Citation: | WU Qi, HU Xinna, LU Shuyu, et al. Research Progress on Preparation of Composite Film Based on Cellulose Nanofibrils and Its Excellent Properties as Food Packaging Materials[J]. Science and Technology of Food Industry, 2024, 45(17): 436−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090299. |
[1] |
SULEMAN R, AMJAD A, ISMAIL A, et al. Impact of plastic bags usage in food commodities:An irreversible loss to environment[J]. Environ Sci Pollut Res,2022,29(33):49483−49489. doi: 10.1007/s11356-022-21091-3
|
[2] |
SHEN M C, ZHU Y, ZHANG Y X, et al. Micro(nano)plastics:Unignorable vectors for organisms[J]. Marine Pollution Bulletin,2019,139:328−331. doi: 10.1016/j.marpolbul.2019.01.004
|
[3] |
LI J W, ZHANG F F, ZHONG Y Q, et al. Emerging food packaging applications of cellulose nanocomposites:A review[j]. Polymers, 2022, 14(19):4025.
|
[4] |
杨晨曦, 王健, 张海欧, 等. 纤维素纳米纤维的制备及其功能化技术进展[J]. 中国造纸学报,2023,38(1):128−133. [YANG C X, WANG J, ZHANG H O, et al. Progress in preparation and functionalization of cellulose nanofibers[J]. Transactions of China Pulp and Paper,2023,38(1):128−133.]
YANG C X, WANG J, ZHANG H O, et al. Progress in preparation and functionalization of cellulose nanofibers[J]. Transactions of China Pulp and Paper, 2023, 38(1): 128−133.
|
[5] |
KHORAIRI A N S A, SOFIAN-SENG N S, OTHAMAN R, et al. A review on agro-industrial waste as cellulose and nanocellulose source and their potentials in food applications[J]. Food Reviews International,2023,39(2):663−688. doi: 10.1080/87559129.2021.1926478
|
[6] |
MANAN S, ULLAH M W, UL-ISLAM M, et al. Bacterial cellulose:Molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties[J]. Progress in Materials Science,2022,129:100972. doi: 10.1016/j.pmatsci.2022.100972
|
[7] |
白辰雨, 王天卉, 户昕娜, 等. 纤维素纳米化处理技术研究现状[J]. 食品工业科技, 2023, 44(14):468−476. [BAI C Y, WANG T H, HU X N, et al. Research progress on preparation of nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14):465−473.]
BAI C Y, WANG T H, HU X N, et al. Research progress on preparation of nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465−473.
|
[8] |
AHANKARI S S, SUBHEDAR A R, BHADAURIA S S, et al. Nanocellulose in food packaging:A review[J]. Carbohydrate Polymers,2021,255:117479. doi: 10.1016/j.carbpol.2020.117479
|
[9] |
KHALIL H P S A, DAVOUDPOUR Y, ISLAM M N, et al. Production and modification of nanofibrillated cellulose using various mechanical processes:A review[J]. Carbohydrate Polymers,2014,99:649−665. doi: 10.1016/j.carbpol.2013.08.069
|
[10] |
DAVOUDPOUR Y, HOSSAIN S, KHALIL H P S A, et al. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology[J]. Industrial Crops and Products,2015,74:381−387. doi: 10.1016/j.indcrop.2015.05.029
|
[11] |
XU J Y, KRIETEMEYER E F, BODDU V M, et al. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover[J]. Carbohydrate Polymers,2018,192:202−207. doi: 10.1016/j.carbpol.2018.03.017
|
[12] |
姜亚妮, 周骥平, 张琦, 等. 4种方法从葎草中制备的纳米纤维素性能[J]. 草业科学,2017,11(8):1748−1754. [JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science,2017,11(8):1748−1754.] doi: 10.11829/j.issn.1001-0629.2016-0524
JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science, 2017, 11(8): 1748−1754. doi: 10.11829/j.issn.1001-0629.2016-0524
|
[13] |
YI T, ZHAO H Y, MO Q, et al. From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials,2020,13(22):5062. doi: 10.3390/ma13225062
|
[14] |
YADAV C, SAINI A, ZHANG W B, et al. Plant-based nanocellulose:A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting[J]. International Journal of Biological Macromolecules,2021,166:1586−1616. doi: 10.1016/j.ijbiomac.2020.11.038
|
[15] |
YANG Y, LIU H D, WU M, et al. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films[J]. International Journal of Biological Macromolecules,2020,161:627−635. doi: 10.1016/j.ijbiomac.2020.06.081
|
[16] |
KASSAB Z, MANSOURI S, TAMRAOUI Y, et al. Identifying Juncus plant as viable source for the production of micro-and nano-cellulose fibers:Application for PVA composite materials developmen[J]. Industrial Crops and Products,2020,144:112035. doi: 10.1016/j.indcrop.2019.112035
|
[17] |
YANG W G, CHENG T Y, FENG Y H, et al. Isolating cellulose nanofibers from steam-explosion pretreated corncobs using mild mechanochemical treatments[J]. BioRes,2017,12(4):9183−9197. doi: 10.15376/biores.12.4.9183-9197
|
[18] |
NEENU K V, DOMINIC M C D, BEGUM P M S, et al. Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers[J]. International Journal of Biological Macromolecules,2022,209:1745−1759. doi: 10.1016/j.ijbiomac.2022.04.138
|
[19] |
NIU F G, LI M Y, HUANG Q, et al. The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance[J]. Carbohydrate Polymers,2017,165:197−204. doi: 10.1016/j.carbpol.2017.02.048
|
[20] |
TAKAGI H, NAKAGAITO A N, BISTAMAM M S A. Extraction of cellulose nanofiber from waste papers and application to reinforcement in biodegradable composites[J]. Journal of Reinforced Plastics and Composites,2013,32(20):1542−1546. doi: 10.1177/0731684413494109
|
[21] |
SETYANINGSIH D, UJU S, MUNA N, et al. Cellulose nanofiber isolation from palm oil empty fruit bunches (EFB) through strong acid hydrolysis[J]. IOP Conf Ser:Earth Environ Sci,2018,141:012027. doi: 10.1088/1755-1315/141/1/012027
|
[22] |
LIU L L, GERARD G, PENG Z M, et al. The use of corn stover-derived nanocellulose as a stabilizer of oil-in-water emulsion[J]. Polymers,2023,15(3):757. doi: 10.3390/polym15030757
|
[23] |
NOGUCHI Y, HOMMA I, MATSUBARA Y. Complete nanofibrillation of cellulose prepared by phosphorylation[J]. Cellulose,2017,24(3):1295−1305. doi: 10.1007/s10570-017-1191-3
|
[24] |
SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose:Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171(1):113877.
|
[25] |
YU W, WANG C Y, YI Y J, et al. Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity[J]. Cellulose,2021,28(1):175−188. doi: 10.1007/s10570-020-03538-3
|
[26] |
NADERI A, KOSCHELLA A, HEINZE T, et al. Sulfoethylated nanofibrillated cellulose:Production and properties[J]. Carbohydrate Polymers,2017,169:515−523. doi: 10.1016/j.carbpol.2017.04.026
|
[27] |
SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose:Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171:113877. doi: 10.1016/j.indcrop.2021.113877
|
[28] |
PINTO E, AGGREY W N, BOAKYE P, et al. Cellulose processing from biomass and its derivatization into carboxymethylcellulose:A review[J]. Scientific African,2022,15:e01078. doi: 10.1016/j.sciaf.2021.e01078
|
[29] |
LIIMATAINEN H, VISANKO M, SIRVIÖ J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592−1597. doi: 10.1021/bm300319m
|
[30] |
MARIñO M, SILVA L L, DURÁN N, et al. Enhanced materials from nature:Nanocellulose from citrus waste[J]. Molecules,2015,20(4):5908−5923. doi: 10.3390/molecules20045908
|
[31] |
TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment:In vitro cytotoxicity assessment[J]. Carbohydrate Polymers, 2019, 207.
|
[32] |
CEASER R, CHIMPHANGO A F A. Comparative analysis of physical and functional properties of cellulose nanofibers isolated from alkaline pre-treated wheat straw in optimized hydrochloric acid and enzymatic processes[J]. International Journal of Biological Macromolecules,2021,171:331−342. doi: 10.1016/j.ijbiomac.2021.01.018
|
[33] |
ZENG J S, LIU L, LI J P, et al. Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood kraft fibers[J]. BioRes,2020,15(2):3809−3820. doi: 10.15376/biores.15.2.3809-3820
|
[34] |
BANVILLET G, DEPRES G, BELGACEM N, et al. Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production[J]. Carbohydrate Polymers,2021,255:117383. doi: 10.1016/j.carbpol.2020.117383
|
[35] |
OUN A A, RHIM J W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films[J]. Carbohydrate Polymers,2015,127:101−109. doi: 10.1016/j.carbpol.2015.03.073
|
[36] |
CINDRADEWI A W, BANDI R, PARK C W, et al. Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril[J]. Polymers,2021,13(17):2990. doi: 10.3390/polym13172990
|
[37] |
FERNÁNDEZ-SANTOS J, VALLS C, CUSOLA O, et al. Composites of cellulose nanocrystals in combination with either cellulose nanofibril or carboxymethylcellulose as functional packaging films[J]. International Journal of Biological Macromolecules,2022,211:218−229. doi: 10.1016/j.ijbiomac.2022.05.049
|
[38] |
WANG W, QIN C, LI W, et al. Design of antibacterial cellulose nanofibril film by the incorporation of guanidine-attached lignin nanoparticles[J]. Cellulose,2022(29):3439−3451.
|
[39] |
CHAUDHARY K T. Thin film deposition:Solution based approach[M]. In:Esther Ares A, ed. Thin Films. IntechOpen, 2021.
|
[40] |
NGUYEN H L, TRAN T H, HAO L T, et al. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications[J]. Carbohydrate Polymers,2021,271:118421. doi: 10.1016/j.carbpol.2021.118421
|
[41] |
JIN K Y, TANG Y J, LIU J C, et al. Nanofibrillated cellulose as coating agent for food packaging paper[J]. International Journal of Biological Macromolecules,2021,168:331−338. doi: 10.1016/j.ijbiomac.2020.12.066
|
[42] |
MARESCA D, MAURIELLO G. Development of antimicrobial cellulose nanofiber-based films activated with nisin for food packaging applications[J]. Foods,2022,11(19):3051. doi: 10.3390/foods11193051
|
[43] |
YANG W S, JIAO L, LIU W, et al. Manufacture of highly transparent and hazy cellulose nanofibril films via coating TEMPO-Oxidized wood fibers[J]. Nanomaterials,2019,9(1):107. doi: 10.3390/nano9010107
|
[44] |
YUAN B G, GUO M H, HUANG Z H, et al. A UV-shielding and hydrophobic graphitic carbon nitride nanosheets/cellulose nanofibril (gCNNS/CNF) transparent coating on wood surface for weathering resistance[J]. Progress in Organic Coatings,2021,159:106440. doi: 10.1016/j.porgcoat.2021.106440
|
[45] |
BORGES J, MANO J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chem Rev,2014,114(18):8883−8942. doi: 10.1021/cr400531v
|
[46] |
DAI L, LONG Z, CHEN J, et al. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties[J]. ACS Appl Mater Interfaces,2017,9(6):5477−5485. doi: 10.1021/acsami.6b14471
|
[47] |
HWANG H, JANG S, JIN J. Large-area transparent biocomposite films based on nanocellulose and nanochitin via horizontal centrifugal casting[J]. Carbohydrate Polymers,2022,281:119051. doi: 10.1016/j.carbpol.2021.119051
|
[48] |
KWON G, LEE K, KIM D, et al. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites[J]. Journal of Hazardous Materials,2020,398:123100. doi: 10.1016/j.jhazmat.2020.123100
|
[49] |
SILVA N H C S, GARRIDO-PASCUAL P, MOREIRINHA C, et al. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing[J]. International Journal of Biological Macromolecules,2020,165:1198−1210. doi: 10.1016/j.ijbiomac.2020.09.249
|
[50] |
SHANMUGAM K, ANG S, MALIHA M, et al. High-performance homogenized and spray coated nanofibrillated cellulose-montmorillonite barriers[J]. Cellulose,2021,28(1):405−416. doi: 10.1007/s10570-020-03515-w
|
[51] |
MALIHA M, HERDMAN M, BRAMMANANTH R, et al. Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications[J]. Journal of Cleaner Production,2020,246:119016. doi: 10.1016/j.jclepro.2019.119016
|
[52] |
ILYAS R A, SAPUAN S M, IBRAHIM R, et al. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch[J]. Journal of Materials Research and Technology,2019,8(5):4819−4830. doi: 10.1016/j.jmrt.2019.08.028
|
[53] |
GOND R K, NAIK T P, GUPTA M K, et al. Development and characterisation of sugarcane bagasse nanocellulose/ PLA composites[J]. Materials Technology,2022,37(14):2942−2954. doi: 10.1080/10667857.2022.2088616
|
[54] |
HUANG L J, ZHAO H Y, YI T, et al. Preparation and properties of cassava residue cellulose nanofibril/cassava starch composite films[J]. Nanomaterials,2020,10(4):755. doi: 10.3390/nano10040755
|
[55] |
CHOU C T, SHI S C, CHEN T H, et al. Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film[J]. Science Progress, 2023, 106(1):003685042311571.
|
[56] |
GARS M L, DHUIÈGE B, DELVART A, et al. High-barrier and antioxidant poly(lactic acid)/nanocellulose multilayered materials for packaging[J]. ACS Omega,2020,5(36):22816−22826. doi: 10.1021/acsomega.0c01955
|
[57] |
TRIFOL J, MORIANA R. Barrier packaging solutions from residual biomass:Synergetic properties of CNF and LCNF in films[J]. Industrial Crops and Products,2022,177:114493. doi: 10.1016/j.indcrop.2021.114493
|
[58] |
ZHAO Y D, TROEDSSON C, BOUQUET J M, et al. Mechanically reinforced, flexible, hydrophobic and UV impermeable starch-cellulose nanofibers (CNF)-lignin composites with good barrier and thermal properties[J]. Polymers,2021,13(24):4346. doi: 10.3390/polym13244346
|
[59] |
QIN Q Y, LI W H, ZHANG X Y, et al. Feasibility of bionanocomposite films fabricated using capsicum leaf protein and cellulose nanofibers[J]. Food Chemistry,2022,387:132769. doi: 10.1016/j.foodchem.2022.132769
|
[60] |
刘仁, 鲁鹏, 吴敏, 等. 纳米纤维素在气体阻隔包装材料中的应用进展[J]. 包装工程,2019,40(7):51−59. [LIU R, LU P, WU M, et al. Application progress of nano-cellulose in gas barrier packaging materials[J]. Packaging Engineering,2019,40(7):51−59.]
LIU R, LU P, WU M, et al. Application progress of nano-cellulose in gas barrier packaging materials[J]. Packaging Engineering, 2019, 40(7): 51−59.
|
[61] |
MADIVOLI E S, KARERU P G, GICHUKI J, et al. Cellulose nanofibrils and silver nanoparticles enhances the mechanical and antimicrobial properties of polyvinyl alcohol nanocomposite film[J]. Sci Rep,2022,12(1):19005. doi: 10.1038/s41598-022-23305-7
|
[62] |
EZATI P, RHIM J W, MOLAEI R, et al. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit[J]. Postharvest Biology and Technology,2022,186:111845. doi: 10.1016/j.postharvbio.2022.111845
|
[63] |
MALEKZADEH E, TATARI A, FIROUZABADI M D. Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC) films[J]. Carbohydrate Polymers,2023,309:120699. doi: 10.1016/j.carbpol.2023.120699
|
[64] |
BIAN H Y, SHU X, SU W H, et al. Biodegradable, flexible and ultraviolet blocking nanocellulose composite film incorporated with lignin nanoparticles[J]. International Journal of Molecular Sciences,2022,23(23):14863. doi: 10.3390/ijms232314863
|
[65] |
ARUN R, SHRUTHY R, PREETHA R, et al. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging[J]. Chemosphere,2022,291:132786. doi: 10.1016/j.chemosphere.2021.132786
|
[66] |
REZAEI A, RAFIEIAN F, AKBARI-ALAVIJEH S, et al. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications[J]. Advances in Colloid and Interface Science,2022,307:102728. doi: 10.1016/j.cis.2022.102728
|
[67] |
JANG J H, KANG H J, ADEDEJI O E, et al. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber[J]. Food Chemistry,2023,403:134366. doi: 10.1016/j.foodchem.2022.134366
|
[68] |
YANG Y, YU X N, ZHU Y L, et al. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins[J]. Food Chemistry,2022,393:133342. doi: 10.1016/j.foodchem.2022.133342
|
[69] |
ZABIDI N A, NAZRI F, TAWAKKAL I S M A, et al. Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application[J]. International Journal of Biological Macromolecules,2022,212:220−231. doi: 10.1016/j.ijbiomac.2022.05.116
|
[1] | “The full text download” [J]. Science and Technology of Food Industry, 2023, 44(17). |
[2] | “The full text download”[J]. Science and Technology of Food Industry, 2023, 44(2). |
[3] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(21). |
[4] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(16): 1-1. |
[5] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(13). |
[6] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(12). |
[7] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(11). |
[8] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(10). |
[9] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(8). |
[10] | “The full text download”[J]. Science and Technology of Food Industry, 2022, 43(7). |