LIAO Huiyi, LI Erna, LI Qian, et al. Optimisation of the Extraction Process and Compositional Analysis of Lipase-inhibiting Components from Morus alba L. Leaves[J]. Science and Technology of Food Industry, 2024, 45(19): 187−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090322.
Citation: LIAO Huiyi, LI Erna, LI Qian, et al. Optimisation of the Extraction Process and Compositional Analysis of Lipase-inhibiting Components from Morus alba L. Leaves[J]. Science and Technology of Food Industry, 2024, 45(19): 187−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090322.

Optimisation of the Extraction Process and Compositional Analysis of Lipase-inhibiting Components from Morus alba L. Leaves

More Information
  • Received Date: October 08, 2023
  • Available Online: August 01, 2024
  • In this study, on the basis of single factor experiments, the effects of raw material mass concentration, ethanol volume fraction, ultrasonic power, extraction temperature, and extraction time on the lipase inhibition activity of mulberry leaves extract were investigated in combination with response surface methodology to optimize the ultrasonic-assisted extraction process of the lipase-inhibiting components of mulberry leaves. Meanwhile, the active ingredients of mulberry leaves extract were analyzed by UPLC-Q-TOF HRMS. The results showed that the optimal extraction process parameters for the lipase-inhibiting components of mulberry leaves were as follows: The mass concentration of raw material was 0.05 g/mL, volume fraction of ethanol was 70%, ultrasonic power was 195 W, extraction temperature was 31 ℃ and the extraction time was 40 min. Under these conditions, the lipase inhibition rate of mulberry leaves extract was 39.68%. A total of 1067 compounds were identified. Flavonoids and phenolic acids accounted for the highest proportion, containing 203 and 201 compounds, respectively. These compounds might be the material basis for the lipase inhibiting activity of mulberry leaves extract. In this study, the ultrasonic-assisted extraction process of mulberry leaves was optimized to improve the extraction efficiency of the lipase-inhibiting active components, and the main active ingredients were analyzed. The results may provide a reference for the functional application of mulberry leaves in improving lipid metabolism and the development of health food.
  • [1]
    YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology,2016,64(1):73−84. doi: 10.1002/hep.28431
    [2]
    TARGHER G, BYRNE C D, TILG H. NAFLD and increased risk of cardiovascular disease:Clinical associations, pathophysiological mechanisms and pharmacological implications[J]. Gut,2020,69(9):1691−705. doi: 10.1136/gutjnl-2020-320622
    [3]
    DING L, OLIGSCHLAEGER Y, SHIRI-SVERDLOV R, et al. Nonalcoholic fatty liver disease[J]. Handb Exp Pharmacol,2022,270:233−69.
    [4]
    LIM S Y, STEINER J M, CRIDGE H. Lipases:It's not just pancreatic lipase![J]. Am J Vet Res,2022,83(8):80−92.
    [5]
    LI X, LI R, WANG X, et al. Effects and mechanism of action of chrysanthemum morifolium (Jinsi Huangju) on hyperlipidemia and non-alcoholic fatty liver disease[J]. Eur J Med Chem,2023,255:115391−115403. doi: 10.1016/j.ejmech.2023.115391
    [6]
    KIM J, KIM C S, JO K, et al. POCU1b, the n-butanol soluble fraction of polygoni cuspidati rhizoma et radix, attenuates obesity, non-alcoholic fatty liver, and insulin resistance via inhibitions of pancreatic lipase, cAMP-dependent PDE activity, AMPK activation, and SOCS-3 suppression[J]. Nutrients,2020,12(12):3612−3624. doi: 10.3390/nu12123612
    [7]
    LIU T T, LIU X T, CHEN Q X, et al. Lipase inhibitors for obesity:A review[J]. Biomed Pharmacother,2020,128:110314−110323. doi: 10.1016/j.biopha.2020.110314
    [8]
    ALI KHAN R, KAPUR P, JAIN A, et al. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients[J]. Ther Clin Risk Manag,2017,13:139−49. doi: 10.2147/TCRM.S124621
    [9]
    ATANASOV A G, WALTENBERGER B, PFERSCHY-WENZIG E M, et al. Discovery and resupply of pharmacologically active plant-derived natural products:A review[J]. Biotechnol Adv,2015,33(8):1582−1614. doi: 10.1016/j.biotechadv.2015.08.001
    [10]
    THOMFORD N E, SENTHEBANE D A, ROWE A, et al. Natural products for drug discovery in the 21st century:Innovations for novel drug discovery[J]. Int J Mol Sci,2018,19(6):1578−1596. doi: 10.3390/ijms19061578
    [11]
    AL ZARZOUR R H, AHMAD M, ASMAWI M Z, et al. Phyllanthus niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in sprague-dawley rats[J]. Nutrients,2017,9(7):766−779. doi: 10.3390/nu9070766
    [12]
    RAJAN L, PALANISWAMY D, MOHANKUMAR S K. Targeting obesity with plant-derived pancreatic lipase inhibitors:A comprehensive review[J]. Pharmacol Res,2020,155:104681−104699. doi: 10.1016/j.phrs.2020.104681
    [13]
    朱林, 唐荷, 安仁波, 等. 桑叶中主要活性成分、药理作用及其提取工艺的研究进展[J]. 吉林医药学院学报,2023,44(2):144−146. [ZHU Lin, TANG He, AN Renbo, et al. Research progress on the main active ingredients, pharmacological effects, and extraction process of mulberry leaves[J]. Journal of Jilin Medical University,2023,44(2):144−146.]

    ZHU Lin, TANG He, AN Renbo, et al. Research progress on the main active ingredients, pharmacological effects, and extraction process of mulberry leaves[J]. Journal of Jilin Medical University, 2023, 44(2): 144−146.
    [14]
    LI J S, JI T, SU S L, et al. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway[J]. J Ethnopharmacol,2022,283:114713−114724. doi: 10.1016/j.jep.2021.114713
    [15]
    KIM S Y, GAO J J, LEE W C, et al. Antioxidative flavonoids from the leaves of Morus alba[J]. Arch Pharm Res,1999,22(1):81−85. doi: 10.1007/BF02976442
    [16]
    HE L, XING Y, REN X, et al. Mulberry leaf extract improves metabolic syndrome by alleviating lipid accumulation in vitro and in vivo[J]. Molecules,2022,27(16):5111−5131. doi: 10.3390/molecules27165111
    [17]
    ANN J Y, EO H, LIM Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice[J]. Genes Nutr,2015,10(6):46. doi: 10.1007/s12263-015-0495-x
    [18]
    张华, 孟博, 王莉, 等. 桑叶多糖超声-微波协同提取工艺优化及其抗氧化活性[J]. 中成药,2020,42(8):1972−1977. [ZHANG Hua, MENG Bo, WANG Li, el al. Ultrasonic-microwave synergistic extraction process optimization and anti-oxidant activity for polysaccharides from Mori folium[J]. Chinese Traditional Patent Medicine,2020,42(8):1972−1977.] doi: 10.3969/j.issn.1001-1528.2020.08.002

    ZHANG Hua, MENG Bo, WANG Li, el al. Ultrasonic-microwave synergistic extraction process optimization and anti-oxidant activity for polysaccharides from Mori folium[J]. Chinese Traditional Patent Medicine, 2020, 42(8): 1972−1977. doi: 10.3969/j.issn.1001-1528.2020.08.002
    [19]
    祁伟亮, 阮梅, 冯鸿, 等. 桑叶多酚提取工艺优化及品种筛选[J]. 生物化工,2018,4(2):53−54,60. [QI Weiliang, RUAN Mei, FENG Hong, et al. Optimization of mulberry leaf polyphenol extraction process and variety selection[J]. Biological Chemical Engineering,2018,4(2):53−54,60.] doi: 10.3969/j.issn.2096-0387.2018.02.014

    QI Weiliang, RUAN Mei, FENG Hong, et al. Optimization of mulberry leaf polyphenol extraction process and variety selection[J]. Biological Chemical Engineering, 2018, 4(2): 53−54,60. doi: 10.3969/j.issn.2096-0387.2018.02.014
    [20]
    吴雅茹, 陈贵茹, 雷建都, 等. 桑叶蛋白超声提取联合超滤纯化工艺优化及其营养评价[J]. 食品工业科技,2023,44(16):236−245. [WU Yaru, CHEN Guiru, LEI Jiandu, et al. Optimization of ultrasonic extraction combined with ultrafiltration for purification of mulberry leaf protein and its nutritional evaluation[J]. Science and Technology of Food Industry,2023,44(16):236−245.]

    WU Yaru, CHEN Guiru, LEI Jiandu, et al. Optimization of ultrasonic extraction combined with ultrafiltration for purification of mulberry leaf protein and its nutritional evaluation[J]. Science and Technology of Food Industry, 2023, 44(16): 236−245.
    [21]
    LI J, CHEN Z, SHI H, et al. Ultrasound-assisted extraction and properties of polysaccharide from Ginkgo biloba leaves[J]. Ultrason Sonochem,2023,93:106295. doi: 10.1016/j.ultsonch.2023.106295
    [22]
    ZHANG L, ZHENG J, MA M, et al. Drug-guided screening for pancreatic lipase inhibitors in functional foods[J]. Food Funct,2021,12(10):4644−4653. doi: 10.1039/D0FO03366A
    [23]
    萨日那. 山丹花鳞茎醇提物对小鼠脂肪酶的抑制作用研究[D]. 锦州:锦州医科大学, 2021. [SA Rina. Study on the inhibitory effect of alcohol extract from Shandan flower bulb on mouse lipase[D]. Jinzhou:Jinzhou Medical University, 2021.]

    SA Rina. Study on the inhibitory effect of alcohol extract from Shandan flower bulb on mouse lipase[D]. Jinzhou: Jinzhou Medical University, 2021.
    [24]
    杨代晓, 陈晓静, 胡秋菊, 等. 液相色谱—质谱联用法分析葡萄籽提取物中的5种多酚类成分[J]. 药物分析杂志,2016,36(8):1330−1337. [YANG Daixiao, CHEN Xiaojing, HU Qiuju, et al. LC-MS method for determination of 5 kinds of polyphenols in grape seed extract[J]. Chinese Journal of Pharmaceutical Analysis,2016,36(8):1330−1337.]

    YANG Daixiao, CHEN Xiaojing, HU Qiuju, et al. LC-MS method for determination of 5 kinds of polyphenols in grape seed extract[J]. Chinese Journal of Pharmaceutical Analysis, 2016, 36(8): 1330−1337.
    [25]
    王博, 姚伦广, 鲁云风. 山楂皮渣中果胶超声波辅助提取工艺优化与抗氧化性研究[J]. 粮油食品科技,2023,31(4):78−86. [WANG Bo, YAO Lunguang, LU Yunfeng. Ultrasonic-assisted extraction process optimization and antioxidant activity of pectin from hawthorn peel dregs[J]. Science and Technology of Cereals, Oils and Foods,2023,31(4):78−86.]

    WANG Bo, YAO Lunguang, LU Yunfeng. Ultrasonic-assisted extraction process optimization and antioxidant activity of pectin from hawthorn peel dregs[J]. Science and Technology of Cereals, Oils and Foods, 2023, 31(4): 78−86.
    [26]
    BIALECKA-FLORJANCZYK E, FABISZEWSKA A U, KRZYCZKOWSKA J, et al. Synthetic and natural lipase inhibitors[J]. Mini Rev Med Chem,2018,18(8):672−83. doi: 10.2174/1389557516666160630123356
    [27]
    汪建红. 减压内部沸腾法提取荸荠皮黄酮的工艺优化[J]. 食品工业科技,2019,40(23):172−176. [WANG Jianhong. Optimization of extraction technology of flavonoids from elecharis tuberosa peel by decompression internal ebullition[J]. Science and Technology of Food Industry,2019,40(23):172−176.]

    WANG Jianhong. Optimization of extraction technology of flavonoids from elecharis tuberosa peel by decompression internal ebullition[J]. Science and Technology of Food Industry, 2019, 40(23): 172−176.
    [28]
    汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮[J]. 食品研究与开发,2022,43(4):22−28. [WANG Jianhong. Extraction of flavonoids from osmanthus fragrans leaves by dual aqueous phase assisted internal boiling method[J]. Food Research and Development,2022,43(4):22−28.] doi: 10.12161/j.issn.1005-6521.2022.04.004

    WANG Jianhong. Extraction of flavonoids from osmanthus fragrans leaves by dual aqueous phase assisted internal boiling method[J]. Food Research and Development, 2022, 43(4): 22−28. doi: 10.12161/j.issn.1005-6521.2022.04.004
    [29]
    田筱璇, 冼丽清, 李佳媛, 等. 波罗蜜籽果胶提取工艺优化及抗氧化活性研究[J]. 食品科技,2023,48(7):191−197. [TIAN Xiaoxuan, XIAN Liqing, LI Jiayuan, et al. Optimization of extraction technology and antioxidant activity of pectin from jackfruit seed[J]. Food Science and Technology,2023,48(7):191−197.]

    TIAN Xiaoxuan, XIAN Liqing, LI Jiayuan, et al. Optimization of extraction technology and antioxidant activity of pectin from jackfruit seed[J]. Food Science and Technology, 2023, 48(7): 191−197.
    [30]
    汪建红. 减压内部沸腾法提取血橙皮中黄酮[J]. 中国食品添加剂,2019,30(8):41−47. [WANG Jianhong. Extraction of flavonoids from blood orange peel by decompression internal boiling method[J]. China Food Additives,2019,30(8):41−47.] doi: 10.3969/j.issn.1006-2513.2019.08.001

    WANG Jianhong. Extraction of flavonoids from blood orange peel by decompression internal boiling method[J]. China Food Additives, 2019, 30(8): 41−47. doi: 10.3969/j.issn.1006-2513.2019.08.001
    [31]
    黄琳翔, 施乐乐, 蔡志, 等. 黑木耳中抑制胰脂肪酶活性物质的提取工艺及体外抑制效果[J]. 菌物学报,2020,39(2):441−451. [HUANG Linxiang, SHI Lele, CAI Zhiying, et al. Extraction technology and inhibitory effects in vitro of substances inhibiting pancreatic lipase activities from fruiting body of auricaria heimuer[J]. Mycosystema,2020,39(2):441−451.]

    HUANG Linxiang, SHI Lele, CAI Zhiying, et al. Extraction technology and inhibitory effects in vitro of substances inhibiting pancreatic lipase activities from fruiting body of auricaria heimuer[J]. Mycosystema, 2020, 39(2): 441−451.
    [32]
    李利华. 鱼腥草多酚的超声波辅助提取及抗氧化性能研究[J]. 食品工业科技,2016,37(8):295−298,312. [LI Lihua. Ultrasonic assisted extraction and antioxidant properties of polyphenols from Houttuynia cordata[J]. Science and Technology of Food Industry,2016,37(8):295−298,312.]

    LI Lihua. Ultrasonic assisted extraction and antioxidant properties of polyphenols from Houttuynia cordata[J]. Science and Technology of Food Industry, 2016, 37(8): 295−298,312.
    [33]
    田强, 吴子健, 黄道荣, 等, 葡萄籽中胰脂肪酶抑制物提取工艺[J]. 食品研究与开发, 2010, 31(4):41-44. [TIAN Qiang, WU Zijian, HUANG Daorong, et al. Optimizing conditions for the isolation of pancreatic lipase inhibitive substance from grape seeds[J]. Food Research and Development, 2010, 31(4):41-44.]

    TIAN Qiang, WU Zijian, HUANG Daorong, et al. Optimizing conditions for the isolation of pancreatic lipase inhibitive substance from grape seeds[J]. Food Research and Development, 2010, 31(4): 41-44.
    [34]
    ASSINI J M, MULVIHILL E E, HUFF M W. Citrus flavonoids and lipid metabolism[J]. Curr Opin Lipidol,2013,24(1):34−40. doi: 10.1097/MOL.0b013e32835c07fd
    [35]
    RODRÍGUEZ-PÉREZ C, SEGURA-CARRETERO A, DEL MAR CONTRERAS M. Phenolic compounds as natural and multifunctional anti-obesity agents:A review[J]. Crit Rev Food Sci Nutr,2019,59(8):1212−1229. doi: 10.1080/10408398.2017.1399859
    [36]
    BUCHHOLZ T, MELZIG M F. Polyphenolic compounds as pancreatic lipase inhibitors[J]. Planta Med,2015,81(10):771−783. doi: 10.1055/s-0035-1546173
    [37]
    ZHANG X, LI D, WANG K, et al. Hyperoside inhibits pancreatic lipase activity in vitro and reduces fat accumulation in vivo[J]. Food Funct,2023,14(10):4763−4776. doi: 10.1039/D2FO03219H
    [38]
    WANG Y, CHEN L, LIU H, et al. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase[J]. Food Chem, 2023, 404(Pt B):134672−80.
    [39]
    王婵. 荷叶中具有脂肪酶抑制活性成分的分离与鉴定[D]. 上海:上海中医药大学, 2020. [WANG Chan. Separation and identification of lipase inhibiting activity components in Nelumbinis folium[D]. Shanghai:Shanghai University of Traditional Chinese Medicine, 2020.]

    WANG Chan. Separation and identification of lipase inhibiting activity components in Nelumbinis folium[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2020.
    [40]
    CHEN J, WU X, ZHOU Y, et al. Camellia nitidissima Chi leaf as pancreatic lipase inhibitors:Inhibition potentials and mechanism[J]. J Food Biochem,2021,45(9):e13837−50.
    [41]
    郭盼. 绿原酸和EGCG对胰脂肪酶的抑制作用及减脂产品研发[D]. 南昌:南昌大学, 2023. [GUO Pan. The inhibition mechanism of chlorogenic acid and EGCG on pancreatic lipase and development of fat reduction product[D]. Nanchang:Nanchang University, 2023.]

    GUO Pan. The inhibition mechanism of chlorogenic acid and EGCG on pancreatic lipase and development of fat reduction product[D]. Nanchang: Nanchang University, 2023.
    [42]
    杨鹏, 李艳琴. 荞麦黄酮和荞麦糖醇对胰脂肪酶的抑制作用[J]. 食品科学,2015,36(11):60−63. [YANG Peng, LI Yanqin. Inhibitory effect of flavonoids and fagopyritols from buckwheat on pancreatic lipase[J]. Food Science,2015,36(11):60−63.] doi: 10.7506/spkx1002-6630-201511012

    YANG Peng, LI Yanqin. Inhibitory effect of flavonoids and fagopyritols from buckwheat on pancreatic lipase[J]. Food Science, 2015, 36(11): 60−63. doi: 10.7506/spkx1002-6630-201511012
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (100) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return