Citation: | LIAO Huiyi, LI Erna, LI Qian, et al. Optimisation of the Extraction Process and Compositional Analysis of Lipase-inhibiting Components from Morus alba L. Leaves[J]. Science and Technology of Food Industry, 2024, 45(19): 187−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090322. |
[1] |
YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology,2016,64(1):73−84. doi: 10.1002/hep.28431
|
[2] |
TARGHER G, BYRNE C D, TILG H. NAFLD and increased risk of cardiovascular disease:Clinical associations, pathophysiological mechanisms and pharmacological implications[J]. Gut,2020,69(9):1691−705. doi: 10.1136/gutjnl-2020-320622
|
[3] |
DING L, OLIGSCHLAEGER Y, SHIRI-SVERDLOV R, et al. Nonalcoholic fatty liver disease[J]. Handb Exp Pharmacol,2022,270:233−69.
|
[4] |
LIM S Y, STEINER J M, CRIDGE H. Lipases:It's not just pancreatic lipase![J]. Am J Vet Res,2022,83(8):80−92.
|
[5] |
LI X, LI R, WANG X, et al. Effects and mechanism of action of chrysanthemum morifolium (Jinsi Huangju) on hyperlipidemia and non-alcoholic fatty liver disease[J]. Eur J Med Chem,2023,255:115391−115403. doi: 10.1016/j.ejmech.2023.115391
|
[6] |
KIM J, KIM C S, JO K, et al. POCU1b, the n-butanol soluble fraction of polygoni cuspidati rhizoma et radix, attenuates obesity, non-alcoholic fatty liver, and insulin resistance via inhibitions of pancreatic lipase, cAMP-dependent PDE activity, AMPK activation, and SOCS-3 suppression[J]. Nutrients,2020,12(12):3612−3624. doi: 10.3390/nu12123612
|
[7] |
LIU T T, LIU X T, CHEN Q X, et al. Lipase inhibitors for obesity:A review[J]. Biomed Pharmacother,2020,128:110314−110323. doi: 10.1016/j.biopha.2020.110314
|
[8] |
ALI KHAN R, KAPUR P, JAIN A, et al. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients[J]. Ther Clin Risk Manag,2017,13:139−49. doi: 10.2147/TCRM.S124621
|
[9] |
ATANASOV A G, WALTENBERGER B, PFERSCHY-WENZIG E M, et al. Discovery and resupply of pharmacologically active plant-derived natural products:A review[J]. Biotechnol Adv,2015,33(8):1582−1614. doi: 10.1016/j.biotechadv.2015.08.001
|
[10] |
THOMFORD N E, SENTHEBANE D A, ROWE A, et al. Natural products for drug discovery in the 21st century:Innovations for novel drug discovery[J]. Int J Mol Sci,2018,19(6):1578−1596. doi: 10.3390/ijms19061578
|
[11] |
AL ZARZOUR R H, AHMAD M, ASMAWI M Z, et al. Phyllanthus niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in sprague-dawley rats[J]. Nutrients,2017,9(7):766−779. doi: 10.3390/nu9070766
|
[12] |
RAJAN L, PALANISWAMY D, MOHANKUMAR S K. Targeting obesity with plant-derived pancreatic lipase inhibitors:A comprehensive review[J]. Pharmacol Res,2020,155:104681−104699. doi: 10.1016/j.phrs.2020.104681
|
[13] |
朱林, 唐荷, 安仁波, 等. 桑叶中主要活性成分、药理作用及其提取工艺的研究进展[J]. 吉林医药学院学报,2023,44(2):144−146. [ZHU Lin, TANG He, AN Renbo, et al. Research progress on the main active ingredients, pharmacological effects, and extraction process of mulberry leaves[J]. Journal of Jilin Medical University,2023,44(2):144−146.]
ZHU Lin, TANG He, AN Renbo, et al. Research progress on the main active ingredients, pharmacological effects, and extraction process of mulberry leaves[J]. Journal of Jilin Medical University, 2023, 44(2): 144−146.
|
[14] |
LI J S, JI T, SU S L, et al. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway[J]. J Ethnopharmacol,2022,283:114713−114724. doi: 10.1016/j.jep.2021.114713
|
[15] |
KIM S Y, GAO J J, LEE W C, et al. Antioxidative flavonoids from the leaves of Morus alba[J]. Arch Pharm Res,1999,22(1):81−85. doi: 10.1007/BF02976442
|
[16] |
HE L, XING Y, REN X, et al. Mulberry leaf extract improves metabolic syndrome by alleviating lipid accumulation in vitro and in vivo[J]. Molecules,2022,27(16):5111−5131. doi: 10.3390/molecules27165111
|
[17] |
ANN J Y, EO H, LIM Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice[J]. Genes Nutr,2015,10(6):46. doi: 10.1007/s12263-015-0495-x
|
[18] |
张华, 孟博, 王莉, 等. 桑叶多糖超声-微波协同提取工艺优化及其抗氧化活性[J]. 中成药,2020,42(8):1972−1977. [ZHANG Hua, MENG Bo, WANG Li, el al. Ultrasonic-microwave synergistic extraction process optimization and anti-oxidant activity for polysaccharides from Mori folium[J]. Chinese Traditional Patent Medicine,2020,42(8):1972−1977.] doi: 10.3969/j.issn.1001-1528.2020.08.002
ZHANG Hua, MENG Bo, WANG Li, el al. Ultrasonic-microwave synergistic extraction process optimization and anti-oxidant activity for polysaccharides from Mori folium[J]. Chinese Traditional Patent Medicine, 2020, 42(8): 1972−1977. doi: 10.3969/j.issn.1001-1528.2020.08.002
|
[19] |
祁伟亮, 阮梅, 冯鸿, 等. 桑叶多酚提取工艺优化及品种筛选[J]. 生物化工,2018,4(2):53−54,60. [QI Weiliang, RUAN Mei, FENG Hong, et al. Optimization of mulberry leaf polyphenol extraction process and variety selection[J]. Biological Chemical Engineering,2018,4(2):53−54,60.] doi: 10.3969/j.issn.2096-0387.2018.02.014
QI Weiliang, RUAN Mei, FENG Hong, et al. Optimization of mulberry leaf polyphenol extraction process and variety selection[J]. Biological Chemical Engineering, 2018, 4(2): 53−54,60. doi: 10.3969/j.issn.2096-0387.2018.02.014
|
[20] |
吴雅茹, 陈贵茹, 雷建都, 等. 桑叶蛋白超声提取联合超滤纯化工艺优化及其营养评价[J]. 食品工业科技,2023,44(16):236−245. [WU Yaru, CHEN Guiru, LEI Jiandu, et al. Optimization of ultrasonic extraction combined with ultrafiltration for purification of mulberry leaf protein and its nutritional evaluation[J]. Science and Technology of Food Industry,2023,44(16):236−245.]
WU Yaru, CHEN Guiru, LEI Jiandu, et al. Optimization of ultrasonic extraction combined with ultrafiltration for purification of mulberry leaf protein and its nutritional evaluation[J]. Science and Technology of Food Industry, 2023, 44(16): 236−245.
|
[21] |
LI J, CHEN Z, SHI H, et al. Ultrasound-assisted extraction and properties of polysaccharide from Ginkgo biloba leaves[J]. Ultrason Sonochem,2023,93:106295. doi: 10.1016/j.ultsonch.2023.106295
|
[22] |
ZHANG L, ZHENG J, MA M, et al. Drug-guided screening for pancreatic lipase inhibitors in functional foods[J]. Food Funct,2021,12(10):4644−4653. doi: 10.1039/D0FO03366A
|
[23] |
萨日那. 山丹花鳞茎醇提物对小鼠脂肪酶的抑制作用研究[D]. 锦州:锦州医科大学, 2021. [SA Rina. Study on the inhibitory effect of alcohol extract from Shandan flower bulb on mouse lipase[D]. Jinzhou:Jinzhou Medical University, 2021.]
SA Rina. Study on the inhibitory effect of alcohol extract from Shandan flower bulb on mouse lipase[D]. Jinzhou: Jinzhou Medical University, 2021.
|
[24] |
杨代晓, 陈晓静, 胡秋菊, 等. 液相色谱—质谱联用法分析葡萄籽提取物中的5种多酚类成分[J]. 药物分析杂志,2016,36(8):1330−1337. [YANG Daixiao, CHEN Xiaojing, HU Qiuju, et al. LC-MS method for determination of 5 kinds of polyphenols in grape seed extract[J]. Chinese Journal of Pharmaceutical Analysis,2016,36(8):1330−1337.]
YANG Daixiao, CHEN Xiaojing, HU Qiuju, et al. LC-MS method for determination of 5 kinds of polyphenols in grape seed extract[J]. Chinese Journal of Pharmaceutical Analysis, 2016, 36(8): 1330−1337.
|
[25] |
王博, 姚伦广, 鲁云风. 山楂皮渣中果胶超声波辅助提取工艺优化与抗氧化性研究[J]. 粮油食品科技,2023,31(4):78−86. [WANG Bo, YAO Lunguang, LU Yunfeng. Ultrasonic-assisted extraction process optimization and antioxidant activity of pectin from hawthorn peel dregs[J]. Science and Technology of Cereals, Oils and Foods,2023,31(4):78−86.]
WANG Bo, YAO Lunguang, LU Yunfeng. Ultrasonic-assisted extraction process optimization and antioxidant activity of pectin from hawthorn peel dregs[J]. Science and Technology of Cereals, Oils and Foods, 2023, 31(4): 78−86.
|
[26] |
BIALECKA-FLORJANCZYK E, FABISZEWSKA A U, KRZYCZKOWSKA J, et al. Synthetic and natural lipase inhibitors[J]. Mini Rev Med Chem,2018,18(8):672−83. doi: 10.2174/1389557516666160630123356
|
[27] |
汪建红. 减压内部沸腾法提取荸荠皮黄酮的工艺优化[J]. 食品工业科技,2019,40(23):172−176. [WANG Jianhong. Optimization of extraction technology of flavonoids from elecharis tuberosa peel by decompression internal ebullition[J]. Science and Technology of Food Industry,2019,40(23):172−176.]
WANG Jianhong. Optimization of extraction technology of flavonoids from elecharis tuberosa peel by decompression internal ebullition[J]. Science and Technology of Food Industry, 2019, 40(23): 172−176.
|
[28] |
汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮[J]. 食品研究与开发,2022,43(4):22−28. [WANG Jianhong. Extraction of flavonoids from osmanthus fragrans leaves by dual aqueous phase assisted internal boiling method[J]. Food Research and Development,2022,43(4):22−28.] doi: 10.12161/j.issn.1005-6521.2022.04.004
WANG Jianhong. Extraction of flavonoids from osmanthus fragrans leaves by dual aqueous phase assisted internal boiling method[J]. Food Research and Development, 2022, 43(4): 22−28. doi: 10.12161/j.issn.1005-6521.2022.04.004
|
[29] |
田筱璇, 冼丽清, 李佳媛, 等. 波罗蜜籽果胶提取工艺优化及抗氧化活性研究[J]. 食品科技,2023,48(7):191−197. [TIAN Xiaoxuan, XIAN Liqing, LI Jiayuan, et al. Optimization of extraction technology and antioxidant activity of pectin from jackfruit seed[J]. Food Science and Technology,2023,48(7):191−197.]
TIAN Xiaoxuan, XIAN Liqing, LI Jiayuan, et al. Optimization of extraction technology and antioxidant activity of pectin from jackfruit seed[J]. Food Science and Technology, 2023, 48(7): 191−197.
|
[30] |
汪建红. 减压内部沸腾法提取血橙皮中黄酮[J]. 中国食品添加剂,2019,30(8):41−47. [WANG Jianhong. Extraction of flavonoids from blood orange peel by decompression internal boiling method[J]. China Food Additives,2019,30(8):41−47.] doi: 10.3969/j.issn.1006-2513.2019.08.001
WANG Jianhong. Extraction of flavonoids from blood orange peel by decompression internal boiling method[J]. China Food Additives, 2019, 30(8): 41−47. doi: 10.3969/j.issn.1006-2513.2019.08.001
|
[31] |
黄琳翔, 施乐乐, 蔡志, 等. 黑木耳中抑制胰脂肪酶活性物质的提取工艺及体外抑制效果[J]. 菌物学报,2020,39(2):441−451. [HUANG Linxiang, SHI Lele, CAI Zhiying, et al. Extraction technology and inhibitory effects in vitro of substances inhibiting pancreatic lipase activities from fruiting body of auricaria heimuer[J]. Mycosystema,2020,39(2):441−451.]
HUANG Linxiang, SHI Lele, CAI Zhiying, et al. Extraction technology and inhibitory effects in vitro of substances inhibiting pancreatic lipase activities from fruiting body of auricaria heimuer[J]. Mycosystema, 2020, 39(2): 441−451.
|
[32] |
李利华. 鱼腥草多酚的超声波辅助提取及抗氧化性能研究[J]. 食品工业科技,2016,37(8):295−298,312. [LI Lihua. Ultrasonic assisted extraction and antioxidant properties of polyphenols from Houttuynia cordata[J]. Science and Technology of Food Industry,2016,37(8):295−298,312.]
LI Lihua. Ultrasonic assisted extraction and antioxidant properties of polyphenols from Houttuynia cordata[J]. Science and Technology of Food Industry, 2016, 37(8): 295−298,312.
|
[33] |
田强, 吴子健, 黄道荣, 等, 葡萄籽中胰脂肪酶抑制物提取工艺[J]. 食品研究与开发, 2010, 31(4):41-44. [TIAN Qiang, WU Zijian, HUANG Daorong, et al. Optimizing conditions for the isolation of pancreatic lipase inhibitive substance from grape seeds[J]. Food Research and Development, 2010, 31(4):41-44.]
TIAN Qiang, WU Zijian, HUANG Daorong, et al. Optimizing conditions for the isolation of pancreatic lipase inhibitive substance from grape seeds[J]. Food Research and Development, 2010, 31(4): 41-44.
|
[34] |
ASSINI J M, MULVIHILL E E, HUFF M W. Citrus flavonoids and lipid metabolism[J]. Curr Opin Lipidol,2013,24(1):34−40. doi: 10.1097/MOL.0b013e32835c07fd
|
[35] |
RODRÍGUEZ-PÉREZ C, SEGURA-CARRETERO A, DEL MAR CONTRERAS M. Phenolic compounds as natural and multifunctional anti-obesity agents:A review[J]. Crit Rev Food Sci Nutr,2019,59(8):1212−1229. doi: 10.1080/10408398.2017.1399859
|
[36] |
BUCHHOLZ T, MELZIG M F. Polyphenolic compounds as pancreatic lipase inhibitors[J]. Planta Med,2015,81(10):771−783. doi: 10.1055/s-0035-1546173
|
[37] |
ZHANG X, LI D, WANG K, et al. Hyperoside inhibits pancreatic lipase activity in vitro and reduces fat accumulation in vivo[J]. Food Funct,2023,14(10):4763−4776. doi: 10.1039/D2FO03219H
|
[38] |
WANG Y, CHEN L, LIU H, et al. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase[J]. Food Chem, 2023, 404(Pt B):134672−80.
|
[39] |
王婵. 荷叶中具有脂肪酶抑制活性成分的分离与鉴定[D]. 上海:上海中医药大学, 2020. [WANG Chan. Separation and identification of lipase inhibiting activity components in Nelumbinis folium[D]. Shanghai:Shanghai University of Traditional Chinese Medicine, 2020.]
WANG Chan. Separation and identification of lipase inhibiting activity components in Nelumbinis folium[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2020.
|
[40] |
CHEN J, WU X, ZHOU Y, et al. Camellia nitidissima Chi leaf as pancreatic lipase inhibitors:Inhibition potentials and mechanism[J]. J Food Biochem,2021,45(9):e13837−50.
|
[41] |
郭盼. 绿原酸和EGCG对胰脂肪酶的抑制作用及减脂产品研发[D]. 南昌:南昌大学, 2023. [GUO Pan. The inhibition mechanism of chlorogenic acid and EGCG on pancreatic lipase and development of fat reduction product[D]. Nanchang:Nanchang University, 2023.]
GUO Pan. The inhibition mechanism of chlorogenic acid and EGCG on pancreatic lipase and development of fat reduction product[D]. Nanchang: Nanchang University, 2023.
|
[42] |
杨鹏, 李艳琴. 荞麦黄酮和荞麦糖醇对胰脂肪酶的抑制作用[J]. 食品科学,2015,36(11):60−63. [YANG Peng, LI Yanqin. Inhibitory effect of flavonoids and fagopyritols from buckwheat on pancreatic lipase[J]. Food Science,2015,36(11):60−63.] doi: 10.7506/spkx1002-6630-201511012
YANG Peng, LI Yanqin. Inhibitory effect of flavonoids and fagopyritols from buckwheat on pancreatic lipase[J]. Food Science, 2015, 36(11): 60−63. doi: 10.7506/spkx1002-6630-201511012
|