Citation: | SI Bo, GU Yating, YANG Chen, et al. Application of Ion Mobility Mass Spectrometry in Food Analysis[J]. Science and Technology of Food Industry, 2024, 45(19): 399−406. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100003. |
[1] |
ARMENTA S, ALCALA M, BLANCO M. A review of recent, unconventional applications of ion mobility spectrometry (IMS)[J]. Analytica Chimica Acta,2011,703(2):114−123. doi: 10.1016/j.aca.2011.07.021
|
[2] |
ELDRID C, THALASSINOS K. Developments in tandem ion mobility mass spectrometry[J]. Biochemical Society Transactions,2020,48(6):2457−2466. doi: 10.1042/BST20190788
|
[3] |
龚晓芸. 利用离子淌度质谱解析配体对蛋白质结构的影响[D]. 南京:南京理工大学, 2017. [GONG X Y. The effect of ligand on protein conformation:Insight from ion mobility mass spectrum[D]. Nanjing:Nanjing University of Science and Technology, 2017.]
GONG X Y. The effect of ligand on protein conformation: Insight from ion mobility mass spectrum[D]. Nanjing: Nanjing University of Science and Technology, 2017.
|
[4] |
王玉娜, 孟宪双, 刘丽娟, 等. 离子淌度质谱技术及其应用研究进展[J]. 分析测试学报,2018,37(10):1130−1138. [WANG Y N, MENG X S, LIU L J, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis,2018,37(10):1130−1138.] doi: 10.3969/j.issn.1004-4957.2018.10.003
WANG Y N, MENG X S, LIU L J, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis, 2018, 37(10): 1130−1138. doi: 10.3969/j.issn.1004-4957.2018.10.003
|
[5] |
窦民娜. 离子淌度-飞行时间质谱在VGO分子表征中的应用[D]. 北京:中国石油大学, 2020. [DOU M N. Application of ion mobility-time-of-flight mass spectrometry in characterization of VGO[D]. Beijing:China University of Petroleum, 2020.]
DOU M N. Application of ion mobility-time-of-flight mass spectrometry in characterization of VGO[D]. Beijing: China University of Petroleum, 2020.
|
[6] |
KOOMEN D C, MAY J C, MCLEAN J A. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry[J]. Expert Review of Proteomics,2022,19(1):17−31. doi: 10.1080/14789450.2022.2026218
|
[7] |
PHILLIPS S T, DODDS J N, MAY J C, et al. Isomeric and conformational analysis of small drug and drug-like molecules by ion mobility-mass spectrometry (IM-MS)[J]. Methods in Molecular Biology,2019,1939:161−178.
|
[8] |
窦民娜, 喻昊, 刘为民, 等. 离子淌度-飞行时间质谱测定减压蜡油芳香分及胶质中的碱性氮化物[J]. 石油炼制与化工,2021,52(1):103−110. [DOU M Y, YU H, LIU W M, et al. Characterization of basic nitrogen compounds in aromatic and resin fractions in vaccum gas oils by ion mobility-time-of-flight mass spectrometry[J]. Petroleum Processing and Petrochemicals,2021,52(1):103−110.] doi: 10.3969/j.issn.1005-2399.2021.01.023
DOU M Y, YU H, LIU W M, et al. Characterization of basic nitrogen compounds in aromatic and resin fractions in vaccum gas oils by ion mobility-time-of-flight mass spectrometry[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 103−110. doi: 10.3969/j.issn.1005-2399.2021.01.023
|
[9] |
LETERTRE M, MUNJOMA N C, SLADE S E, et al. Metabolic phenotyping using UPLC-MS and rapid microbore UPLC-IM-MS:Determination of the effect of different dietary regimes on the urinary metabolome of the rat[J]. Chromatographia,2020,83(7):853−861. doi: 10.1007/s10337-020-03900-4
|
[10] |
HERNÁNDEZ-MESA M, ROPARTZ D, GARCÍA-CAMPAÑA A M, et al. Ion mobility spectrometry in food analysis:Principles, current applications and future trends[J]. Molecules,2019,24(15):2706. doi: 10.3390/molecules24152706
|
[11] |
高源. 基于离子淌度质谱对水体有机质的表征[D]. 北京:中国石油大学, 2019. [GAO Y. Molecular characterization of dissolved organic matter by ion mobility mass spectrometry[D]. Beijing:China University of Petroleum, 2019.]
GAO Y. Molecular characterization of dissolved organic matter by ion mobility mass spectrometry[D]. Beijing: China University of Petroleum, 2019.
|
[12] |
李萍萍. 金属配合物与有机碱的质谱实验和理论研究[D]. 大连:大连理工大学, 2020. [LI P P. Coordination chemistry of metal complexes and organic bases studied by electrospray ionization mass spectrometry and theory[D]. Dalian:Dalian University of Technology, 2020.]
LI P P. Coordination chemistry of metal complexes and organic bases studied by electrospray ionization mass spectrometry and theory[D]. Dalian: Dalian University of Technology, 2020.
|
[13] |
DELAFIELD D G, LU G Y, KAMINSKY C J, et al. High-end ion mobility mass spectrometry:A current review of analytical capacity in omics applications and structural investigations[J]. TrAC Trends in Analytical Chemistry,2022,157:116761. doi: 10.1016/j.trac.2022.116761
|
[14] |
CAUSON T J, LE S H, NEWTON K, et al. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics[J]. Analytical and Bioanalytical Chemistry,2019,411(24):6265−6274. doi: 10.1007/s00216-019-02021-8
|
[15] |
BLAŽENOVIĆ I, SHEN T, MEHTA S S, et al. Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time-ion mobility mass spectrometry[J]. Analytical Chemistry,2018,90(18):10758−10764. doi: 10.1021/acs.analchem.8b01527
|
[16] |
CHEN X P, ZHANG F, GUO Y L. Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening[J]. Analyst,2019,144(16):4835−4840. doi: 10.1039/C9AN00873J
|
[17] |
XU Z Z, LI J Z, CHEN A L, et al. A new retrospective, multi-evidence veterinary drug screening method using drift tube ion mobility mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2018,32:1141−1148. doi: 10.1002/rcm.8154
|
[18] |
MAY J C, GOODWIN C R, LAREAU N M, et al. Conformational ordering of biomolecules in the gas phase:Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer[J]. Analytical Chemistry,2014,86(4):2107−2116. doi: 10.1021/ac4038448
|
[19] |
KALDMÄE M, SAHIN C, SALURI M, et al. A strategy for the identification of protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactions in light harvesting complexes[J]. Protein Science,2019,28(6):1024−1030. doi: 10.1002/pro.3609
|
[20] |
WANG Y, DE B HARRINGTON P, CHANG T, et al. Analysis of cranberry proanthocyanidins using UPLC-ion mobility-high-resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2020,412(15):3653−3662. doi: 10.1007/s00216-020-02601-z
|
[21] |
ZAINUDIN B H, SALLEH S, YAAKOB A S, et al. Comprehensive strategy for pesticide residue analysis in cocoa beans through qualitative and quantitative approach[J]. Food Chemistry,2022,368:130778. doi: 10.1016/j.foodchem.2021.130778
|
[22] |
SALA M, LISA M, CAMPBELL J L, et al. Determination of triacylglycerol regioisomers using differential mobility spectrometry[J]. Rapid Communications in Mass Spectrometry,2016,30(2):256−264. doi: 10.1002/rcm.7430
|
[23] |
BEACH D G. Differential mobility spectrometry for improved selectivity in hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of paralytic shellfish toxins[J]. Journal of the American Society for Mass Spectrometry,2017,28(8):1518−1530. doi: 10.1007/s13361-017-1651-x
|
[24] |
RIDGEWAY M E, BLEIHOLDER C, MANN M, et al. Trends in trapped ion mobility-mass spectrometry instrumentation[J]. TrAC Trends in Analytical Chemistry,2019,116:324−331. doi: 10.1016/j.trac.2019.03.030
|
[25] |
DELVAUX A, RATHAHAO-PARIS E, GUILLON B, et al. Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers[J]. Analytica Chimica Acta,2021,1180:338878. doi: 10.1016/j.aca.2021.338878
|
[26] |
PRZYBYLSKI C, BONNET V. Discrimination of isomeric trisaccharides and their relative quantification in honeys using trapped ion mobility spectrometry [J]. Food Chemistry, 2021, 341(Pt 1):128182.
|
[27] |
HAN D Q, YAO Z P. Chiral mass spectrometry:An overview[J]. TrAC Trends in Analytical Chemistry,2020,123:115763. doi: 10.1016/j.trac.2019.115763
|
[28] |
陈曦, 李彤洲, 朱正江. 基于离子淌度质谱的代谢物碰撞截面积测量方法和数据库研究进展[J]. 质谱学报,2022,43(5):596−610,525. [CHEN X, LI T Z, ZHU Z J. Ion mobility-mass spectrometry-based measurements of collision cross section values for metabolites and related databases[J]. Journal of Chinese Mass Spectrometry Society,2022,43(5):596−610,525.] doi: 10.7538/zpxb.2022.0090
CHEN X, LI T Z, ZHU Z J. Ion mobility-mass spectrometry-based measurements of collision cross section values for metabolites and related databases[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 596−610,525. doi: 10.7538/zpxb.2022.0090
|
[29] |
SISLEY E, ILLES-TOTH E, COOPER H J. In situ analysis of intact proteins by ion mobility mass spectrometry[J]. TrAC Trends in Analytical Chemistry,2020,124:115534. doi: 10.1016/j.trac.2019.05.036
|
[30] |
SUN J, WANG Z, YANG C. Ion mobility mass spectrometry development and applications[J]. Critical Reviews in Analytical Chemistry,2022,3:1−8.
|
[31] |
JIN J, LIU Y J, LI S, et al. Identification of soy sauce using high-field asymmetric waveform ion mobility spectrometry combined with machine learning[J]. Sensors and Actuators B:Chemical,2022,365:131966. doi: 10.1016/j.snb.2022.131966
|
[32] |
ROSTING C, YU J, COOPER H J. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots[J]. Journal of Proteome Research,2018,17(6):1997−2004. doi: 10.1021/acs.jproteome.7b00746
|
[33] |
ROSS D H, XU L. Determination of drugs and drug metabolites by ion mobility-mass spectrometry:A review[J]. Analytica Chimica Acta,2021,1154:338270. doi: 10.1016/j.aca.2021.338270
|
[34] |
谢成益. 基于离子淌度-质谱技术的糖类同分异构体快速检测研究[D]. 宁波:宁波大学, 2020. [XIE C Y. Rapid detection of glycan isomers by ion mobility-mass spectrometry[D]. Ningbo:Ningbo University, 2020.]
XIE C Y. Rapid detection of glycan isomers by ion mobility-mass spectrometry[D]. Ningbo: Ningbo University, 2020.
|
[35] |
苏骏敏, 沈昌莹, 张树权. 食品中糖的检测方法研究进展[J]. 现代食品,2022,28(6):43−47. [SU J M, SHEN C Y, ZHANG S Q. Research progress on the detection methods of sugar content in food[J]. Modern Food,2022,28(6):43−47.]
SU J M, SHEN C Y, ZHANG S Q. Research progress on the detection methods of sugar content in food[J]. Modern Food, 2022, 28(6): 43−47.
|
[36] |
吴启迪, 谢成益, 俞建成, 等. 漂移时间离子淌度-四极杆-飞行时间串联质谱法分析寡糖同分异构体[J]. 质谱学报,2020,41(4):351−358. [WU Q D, XIE C Y, YU J C, et al. Analysis of oligosaccharides isomers using ion mobility-quadrupole-time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2020,41(4):351−358.] doi: 10.7538/zpxb.2019.0091
WU Q D, XIE C Y, YU J C, et al. Analysis of oligosaccharides isomers using ion mobility-quadrupole-time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(4): 351−358. doi: 10.7538/zpxb.2019.0091
|
[37] |
邵思梦. 人参寡糖的质谱分析及神经保护作用的研究[D]. 长春:长春中医药大学, 2023. [SHAO S M. Mass spectrometry analysis and neuroprotective effects of ginseng oligosaccharides[D]. Changchun:Changchun University of Chinese Medicine, 2023.]
SHAO S M. Mass spectrometry analysis and neuroprotective effects of ginseng oligosaccharides[D]. Changchun: Changchun University of Chinese Medicine, 2023.
|
[38] |
SASTRE TORAÑO J, GAGARINOV I A, VOS G M, et al. Ion-mobility spectrometry can assign exact fucosyl positions in glycans and prevent misinterpretation of mass-spectrometry data after gas-phase rearrangement[J]. Angewandte Chemie International Edition,2019,58(49):17616−17620. doi: 10.1002/anie.201909623
|
[39] |
MU Y, SCHULZ B L, FERRO V. Applications of ion mobility-mass spectrometry in carbohydrate chemistry and glycobiology[J]. Molecules,2018,23(10):2557. doi: 10.3390/molecules23102557
|
[40] |
刘夏炜, 王昆鹏, 袁超, 等. 功能性油脂在食品工业中的应用及展望[J]. 食品安全导刊,2022(11):145−147. [LIU X W, WANG K P, YUAN C, et al. Application and prospect of functional oils in food industry[J]. China Food Safety Magazine,2022(11):145−147.] doi: 10.3969/j.issn.1674-0270.2022.11.spaqdk202211053
LIU X W, WANG K P, YUAN C, et al. Application and prospect of functional oils in food industry[J]. China Food Safety Magazine, 2022(11): 145−147. doi: 10.3969/j.issn.1674-0270.2022.11.spaqdk202211053
|
[41] |
HOU J, ZHANG Z, ZHANG L, et al. Spatial lipidomics of eight edible nuts by desorption electrospray ionization with ion mobility mass spectrometry imaging[J]. Food Chemistry,2022,371:130893. doi: 10.1016/j.foodchem.2021.130893
|
[42] |
CAMUNAS-ALBERCA S M, MORAN-GARRIDO M, SAIZ J, et al. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers[J]. Frontiers in Molecular Biosciences,2023,10:1112521. doi: 10.3389/fmolb.2023.1112521
|
[43] |
JOHNSON P E, SAYERS R L, GETHINGS L A, et al. Quantitative proteomic profiling of peanut allergens in food ingredients used for oral food challenges[J]. Analytical Chemistry,2016,88(11):5689−5695. doi: 10.1021/acs.analchem.5b04466
|
[44] |
ZHOU E, WANG W, XUE X, et al. Hydrogen peroxide oxidation modifies the structural properties and allergenicity of the bee pollen allergen profilin[J]. Food Chemistry,2023,425:136495. doi: 10.1016/j.foodchem.2023.136495
|
[45] |
UETRECHT C, ROSE R J, DUIJN E V, et al. Ion mobility mass spectrometry of proteins and protein assemblies[J]. Chemical Society Reviews Journal,2010,39(5):1633−1655. doi: 10.1039/B914002F
|
[46] |
黄越, 黄传书, 吴均, 等. 桑资源生物活性物质及其在食品领域应用研究进展[J]. 食品与发酵工业,2023,49(23):362−370. [HUANG Y, HUANG C S, WU J, et al. Research progress on bioactive substances of mulberry resources and their application in food field[J]. Food and Fermentation Industries,2023,49(23):362−370.]
HUANG Y, HUANG C S, WU J, et al. Research progress on bioactive substances of mulberry resources and their application in food field[J]. Food and Fermentation Industries, 2023, 49(23): 362−370.
|
[47] |
马雪, 琚艳君, 苟春林, 等. 超高效液相色谱-离子淌度-四极杆飞行时间质谱法识别精河枸杞中多酚类化合物[J]. 食品安全质量检测学报,2022,13(10):3243−3251. [MA X, JU Y J, GOU C L, et al. Identification of polyphenols in Jinghe Lycium barbarum by ultra performance liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry[J]. Journal of Food Safety & Quality,2022,13(10):3243−3251.] doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210024
MA X, JU Y J, GOU C L, et al. Identification of polyphenols in Jinghe Lycium barbarum by ultra performance liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry[J]. Journal of Food Safety & Quality, 2022, 13(10): 3243−3251. doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210024
|
[48] |
SHI M Z, YU Y L, ZHU S C, et al. Nontargeted metabonomics-assisted two-dimensional ion mobility mass spectrometry point imaging to identify plant teas[J]. LWT,2022,167:113852. doi: 10.1016/j.lwt.2022.113852
|
[49] |
MONTERO L, SCHMITZ O J, MECKELMANN S W. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A,2020,1631:461560. doi: 10.1016/j.chroma.2020.461560
|
[50] |
DE BRUIN C R, HENNEBELLE M, VINCKEN J P, et al. Separation of flavonoid isomers by cyclic ion mobility mass spectrometry[J]. Analytica Chimica Acta,2023,1244:340774. doi: 10.1016/j.aca.2022.340774
|
[51] |
ZHANG H, JIANG J M, ZHENG D, et al. A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of ginsenosides from white and red ginsengs[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,163:24−33. doi: 10.1016/j.jpba.2018.09.036
|
[52] |
王栋, 万建春, 张威, 等. 基于离子淌度的菊酯类农药及其同分异构体的分离研究[J]. 江西化工,2021,37(1):56−59. [WANG D, WAN J C, ZHANG W, et al. Separation of pyrethroid pesticides and their isomers based on ionic mobility[J]. Jiangxi Chemical Industry,2021,37(1):56−59.] doi: 10.3969/j.issn.1008-3103.2021.01.017
WANG D, WAN J C, ZHANG W, et al. Separation of pyrethroid pesticides and their isomers based on ionic mobility[J]. Jiangxi Chemical Industry, 2021, 37(1): 56−59. doi: 10.3969/j.issn.1008-3103.2021.01.017
|
[53] |
薛丰, 胡雪郢. 大气压气相色谱电离源-离子淌度-飞行时间质谱法测定蔬菜中的8种有机磷农药残留[J]. 食品安全质量检测学报,2021,12(12):4896−4902. [XUE F, HU X Y. Determination of 8 kinds of organophosphorus pesticide residues in vegetables by atmospheric pressure gas chromatography-ion mobility spectrum-quadrupole-time of flight mass spectrometry[J]. Journal of Food Safety & Quality,2021,12(12):4896−4902.]
XUE F, HU X Y. Determination of 8 kinds of organophosphorus pesticide residues in vegetables by atmospheric pressure gas chromatography-ion mobility spectrum-quadrupole-time of flight mass spectrometry[J]. Journal of Food Safety & Quality, 2021, 12(12): 4896−4902.
|
[54] |
BAUER A, KUBALLA J, ROHN S, et al. Evaluation and validation of an ion mobility quadrupole time-of-flight mass spectrometry pesticide screening approach[J]. Journal of Separation Science,2018,41(10):2178−2187. doi: 10.1002/jssc.201701059
|
[55] |
CARBONELL-ROZAS L, HERNANDEZ-MESA M, RIGHETTI L, et al. Ion mobility-mass spectrometry to extend analytical performance in the determination of ergot alkaloids in cereal samples[J]. Journal of Chromatography A,2022,1682:63502.
|
[56] |
RIGHETTI L, BERGMANN A, GALAVERNA G, et al. Ion mobility-derived collision cross section database:Application to mycotoxin analysis[J]. Analytica Chimica Acta,2018,1014:50−57. doi: 10.1016/j.aca.2018.01.047
|
[57] |
KAUFMANN A. The use of UHPLC, IMS, and HRMS in multiresidue analytical methods:A critical review[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2020,1158:122369. doi: 10.1016/j.jchromb.2020.122369
|