Citation: | WANG Yisen, XU Yifan, ZHANG Ting, et al. Effects of Lonicera caerulea Anthocyanin Complex Liquid Preparation on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus Mice[J]. Science and Technology of Food Industry, 2024, 45(18): 308−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090235. |
[1] |
PILLON N J, LOOS R J F, MARSHALL S M, et al. Metabolic consequences of obesity and type 2 diabetes:Balancing genes and environment for personalized care[J]. Cell,2021,184(6):1530−1544. doi: 10.1016/j.cell.2021.02.012
|
[2] |
CHEN L, MAGLIANO D J, ZIMMET P Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives[J]. Nature Reviews Endocrinology, 2011, 8(4):228−236.
|
[3] |
TÖNNIES T, BRINKS R, ISOM S, et al. Projections of Type 1 and Type 2 Diabetes burden in the US population aged <20 years through 2060:the search for diabetes in youth study[J]. Diabetes Care,2023,46(2):313−320. doi: 10.2337/dc22-0945
|
[4] |
XU L N, LI Y, DAI Y, et al. Natural products for the treatment of type 2 diabetes mellitus:Pharmacology and mechanisms[J]. Pharmacological Research,2018,130:451−465. doi: 10.1016/j.phrs.2018.01.015
|
[5] |
ESPINOZA-FONSECA L M. The benefits of the multi-target approach in drug design and discovery[J]. Bioorganic & Medicinal Chemistry,2006,14(4):896−897.
|
[6] |
DIRIR A M, DAOU M, YOUSEF A F, et al. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes[J]. Phytochemistry Reviews,2022,21(4):1049−1079. doi: 10.1007/s11101-021-09773-1
|
[7] |
CLIFFORD M N, KERIMI A, WILLIAMSON G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1299−1352. doi: 10.1111/1541-4337.12518
|
[8] |
DANILA C, JESÚS S G, TAMARA Y. The importance of berries in the human diet[J]. Mediterranean Journal of Nutrition and Metabolism,2019,12(4):335−340. doi: 10.3233/MNM-190366
|
[9] |
TAKIKAWA M, INOUE S, HORIO F, et al. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated Protein Kinase in diabetic mice[J]. Journal of Nutrition,2010,140(3):527−533. doi: 10.3945/jn.109.118216
|
[10] |
ZHAO Ping, ZHAO Chengcheng, LI Xia, et al. The genus Polygonatum:A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,214:274−291. doi: 10.1016/j.jep.2017.12.006
|
[11] |
NIU Wei, CHEN Xiaoqing, XU Ruling, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis:A review[J]. Carbohydrate Polymers,2021,254:117189. doi: 10.1016/j.carbpol.2020.117189
|
[12] |
LIU Liu, DONG Qun, DONG Xiaotang, et al. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum[J]. Carbohydrate Polymers,2007,70(3):304−309. doi: 10.1016/j.carbpol.2007.04.012
|
[13] |
LOVEGROVE A, EDWARDS C H, DE NONI I, et al. Role of polysaccharides in food, digestion, and health[J]. Critical Reviews in Food Science and Nutrition,2017,57(2):237−253. doi: 10.1080/10408398.2014.939263
|
[14] |
ENGEL H, XIONG L Y, REICHENBERGER M A, et al. Rodent models of diet-induced type 2 diabetes mellitus:A literature review and selection guide[J]. Diabetes & Metabolic Syndrome-Clinical Research & Reviews,2019,13(1):195−200.
|
[15] |
FURMAN B L. Streptozotocin-induced diabetic models in mice and rats[J]. Current protocols,2021,1(4):e78. doi: 10.1002/cpz1.78
|
[16] |
MARINO F, SALERNO N, SCALISE M, et al. Streptozotocin-induced Type 1 and 2 Diabetes Mellitus mouse models show different functional, cellular and molecular patterns of diabetic cardiomyopathy[J]. International Journal of Molecular Sciences,2023,24(2):1132. doi: 10.3390/ijms24021132
|
[17] |
GAO Liang, ZHANG Yaju, WANG Xingmin, et al. Association of apolipoproteins A1 and B with type 2 diabetes and fasting blood glucose:a cross-sectional study[J]. Bmc Endocrine Disorders,2021,21:59. doi: 10.1186/s12902-021-00726-5
|
[18] |
ZHAO Zhiqi, CHEN Yizhang, LI Xiaoqiong, et al. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora[J]. Biomedicine & Pharmacotherapy,2022,153:113530.
|
[19] |
MAAGENSEN H, JUNKER A E, JORGENSEN N R, et al. Bone turnover markers in patients with nonalcoholic fatty liver disease and/or Type 2 Diabetes during oral glucose and isoglycemic intravenous glucose[J]. Journal of Clinical Endocrinology & Metabolism,2018,103(5):2042−2049.
|
[20] |
NOSHAHR Z S, SALMANI H, RAD A K, et al. Animal models of diabetes-associated renal injury[J]. Journal of Diabetes Research,2020,2020:9416419.
|
[21] |
LIU Li, WANG Qiuyu, CHEN Zhenni, et al. A synthetic peptide AWRK6 combined with epigallocatechin gallate alleviates Type 2 Diabetes in mice[J]. Science of Advanced Materials,2020,12(5):740−745. doi: 10.1166/sam.2020.3719
|
[22] |
ELLIOTT T L, PFOTENHAUER K M. Classification and diagnosis of diabetes[J]. Primary Care,2022,49(2):191−200. doi: 10.1016/j.pop.2021.11.011
|
[23] |
SHAO Xi, YANG Yongqing, TAN Zhifen, et al. Amelioration of bone fragility by pulsed electromagnetic fields in type 2 diabetic KK-Ay mice involving Wnt/β-catenin signaling[J]. American Journal of Physiology-Endocrinology and Metabolism,2021,320(5):E951−E966. doi: 10.1152/ajpendo.00655.2020
|
[24] |
殷莉, 乐智勇, 陈桂林, 等. 道地丹皮与非道地丹皮对2型糖尿病小鼠的作用研究[J]. 数理医药学杂志, 2012, 25(3):292−295. [YIN Li, LE Zhiyong, CHEN Guilin, et al. Effects of cortex moutan from authentic and non-authentic regions on type 2 diabetic model mice[J]. Journal of Mathematical Medicine, 2012, 25(3):292−295.]
YIN Li, LE Zhiyong, CHEN Guilin, et al. Effects of cortex moutan from authentic and non-authentic regions on type 2 diabetic model mice[J]. Journal of Mathematical Medicine, 2012, 25(3): 292−295.
|
[25] |
WANG Y L, KOH W P, YUAN J M, et al. Association between liver enzymes and incident type 2 diabetes in Singapore Chinese men and women[J]. Bmj Open Diabetes Research & Care,2016,4(1):e000296.
|
[26] |
SHENG C Y, SON Y H, JANG J, et al. In vitro skeletal muscle models for type 2 diabetes[J]. Biophysics Reviews,2022,3(3):031306. doi: 10.1063/5.0096420
|
[27] |
PANAHI Y, KHALILI N, SAHEBI E, et al. Curcuminoids modify lipid profile in type 2 diabetes mellitus:A randomized controlled trial[J]. Complementary Therapies in Medicine,2017,33:1−5. doi: 10.1016/j.ctim.2017.05.006
|
[28] |
KLIMENTIDIS Y C, ARORA A, NEWELL M, et al. Phenotypic and genetic characterization of lower LDL cholesterol and increased Type 2 Diabetes risk in the UK biobank[J]. Diabetes,2020,69(10):2194−2205. doi: 10.2337/db19-1134
|
[29] |
WANG Y L, KOH W P, TALAEI M, et al. Association between the ratio of triglyceride to high-density lipoprotein cholesterol and incident type 2 diabetes in Singapore Chinese men and women[J]. Journal of Diabetes,2017,9(7):689−698. doi: 10.1111/1753-0407.12477
|
[30] |
RENITTA R E, NARAYANAN R, CYPRIYANA J, et al. Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice[J]. Biocatalysis and Agricultural Biotechnology,2020,28:101763. doi: 10.1016/j.bcab.2020.101763
|
[31] |
LI Haishan, FANG Qingying, NIE Qixing, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on Type 2 Diabetic rats via gut microbiota and metabolism alteration[J]. Journal of Agricultural and Food Chemistry,2020,68(37):10015−10028. doi: 10.1021/acs.jafc.0c01968
|