WANG Yisen, XU Yifan, ZHANG Ting, et al. Effects of Lonicera caerulea Anthocyanin Complex Liquid Preparation on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus Mice[J]. Science and Technology of Food Industry, 2024, 45(18): 308−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090235.
Citation: WANG Yisen, XU Yifan, ZHANG Ting, et al. Effects of Lonicera caerulea Anthocyanin Complex Liquid Preparation on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus Mice[J]. Science and Technology of Food Industry, 2024, 45(18): 308−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090235.

Effects of Lonicera caerulea Anthocyanin Complex Liquid Preparation on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus Mice

More Information
  • Received Date: September 21, 2023
  • Available Online: July 17, 2024
  • Objective: Investigate the effects of Lonicera caerulea anthocyanin complex liquid preparation (compound made of Lonicera caerulea L., Polygonatum sibiricum, Inonotus obliquus, LPI) on glucose and lipid metabolism in type 2 diabetes mellitus (T2D) mice. Methods: T2D model in mice was constructed by high-fat feeding combined with streptozotocin. The mice were randomly divided into 6 groups: Blank control group, diabetes model group, low, middle and high dose sample group and metformin positive control group. After continuous intervention for 28 days, the body mass data and physiological and biochemical indexes of mice were measured and recorded, and the pathological observation of the organs of mice was performed. Results: Each dose group of LPI could increase the weight of T2D mice, improve the symptoms of organ injury, significantly reduce serum insulin level (P<0.05) and significantly increase the levels of HDL-C (P<0.05). Each dose group of LPI could significantly reduce fasting blood glucose (P<0.05) as well as insulin resistance index (P<0.05), improve glucose tolerance (P<0.05), and reduce the levels of TC, TG and LDL-C in serum of T2D mice (P<0.05) in a dose-dependent manner.
  • [1]
    PILLON N J, LOOS R J F, MARSHALL S M, et al. Metabolic consequences of obesity and type 2 diabetes:Balancing genes and environment for personalized care[J]. Cell,2021,184(6):1530−1544. doi: 10.1016/j.cell.2021.02.012
    [2]
    CHEN L, MAGLIANO D J, ZIMMET P Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives[J]. Nature Reviews Endocrinology, 2011, 8(4):228−236.
    [3]
    TÖNNIES T, BRINKS R, ISOM S, et al. Projections of Type 1 and Type 2 Diabetes burden in the US population aged <20 years through 2060:the search for diabetes in youth study[J]. Diabetes Care,2023,46(2):313−320. doi: 10.2337/dc22-0945
    [4]
    XU L N, LI Y, DAI Y, et al. Natural products for the treatment of type 2 diabetes mellitus:Pharmacology and mechanisms[J]. Pharmacological Research,2018,130:451−465. doi: 10.1016/j.phrs.2018.01.015
    [5]
    ESPINOZA-FONSECA L M. The benefits of the multi-target approach in drug design and discovery[J]. Bioorganic & Medicinal Chemistry,2006,14(4):896−897.
    [6]
    DIRIR A M, DAOU M, YOUSEF A F, et al. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes[J]. Phytochemistry Reviews,2022,21(4):1049−1079. doi: 10.1007/s11101-021-09773-1
    [7]
    CLIFFORD M N, KERIMI A, WILLIAMSON G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1299−1352. doi: 10.1111/1541-4337.12518
    [8]
    DANILA C, JESÚS S G, TAMARA Y. The importance of berries in the human diet[J]. Mediterranean Journal of Nutrition and Metabolism,2019,12(4):335−340. doi: 10.3233/MNM-190366
    [9]
    TAKIKAWA M, INOUE S, HORIO F, et al. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated Protein Kinase in diabetic mice[J]. Journal of Nutrition,2010,140(3):527−533. doi: 10.3945/jn.109.118216
    [10]
    ZHAO Ping, ZHAO Chengcheng, LI Xia, et al. The genus Polygonatum:A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,214:274−291. doi: 10.1016/j.jep.2017.12.006
    [11]
    NIU Wei, CHEN Xiaoqing, XU Ruling, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis:A review[J]. Carbohydrate Polymers,2021,254:117189. doi: 10.1016/j.carbpol.2020.117189
    [12]
    LIU Liu, DONG Qun, DONG Xiaotang, et al. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum[J]. Carbohydrate Polymers,2007,70(3):304−309. doi: 10.1016/j.carbpol.2007.04.012
    [13]
    LOVEGROVE A, EDWARDS C H, DE NONI I, et al. Role of polysaccharides in food, digestion, and health[J]. Critical Reviews in Food Science and Nutrition,2017,57(2):237−253. doi: 10.1080/10408398.2014.939263
    [14]
    ENGEL H, XIONG L Y, REICHENBERGER M A, et al. Rodent models of diet-induced type 2 diabetes mellitus:A literature review and selection guide[J]. Diabetes & Metabolic Syndrome-Clinical Research & Reviews,2019,13(1):195−200.
    [15]
    FURMAN B L. Streptozotocin-induced diabetic models in mice and rats[J]. Current protocols,2021,1(4):e78. doi: 10.1002/cpz1.78
    [16]
    MARINO F, SALERNO N, SCALISE M, et al. Streptozotocin-induced Type 1 and 2 Diabetes Mellitus mouse models show different functional, cellular and molecular patterns of diabetic cardiomyopathy[J]. International Journal of Molecular Sciences,2023,24(2):1132. doi: 10.3390/ijms24021132
    [17]
    GAO Liang, ZHANG Yaju, WANG Xingmin, et al. Association of apolipoproteins A1 and B with type 2 diabetes and fasting blood glucose:a cross-sectional study[J]. Bmc Endocrine Disorders,2021,21:59. doi: 10.1186/s12902-021-00726-5
    [18]
    ZHAO Zhiqi, CHEN Yizhang, LI Xiaoqiong, et al. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora[J]. Biomedicine & Pharmacotherapy,2022,153:113530.
    [19]
    MAAGENSEN H, JUNKER A E, JORGENSEN N R, et al. Bone turnover markers in patients with nonalcoholic fatty liver disease and/or Type 2 Diabetes during oral glucose and isoglycemic intravenous glucose[J]. Journal of Clinical Endocrinology & Metabolism,2018,103(5):2042−2049.
    [20]
    NOSHAHR Z S, SALMANI H, RAD A K, et al. Animal models of diabetes-associated renal injury[J]. Journal of Diabetes Research,2020,2020:9416419.
    [21]
    LIU Li, WANG Qiuyu, CHEN Zhenni, et al. A synthetic peptide AWRK6 combined with epigallocatechin gallate alleviates Type 2 Diabetes in mice[J]. Science of Advanced Materials,2020,12(5):740−745. doi: 10.1166/sam.2020.3719
    [22]
    ELLIOTT T L, PFOTENHAUER K M. Classification and diagnosis of diabetes[J]. Primary Care,2022,49(2):191−200. doi: 10.1016/j.pop.2021.11.011
    [23]
    SHAO Xi, YANG Yongqing, TAN Zhifen, et al. Amelioration of bone fragility by pulsed electromagnetic fields in type 2 diabetic KK-Ay mice involving Wnt/β-catenin signaling[J]. American Journal of Physiology-Endocrinology and Metabolism,2021,320(5):E951−E966. doi: 10.1152/ajpendo.00655.2020
    [24]
    殷莉, 乐智勇, 陈桂林, 等. 道地丹皮与非道地丹皮对2型糖尿病小鼠的作用研究[J]. 数理医药学杂志, 2012, 25(3):292−295. [YIN Li, LE Zhiyong, CHEN Guilin, et al. Effects of cortex moutan from authentic and non-authentic regions on type 2 diabetic model mice[J]. Journal of Mathematical Medicine, 2012, 25(3):292−295.]

    YIN Li, LE Zhiyong, CHEN Guilin, et al. Effects of cortex moutan from authentic and non-authentic regions on type 2 diabetic model mice[J]. Journal of Mathematical Medicine, 2012, 25(3): 292−295.
    [25]
    WANG Y L, KOH W P, YUAN J M, et al. Association between liver enzymes and incident type 2 diabetes in Singapore Chinese men and women[J]. Bmj Open Diabetes Research & Care,2016,4(1):e000296.
    [26]
    SHENG C Y, SON Y H, JANG J, et al. In vitro skeletal muscle models for type 2 diabetes[J]. Biophysics Reviews,2022,3(3):031306. doi: 10.1063/5.0096420
    [27]
    PANAHI Y, KHALILI N, SAHEBI E, et al. Curcuminoids modify lipid profile in type 2 diabetes mellitus:A randomized controlled trial[J]. Complementary Therapies in Medicine,2017,33:1−5. doi: 10.1016/j.ctim.2017.05.006
    [28]
    KLIMENTIDIS Y C, ARORA A, NEWELL M, et al. Phenotypic and genetic characterization of lower LDL cholesterol and increased Type 2 Diabetes risk in the UK biobank[J]. Diabetes,2020,69(10):2194−2205. doi: 10.2337/db19-1134
    [29]
    WANG Y L, KOH W P, TALAEI M, et al. Association between the ratio of triglyceride to high-density lipoprotein cholesterol and incident type 2 diabetes in Singapore Chinese men and women[J]. Journal of Diabetes,2017,9(7):689−698. doi: 10.1111/1753-0407.12477
    [30]
    RENITTA R E, NARAYANAN R, CYPRIYANA J, et al. Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice[J]. Biocatalysis and Agricultural Biotechnology,2020,28:101763. doi: 10.1016/j.bcab.2020.101763
    [31]
    LI Haishan, FANG Qingying, NIE Qixing, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on Type 2 Diabetic rats via gut microbiota and metabolism alteration[J]. Journal of Agricultural and Food Chemistry,2020,68(37):10015−10028. doi: 10.1021/acs.jafc.0c01968
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (77) PDF downloads (20) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return