADE S E, et al. Metabolic phenotyping using UPLC-MS and rapid microbore UPLC-IM-MS:Determination of the effect of different dietary regimes on the urinary metabolome of the rat[J]. Chromatographia,2020,83(7):853−861. doi: 10.1007/s10337-020-03900-4
    [10]
    HERNÁNDEZ-MESA M, ROPARTZ D, GARCÍA-CAMPAÑA A M, et al. Ion mobility spectrometry in food analysis:Principles, current applications and future trends[J]. Molecules,2019,24(15):2706. doi: 10.3390/molecules24152706
    [11]
    高源. 基于离子淌度质谱对水体有机质的表征[D]. 北京:中国石油大学, 2019. [GAO Y. Molecular characterization of dissolved organic matter by ion mobility mass spectrometry[D]. Beijing:China University of Petroleum, 2019.]

    GAO Y. Molecular characterization of dissolved organic matter by ion mobility mass spectrometry[D]. Beijing: China University of Petroleum, 2019.
    [12]
    李萍萍. 金属配合物与有机碱的质谱实验和理论研究[D]. 大连:大连理工大学, 2020. [LI P P. Coordination chemistry of metal complexes and organic bases studied by electrospray ionization mass spectrometry and theory[D]. Dalian:Dalian University of Technology, 2020.]

    LI P P. Coordination chemistry of metal complexes and organic bases studied by electrospray ionization mass spectrometry and theory[D]. Dalian: Dalian University of Technology, 2020.
    [13]
    DELAFIELD D G, LU G Y, KAMINSKY C J, et al. High-end ion mobility mass spectrometry:A current review of analytical capacity in omics applications and structural investigations[J]. TrAC Trends in Analytical Chemistry,2022,157:116761. doi: 10.1016/j.trac.2022.116761
    [14]
    CAUSON T J, LE S H, NEWTON K, et al. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics[J]. Analytical and Bioanalytical Chemistry,2019,411(24):6265−6274. doi: 10.1007/s00216-019-02021-8
    [15]
    BLAŽENOVIĆ I, SHEN T, MEHTA S S, et al. Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time-ion mobility mass spectrometry[J]. Analytical Chemistry,2018,90(18):10758−10764. doi: 10.1021/acs.analchem.8b01527
    [16]
    CHEN X P, ZHANG F, GUO Y L. Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening[J]. Analyst,2019,144(16):4835−4840. doi: 10.1039/C9AN00873J
    [17]
    XU Z Z, LI J Z, CHEN A L, et al. A new retrospective, multi-evidence veterinary drug screening method using drift tube ion mobility mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2018,32:1141−1148. doi: 10.1002/rcm.8154
    [18]
    MAY J C, GOODWIN C R, LAREAU N M, et al. Conformational ordering of biomolecules in the gas phase:Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer[J]. Analytical Chemistry,2014,86(4):2107−2116. doi: 10.1021/ac4038448
    [19]
    KALDMÄE M, SAHIN C, SALURI M, et al. A strategy for the identification of protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactions in light harvesting complexes[J]. Protein Science,2019,28(6):1024−1030. doi: 10.1002/pro.3609
    [20]
    WANG Y, DE B HARRINGTON P, CHANG T, et al. Analysis of cranberry proanthocyanidins using UPLC-ion mobility-high-resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2020,412(15):3653−3662. doi: 10.1007/s00216-020-02601-z
    [21]
    ZAINUDIN B H, SALLEH S, YAAKOB A S, et al. Comprehensive strategy for pesticide residue analysis in cocoa beans through qualitative and quantitative approach[J]. Food Chemistry,2022,368:130778. doi: 10.1016/j.foodchem.2021.130778
    [22]
    SALA M, LISA M, CAMPBELL J L, et al. Determination of triacylglycerol regioisomers using differential mobility spectrometry[J]. Rapid Communications in Mass Spectrometry,2016,30(2):256−264. doi: 10.1002/rcm.7430
    [23]
    BEACH D G. Differential mobility spectrometry for improved selectivity in hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of paralytic shellfish toxins[J]. Journal of the American Society for Mass Spectrometry,2017,28(8):1518−1530. doi: 10.1007/s13361-017-1651-x
    [24]
    RIDGEWAY M E, BLEIHOLDER C, MANN M, et al. Trends in trapped ion mobility-mass spectrometry instrumentation[J]. TrAC Trends in Analytical Chemistry,2019,116:324−331. doi: 10.1016/j.trac.2019.03.030
    [25]
    DELVAUX A, RATHAHAO-PARIS E, GUILLON B, et al. Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers[J]. Analytica Chimica Acta,2021,1180:338878. doi: 10.1016/j.aca.2021.338878
    [26]
    PRZYBYLSKI C, BONNET V. Discrimination of isomeric trisaccharides and their relative quantification in honeys using trapped ion mobility spectrometry [J]. Food Chemistry, 2021, 341(Pt 1):128182.
    [27]
    HAN D Q, YAO Z P. Chiral mass spectrometry:An overview[J]. TrAC Trends in Analytical Chemistry,2020,123:115763. doi: 10.1016/j.trac.2019.115763
    [28]
    陈曦, 李彤洲, 朱正江. 基于离子淌度质谱的代谢物碰撞截面积测量方法和数据库研究进展[J]. 质谱学报,2022,43(5):596−610,525. [CHEN X, LI T Z, ZHU Z J. Ion mobility-mass spectrometry-based measurements of collision cross section values for metabolites and related databases[J]. Journal of Chinese Mass Spectrometry Society,2022,43(5):596−610,525.] doi: 10.7538/zpxb.2022.0090

    CHEN X, LI T Z, ZHU Z J. Ion mobility-mass spectrometry-based measurements of collision cross section values for metabolites and related databases[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 596−610,525. doi: 10.7538/zpxb.2022.0090
    [29]
    SISLEY E, ILLES-TOTH E, COOPER H J. In situ analysis of intact proteins by ion mobility mass spectrometry[J]. TrAC Trends in Analytical Chemistry,2020,124:115534. doi: 10.1016/j.trac.2019.05.036
    [30]
    SUN J, WANG Z, YANG C. Ion mobility mass spectrometry development and applications[J]. Critical Reviews in Analytical Chemistry,2022,3:1−8.
    [31]
    JIN J, LIU Y J, LI S, et al. Identification of soy sauce using high-field asymmetric waveform ion mobility spectrometry combined with machine learning[J]. Sensors and Actuators B:Chemical,2022,365:131966. doi: 10.1016/j.snb.2022.131966
    [32]
    ROSTING C, YU J, COOPER H J. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots[J]. Journal of Proteome Research,2018,17(6):1997−2004. doi: 10.1021/acs.jproteome.7b00746
    [33]
    ROSS D H, XU L. Determination of drugs and drug metabolites by ion mobility-mass spectrometry:A review[J]. Analytica Chimica Acta,2021,1154:338270. doi: 10.1016/j.aca.2021.338270
    [34]
    谢成益. 基于离子淌度-质谱技术的糖类同分异构体快速检测研究[D]. 宁波:宁波大学, 2020. [XIE C Y. Rapid detection of glycan isomers by ion mobility-mass spectrometry[D]. Ningbo:Ningbo University, 2020.]

    XIE C Y. Rapid detection of glycan isomers by ion mobility-mass spectrometry[D]. Ningbo: Ningbo University, 2020.
    [35]
    苏骏敏, 沈昌莹, 张树权. 食品中糖的检测方法研究进展[J]. 现代食品,2022,28(6):43−47. [SU J M, SHEN C Y, ZHANG S Q. Research progress on the detection methods of sugar content in food[J]. Modern Food,2022,28(6):43−47.]

    SU J M, SHEN C Y, ZHANG S Q. Research progress on the detection methods of sugar content in food[J]. Modern Food, 2022, 28(6): 43−47.
    [36]
    吴启迪, 谢成益, 俞建成, 等. 漂移时间离子淌度-四极杆-飞行时间串联质谱法分析寡糖同分异构体[J]. 质谱学报,2020,41(4):351−358. [WU Q D, XIE C Y, YU J C, et al. Analysis of oligosaccharides isomers using ion mobility-quadrupole-time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2020,41(4):351−358.] doi: 10.7538/zpxb.2019.0091

    WU Q D, XIE C Y, YU J C, et al. Analysis of oligosaccharides isomers using ion mobility-quadrupole-time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(4): 351−358. doi: 10.7538/zpxb.2019.0091
    [37]
    邵思梦. 人参寡糖的质谱分析及神经保护作用的研究[D]. 长春:长春中医药大学, 2023. [SHAO S M. Mass spectrometry analysis and neuroprotective effects of ginseng oligosaccharides[D]. Changchun:Changchun University of Chinese Medicine, 2023.]

    SHAO S M. Mass spectrometry analysis and neuroprotective effects of ginseng oligosaccharides[D]. Changchun: Changchun University of Chinese Medicine, 2023.
    [38]
    SASTRE TORAÑO J, GAGARINOV I A, VOS G M, et al. Ion-mobility spectrometry can assign exact fucosyl positions in glycans and prevent misinterpretation of mass-spectrometry data after gas-phase rearrangement[J]. Angewandte Chemie International Edition,2019,58(49):17616−17620. doi: 10.1002/anie.201909623
    [39]
    MU Y, SCHULZ B L, FERRO V. Applications of ion mobility-mass spectrometry in carbohydrate chemistry and glycobiology[J]. Molecules,2018,23(10):2557. doi: 10.3390/molecules23102557
    [40]
    刘夏炜, 王昆鹏, 袁超, 等. 功能性油脂在食品工业中的应用及展望[J]. 食品安全导刊,2022(11):145−147. [LIU X W, WANG K P, YUAN C, et al. Application and prospect of functional oils in food industry[J]. China Food Safety Magazine,2022(11):145−147.] doi: 10.3969/j.issn.1674-0270.2022.11.spaqdk202211053

    LIU X W, WANG K P, YUAN C, et al. Application and prospect of functional oils in food industry[J]. China Food Safety Magazine, 2022(11): 145−147. doi: 10.3969/j.issn.1674-0270.2022.11.spaqdk202211053
    [41]
    HOU J, ZHANG Z, ZHANG L, et al. Spatial lipidomics of eight edible nuts by desorption electrospray ionization with ion mobility mass spectrometry imaging[J]. Food Chemistry,2022,371:130893. doi: 10.1016/j.foodchem.2021.130893
    [42]
    CAMUNAS-ALBERCA S M, MORAN-GARRIDO M, SAIZ J, et al. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers[J]. Frontiers in Molecular Biosciences,2023,10:1112521. doi: 10.3389/fmolb.2023.1112521
    [43]
    JOHNSON P E, SAYERS R L, GETHINGS L A, et al. Quantitative proteomic profiling of peanut allergens in food ingredients used for oral food challenges[J]. Analytical Chemistry,2016,88(11):5689−5695. doi: 10.1021/acs.analchem.5b04466
    [44]
    ZHOU E, WANG W, XUE X, et al. Hydrogen peroxide oxidation modifies the structural properties and allergenicity of the bee pollen allergen profilin[J]. Food Chemistry,2023,425:136495. doi: 10.1016/j.foodchem.2023.136495
    [45]
    UETRECHT C, ROSE R J, DUIJN E V, et al. Ion mobility mass spectrometry of proteins and protein assemblies[J]. Chemical Society Reviews Journal,2010,39(5):1633−1655. doi: 10.1039/B914002F
    [46]
    黄越, 黄传书, 吴均, 等. 桑资源生物活性物质及其在食品领域应用研究进展[J]. 食品与发酵工业,2023,49(23):362−370. [HUANG Y, HUANG C S, WU J, et al. Research progress on bioactive substances of mulberry resources and their application in food field[J]. Food and Fermentation Industries,2023,49(23):362−370.]

    HUANG Y, HUANG C S, WU J, et al. Research progress on bioactive substances of mulberry resources and their application in food field[J]. Food and Fermentation Industries, 2023, 49(23): 362−370.
    [47]
    马雪, 琚艳君, 苟春林, 等. 超高效液相色谱-离子淌度-四极杆飞行时间质谱法识别精河枸杞中多酚类化合物[J]. 食品安全质量检测学报,2022,13(10):3243−3251. [MA X, JU Y J, GOU C L, et al. Identification of polyphenols in Jinghe Lycium barbarum by ultra performance liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry[J]. Journal of Food Safety & Quality,2022,13(10):3243−3251.] doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210024

    MA X, JU Y J, GOU C L, et al. Identification of polyphenols in Jinghe Lycium barbarum by ultra performance liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry[J]. Journal of Food Safety & Quality, 2022, 13(10): 3243−3251. doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210024
    [48]
    SHI M Z, YU Y L, ZHU S C, et al. Nontargeted metabonomics-assisted two-dimensional ion mobility mass spectrometry point imaging to identify plant teas[J]. LWT,2022,167:113852. doi: 10.1016/j.lwt.2022.113852
    [49]
    MONTERO L, SCHMITZ O J, MECKELMANN S W. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A,2020,1631:461560. doi: 10.1016/j.chroma.2020.461560
    [50]
    DE BRUIN C R, HENNEBELLE M, VINCKEN J P, et al. Separation of flavonoid isomers by cyclic ion mobility mass spectrometry[J]. Analytica Chimica Acta,2023,1244:340774. doi: 10.1016/j.aca.2022.340774
    [51]
    ZHANG H, JIANG J M, ZHENG D, et al. A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of ginsenosides from white and red ginsengs[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,163:24−33. doi: 10.1016/j.jpba.2018.09.036
    [52]
    王栋, 万建春, 张威, 等. 基于离子淌度的菊酯类农药及其同分异构体的分离研究[J]. 江西化工,2021,37(1):56−59. [WANG D, WAN J C, ZHANG W, et al. Separation of pyrethroid pesticides and their isomers based on ionic mobility[J]. Jiangxi Chemical Industry,2021,37(1):56−59.] doi: 10.3969/j.issn.1008-3103.2021.01.017

    WANG D, WAN J C, ZHANG W, et al. Separation of pyrethroid pesticides and their isomers based on ionic mobility[J]. Jiangxi Chemical Industry, 2021, 37(1): 56−59. doi: 10.3969/j.issn.1008-3103.2021.01.017
    [53]
    薛丰, 胡雪郢. 大气压气相色谱电离源-离子淌度-飞行时间质谱法测定蔬菜中的8种有机磷农药残留[J]. 食品安全质量检测学报,2021,12(12):4896−4902. [XUE F, HU X Y. Determination of 8 kinds of organophosphorus pesticide residues in vegetables by atmospheric pressure gas chromatography-ion mobility spectrum-quadrupole-time of flight mass spectrometry[J]. Journal of Food Safety & Quality,2021,12(12):4896−4902.]

    XUE F, HU X Y. Determination of 8 kinds of organophosphorus pesticide residues in vegetables by atmospheric pressure gas chromatography-ion mobility spectrum-quadrupole-time of flight mass spectrometry[J]. Journal of Food Safety & Quality, 2021, 12(12): 4896−4902.
    [54]
    BAUER A, KUBALLA J, ROHN S, et al. Evaluation and validation of an ion mobility quadrupole time-of-flight mass spectrometry pesticide screening approach[J]. Journal of Separation Science,2018,41(10):2178−2187. doi: 10.1002/jssc.201701059
    [55]
    CARBONELL-ROZAS L, HERNANDEZ-MESA M, RIGHETTI L, et al. Ion mobility-mass spectrometry to extend analytical performance in the determination of ergot alkaloids in cereal samples[J]. Journal of Chromatography A,2022,1682:63502.
    [56]
    RIGHETTI L, BERGMANN A, GALAVERNA G, et al. Ion mobility-derived collision cross section database:Application to mycotoxin analysis[J]. Analytica Chimica Acta,2018,1014:50−57. doi: 10.1016/j.aca.2018.01.047
    [57]
    KAUFMANN A. The use of UHPLC, IMS, and HRMS in multiresidue analytical methods:A critical review[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2020,1158:122369. doi: 10.1016/j.jchromb.2020.122369
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (87) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return