Citation: | WU Qi, HU Xinna, LU Shuyu, et al. Research Progress on Preparation of Composite Film Based on Cellulose Nanofibrils and Its Excellent Properties as Food Packaging Materials[J]. Science and Technology of Food Industry, 2024, 45(17): 436−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090299. |
[1] |
SULEMAN R, AMJAD A, ISMAIL A, et al. Impact of plastic bags usage in food commodities:An irreversible loss to environment[J]. Environ Sci Pollut Res,2022,29(33):49483−49489. doi: 10.1007/s11356-022-21091-3
|
[2] |
SHEN M C, ZHU Y, ZHANG Y X, et al. Micro(nano)plastics:Unignorable vectors for organisms[J]. Marine Pollution Bulletin,2019,139:328−331. doi: 10.1016/j.marpolbul.2019.01.004
|
[3] |
LI J W, ZHANG F F, ZHONG Y Q, et al. Emerging food packaging applications of cellulose nanocomposites:A review[j]. Polymers, 2022, 14(19):4025.
|
[4] |
杨晨曦, 王健, 张海欧, 等. 纤维素纳米纤维的制备及其功能化技术进展[J]. 中国造纸学报,2023,38(1):128−133. [YANG C X, WANG J, ZHANG H O, et al. Progress in preparation and functionalization of cellulose nanofibers[J]. Transactions of China Pulp and Paper,2023,38(1):128−133.]
YANG C X, WANG J, ZHANG H O, et al. Progress in preparation and functionalization of cellulose nanofibers[J]. Transactions of China Pulp and Paper, 2023, 38(1): 128−133.
|
[5] |
KHORAIRI A N S A, SOFIAN-SENG N S, OTHAMAN R, et al. A review on agro-industrial waste as cellulose and nanocellulose source and their potentials in food applications[J]. Food Reviews International,2023,39(2):663−688. doi: 10.1080/87559129.2021.1926478
|
[6] |
MANAN S, ULLAH M W, UL-ISLAM M, et al. Bacterial cellulose:Molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties[J]. Progress in Materials Science,2022,129:100972. doi: 10.1016/j.pmatsci.2022.100972
|
[7] |
白辰雨, 王天卉, 户昕娜, 等. 纤维素纳米化处理技术研究现状[J]. 食品工业科技, 2023, 44(14):468−476. [BAI C Y, WANG T H, HU X N, et al. Research progress on preparation of nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14):465−473.]
BAI C Y, WANG T H, HU X N, et al. Research progress on preparation of nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465−473.
|
[8] |
AHANKARI S S, SUBHEDAR A R, BHADAURIA S S, et al. Nanocellulose in food packaging:A review[J]. Carbohydrate Polymers,2021,255:117479. doi: 10.1016/j.carbpol.2020.117479
|
[9] |
KHALIL H P S A, DAVOUDPOUR Y, ISLAM M N, et al. Production and modification of nanofibrillated cellulose using various mechanical processes:A review[J]. Carbohydrate Polymers,2014,99:649−665. doi: 10.1016/j.carbpol.2013.08.069
|
[10] |
DAVOUDPOUR Y, HOSSAIN S, KHALIL H P S A, et al. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology[J]. Industrial Crops and Products,2015,74:381−387. doi: 10.1016/j.indcrop.2015.05.029
|
[11] |
XU J Y, KRIETEMEYER E F, BODDU V M, et al. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover[J]. Carbohydrate Polymers,2018,192:202−207. doi: 10.1016/j.carbpol.2018.03.017
|
[12] |
姜亚妮, 周骥平, 张琦, 等. 4种方法从葎草中制备的纳米纤维素性能[J]. 草业科学,2017,11(8):1748−1754. [JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science,2017,11(8):1748−1754.] doi: 10.11829/j.issn.1001-0629.2016-0524
JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science, 2017, 11(8): 1748−1754. doi: 10.11829/j.issn.1001-0629.2016-0524
|
[13] |
YI T, ZHAO H Y, MO Q, et al. From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials,2020,13(22):5062. doi: 10.3390/ma13225062
|
[14] |
YADAV C, SAINI A, ZHANG W B, et al. Plant-based nanocellulose:A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting[J]. International Journal of Biological Macromolecules,2021,166:1586−1616. doi: 10.1016/j.ijbiomac.2020.11.038
|
[15] |
YANG Y, LIU H D, WU M, et al. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films[J]. International Journal of Biological Macromolecules,2020,161:627−635. doi: 10.1016/j.ijbiomac.2020.06.081
|
[16] |
KASSAB Z, MANSOURI S, TAMRAOUI Y, et al. Identifying Juncus plant as viable source for the production of micro-and nano-cellulose fibers:Application for PVA composite materials developmen[J]. Industrial Crops and Products,2020,144:112035. doi: 10.1016/j.indcrop.2019.112035
|
[17] |
YANG W G, CHENG T Y, FENG Y H, et al. Isolating cellulose nanofibers from steam-explosion pretreated corncobs using mild mechanochemical treatments[J]. BioRes,2017,12(4):9183−9197. doi: 10.15376/biores.12.4.9183-9197
|
[18] |
NEENU K V, DOMINIC M C D, BEGUM P M S, et al. Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers[J]. International Journal of Biological Macromolecules,2022,209:1745−1759. doi: 10.1016/j.ijbiomac.2022.04.138
|
[19] |
NIU F G, LI M Y, HUANG Q, et al. The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance[J]. Carbohydrate Polymers,2017,165:197−204. doi: 10.1016/j.carbpol.2017.02.048
|
[20] |
TAKAGI H, NAKAGAITO A N, BISTAMAM M S A. Extraction of cellulose nanofiber from waste papers and application to reinforcement in biodegradable composites[J]. Journal of Reinforced Plastics and Composites,2013,32(20):1542−1546. doi: 10.1177/0731684413494109
|
[21] |
SETYANINGSIH D, UJU S, MUNA N, et al. Cellulose nanofiber isolation from palm oil empty fruit bunches (EFB) through strong acid hydrolysis[J]. IOP Conf Ser:Earth Environ Sci,2018,141:012027. doi: 10.1088/1755-1315/141/1/012027
|
[22] |
LIU L L, GERARD G, PENG Z M, et al. The use of corn stover-derived nanocellulose as a stabilizer of oil-in-water emulsion[J]. Polymers,2023,15(3):757. doi: 10.3390/polym15030757
|
[23] |
NOGUCHI Y, HOMMA I, MATSUBARA Y. Complete nanofibrillation of cellulose prepared by phosphorylation[J]. Cellulose,2017,24(3):1295−1305. doi: 10.1007/s10570-017-1191-3
|
[24] |
SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose:Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171(1):113877.
|
[25] |
YU W, WANG C Y, YI Y J, et al. Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity[J]. Cellulose,2021,28(1):175−188. doi: 10.1007/s10570-020-03538-3
|
[26] |
NADERI A, KOSCHELLA A, HEINZE T, et al. Sulfoethylated nanofibrillated cellulose:Production and properties[J]. Carbohydrate Polymers,2017,169:515−523. doi: 10.1016/j.carbpol.2017.04.026
|
[27] |
SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose:Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171:113877. doi: 10.1016/j.indcrop.2021.113877
|
[28] |
PINTO E, AGGREY W N, BOAKYE P, et al. Cellulose processing from biomass and its derivatization into carboxymethylcellulose:A review[J]. Scientific African,2022,15:e01078. doi: 10.1016/j.sciaf.2021.e01078
|
[29] |
LIIMATAINEN H, VISANKO M, SIRVIÖ J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592−1597. doi: 10.1021/bm300319m
|
[30] |
MARIñO M, SILVA L L, DURÁN N, et al. Enhanced materials from nature:Nanocellulose from citrus waste[J]. Molecules,2015,20(4):5908−5923. doi: 10.3390/molecules20045908
|
[31] |
TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment:In vitro cytotoxicity assessment[J]. Carbohydrate Polymers, 2019, 207.
|
[32] |
CEASER R, CHIMPHANGO A F A. Comparative analysis of physical and functional properties of cellulose nanofibers isolated from alkaline pre-treated wheat straw in optimized hydrochloric acid and enzymatic processes[J]. International Journal of Biological Macromolecules,2021,171:331−342. doi: 10.1016/j.ijbiomac.2021.01.018
|
[33] |
ZENG J S, LIU L, LI J P, et al. Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood kraft fibers[J]. BioRes,2020,15(2):3809−3820. doi: 10.15376/biores.15.2.3809-3820
|
[34] |
BANVILLET G, DEPRES G, BELGACEM N, et al. Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production[J]. Carbohydrate Polymers,2021,255:117383. doi: 10.1016/j.carbpol.2020.117383
|
[35] |
OUN A A, RHIM J W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films[J]. Carbohydrate Polymers,2015,127:101−109. doi: 10.1016/j.carbpol.2015.03.073
|
[36] |
CINDRADEWI A W, BANDI R, PARK C W, et al. Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril[J]. Polymers,2021,13(17):2990. doi: 10.3390/polym13172990
|
[37] |
FERNÁNDEZ-SANTOS J, VALLS C, CUSOLA O, et al. Composites of cellulose nanocrystals in combination with either cellulose nanofibril or carboxymethylcellulose as functional packaging films[J]. International Journal of Biological Macromolecules,2022,211:218−229. doi: 10.1016/j.ijbiomac.2022.05.049
|
[38] |
WANG W, QIN C, LI W, et al. Design of antibacterial cellulose nanofibril film by the incorporation of guanidine-attached lignin nanoparticles[J]. Cellulose,2022(29):3439−3451.
|
[39] |
CHAUDHARY K T. Thin film deposition:Solution based approach[M]. In:Esther Ares A, ed. Thin Films. IntechOpen, 2021.
|
[40] |
NGUYEN H L, TRAN T H, HAO L T, et al. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications[J]. Carbohydrate Polymers,2021,271:118421. doi: 10.1016/j.carbpol.2021.118421
|
[41] |
JIN K Y, TANG Y J, LIU J C, et al. Nanofibrillated cellulose as coating agent for food packaging paper[J]. International Journal of Biological Macromolecules,2021,168:331−338. doi: 10.1016/j.ijbiomac.2020.12.066
|
[42] |
MARESCA D, MAURIELLO G. Development of antimicrobial cellulose nanofiber-based films activated with nisin for food packaging applications[J]. Foods,2022,11(19):3051. doi: 10.3390/foods11193051
|
[43] |
YANG W S, JIAO L, LIU W, et al. Manufacture of highly transparent and hazy cellulose nanofibril films via coating TEMPO-Oxidized wood fibers[J]. Nanomaterials,2019,9(1):107. doi: 10.3390/nano9010107
|
[44] |
YUAN B G, GUO M H, HUANG Z H, et al. A UV-shielding and hydrophobic graphitic carbon nitride nanosheets/cellulose nanofibril (gCNNS/CNF) transparent coating on wood surface for weathering resistance[J]. Progress in Organic Coatings,2021,159:106440. doi: 10.1016/j.porgcoat.2021.106440
|
[45] |
BORGES J, MANO J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chem Rev,2014,114(18):8883−8942. doi: 10.1021/cr400531v
|
[46] |
DAI L, LONG Z, CHEN J, et al. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties[J]. ACS Appl Mater Interfaces,2017,9(6):5477−5485. doi: 10.1021/acsami.6b14471
|
[47] |
HWANG H, JANG S, JIN J. Large-area transparent biocomposite films based on nanocellulose and nanochitin via horizontal centrifugal casting[J]. Carbohydrate Polymers,2022,281:119051. doi: 10.1016/j.carbpol.2021.119051
|
[48] |
KWON G, LEE K, KIM D, et al. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites[J]. Journal of Hazardous Materials,2020,398:123100. doi: 10.1016/j.jhazmat.2020.123100
|
[49] |
SILVA N H C S, GARRIDO-PASCUAL P, MOREIRINHA C, et al. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing[J]. International Journal of Biological Macromolecules,2020,165:1198−1210. doi: 10.1016/j.ijbiomac.2020.09.249
|
[50] |
SHANMUGAM K, ANG S, MALIHA M, et al. High-performance homogenized and spray coated nanofibrillated cellulose-montmorillonite barriers[J]. Cellulose,2021,28(1):405−416. doi: 10.1007/s10570-020-03515-w
|
[51] |
MALIHA M, HERDMAN M, BRAMMANANTH R, et al. Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications[J]. Journal of Cleaner Production,2020,246:119016. doi: 10.1016/j.jclepro.2019.119016
|
[52] |
ILYAS R A, SAPUAN S M, IBRAHIM R, et al. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch[J]. Journal of Materials Research and Technology,2019,8(5):4819−4830. doi: 10.1016/j.jmrt.2019.08.028
|
[53] |
GOND R K, NAIK T P, GUPTA M K, et al. Development and characterisation of sugarcane bagasse nanocellulose/ PLA composites[J]. Materials Technology,2022,37(14):2942−2954. doi: 10.1080/10667857.2022.2088616
|
[54] |
HUANG L J, ZHAO H Y, YI T, et al. Preparation and properties of cassava residue cellulose nanofibril/cassava starch composite films[J]. Nanomaterials,2020,10(4):755. doi: 10.3390/nano10040755
|
[55] |
CHOU C T, SHI S C, CHEN T H, et al. Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film[J]. Science Progress, 2023, 106(1):003685042311571.
|
[56] |
GARS M L, DHUIÈGE B, DELVART A, et al. High-barrier and antioxidant poly(lactic acid)/nanocellulose multilayered materials for packaging[J]. ACS Omega,2020,5(36):22816−22826. doi: 10.1021/acsomega.0c01955
|
[57] |
TRIFOL J, MORIANA R. Barrier packaging solutions from residual biomass:Synergetic properties of CNF and LCNF in films[J]. Industrial Crops and Products,2022,177:114493. doi: 10.1016/j.indcrop.2021.114493
|
[58] |
ZHAO Y D, TROEDSSON C, BOUQUET J M, et al. Mechanically reinforced, flexible, hydrophobic and UV impermeable starch-cellulose nanofibers (CNF)-lignin composites with good barrier and thermal properties[J]. Polymers,2021,13(24):4346. doi: 10.3390/polym13244346
|
[59] |
QIN Q Y, LI W H, ZHANG X Y, et al. Feasibility of bionanocomposite films fabricated using capsicum leaf protein and cellulose nanofibers[J]. Food Chemistry,2022,387:132769. doi: 10.1016/j.foodchem.2022.132769
|
[60] |
刘仁, 鲁鹏, 吴敏, 等. 纳米纤维素在气体阻隔包装材料中的应用进展[J]. 包装工程,2019,40(7):51−59. [LIU R, LU P, WU M, et al. Application progress of nano-cellulose in gas barrier packaging materials[J]. Packaging Engineering,2019,40(7):51−59.]
LIU R, LU P, WU M, et al. Application progress of nano-cellulose in gas barrier packaging materials[J]. Packaging Engineering, 2019, 40(7): 51−59.
|
[61] |
MADIVOLI E S, KARERU P G, GICHUKI J, et al. Cellulose nanofibrils and silver nanoparticles enhances the mechanical and antimicrobial properties of polyvinyl alcohol nanocomposite film[J]. Sci Rep,2022,12(1):19005. doi: 10.1038/s41598-022-23305-7
|
[62] |
EZATI P, RHIM J W, MOLAEI R, et al. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit[J]. Postharvest Biology and Technology,2022,186:111845. doi: 10.1016/j.postharvbio.2022.111845
|
[63] |
MALEKZADEH E, TATARI A, FIROUZABADI M D. Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC) films[J]. Carbohydrate Polymers,2023,309:120699. doi: 10.1016/j.carbpol.2023.120699
|
[64] |
BIAN H Y, SHU X, SU W H, et al. Biodegradable, flexible and ultraviolet blocking nanocellulose composite film incorporated with lignin nanoparticles[J]. International Journal of Molecular Sciences,2022,23(23):14863. doi: 10.3390/ijms232314863
|
[65] |
ARUN R, SHRUTHY R, PREETHA R, et al. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging[J]. Chemosphere,2022,291:132786. doi: 10.1016/j.chemosphere.2021.132786
|
[66] |
REZAEI A, RAFIEIAN F, AKBARI-ALAVIJEH S, et al. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications[J]. Advances in Colloid and Interface Science,2022,307:102728. doi: 10.1016/j.cis.2022.102728
|
[67] |
JANG J H, KANG H J, ADEDEJI O E, et al. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber[J]. Food Chemistry,2023,403:134366. doi: 10.1016/j.foodchem.2022.134366
|
[68] |
YANG Y, YU X N, ZHU Y L, et al. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins[J]. Food Chemistry,2022,393:133342. doi: 10.1016/j.foodchem.2022.133342
|
[69] |
ZABIDI N A, NAZRI F, TAWAKKAL I S M A, et al. Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application[J]. International Journal of Biological Macromolecules,2022,212:220−231. doi: 10.1016/j.ijbiomac.2022.05.116
|
[1] | Boji MA, Yan XIAO, Zude CHEN, Rengeng SHU, Bingtao LI, Li JIANG, Guoliang XU, Qiyun ZHANG. Analysis of Chemical Constituents in Percolate the Extract of Cyclocarya paliurus Tender Leaves by UHPLC-Q-TOF-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(13): 281-291. DOI: 10.13386/j.issn1002-0306.2022070294 |
[2] | WANG Weihong, HU Juli, WU Dingtao, WANG Shijie, JIANG Hong, ZOU Liang, HU Yichen. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296-308. DOI: 10.13386/j.issn1002-0306.2022050100 |
[3] | PEI Fei, HAN Ping, WANG Jie, MA Ning, SU Anxiang, YANG Wenjian, HU Qiuhui. Simultaneous Determination of Major Antibiotics Veterinary Drug Residues in Pork by UHPLC-Q-TOF/MS[J]. Science and Technology of Food Industry, 2022, 43(10): 298-304. DOI: 10.13386/j.issn1002-0306.2021080169 |
[4] | YUAN Guangwei, WU Yi, WANG Haibo, MO Zimei, LIN Guangliao, JIANG Qiuxia. Determination of Eighteen Kinds of Free Amino Acids in Fruits by Ultra Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(5): 243-249. DOI: 10.13386/j.issn1002-0306.2020050015 |
[5] | YE Lin-yang, KANG Qin, LI Gang, MU Li. Extraction and Analysis of Volatile Aroma Components in Stinky Tofu by Gas-Liquid Microextraction and GC-MS[J]. Science and Technology of Food Industry, 2020, 41(12): 47-55. DOI: 10.13386/j.issn1002-0306.2020.12.008 |
[6] | GAO Ya-hui, LI Zi-jie. Optimization of analysis conditions of volatile compounds in human breast milk by SPME-GC-MS[J]. Science and Technology of Food Industry, 2018, 39(6): 199-203. DOI: 10.13386/j.issn1002-0306.2018.06.036 |
[7] | XIA Ning, SHI Yan-guo, Wu yong-qing, ZHANG Hua-jiang. Optimization of headspace solid phase microextraction conditions for GC-MS analysis of volatile components in soymilk[J]. Science and Technology of Food Industry, 2018, 39(1): 262-266. DOI: 10.13386/j.issn1002-0306.2018.01.047 |
[8] | CHEN Wei-ling, ZHONG Pei-pei, FAN Lin-lin, DING Hao-fu, HE Hong, WANG Yuan-xing. Analysis of volatile compounds in Cyclocarya paliurus leaves by SPME-GC-MS[J]. Science and Technology of Food Industry, 2016, (22): 52-58. DOI: 10.13386/j.issn1002-0306.2016.22.002 |
[9] | SHA Kun, LI Hai-peng, ZHANG Yang, DANG Xin, LANG Yu-miao, LIU Fei, SUN Bao-zhong. Analysis of volatile compounds in five Xinjiang dried beef by SPME- GS / MS[J]. Science and Technology of Food Industry, 2014, (21): 310-315. DOI: 10.13386/j.issn1002-0306.2014.21.058 |
[10] | XU Yong-xia, JIANG Cheng-cheng, ZHANG Chao-min, LV Yan-fang, ZHU Dan-shi, LI Jian-rong. Analysis of volatile components in Hairtail by SPME-GC-MS[J]. Science and Technology of Food Industry, 2014, (19): 308-311. DOI: 10.13386/j.issn1002-0306.2014.19.058 |