Citation: | LIU Zijian, GU Jiacheng, ZHOU Cong, et al. Identification of Geographical Origin for Hawthorn Based on Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(10): 282−291. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090074. |
[1] |
国家药典委员会. 中华人民共和国药典(2020年版)一部[M]. 北京:中国医药科技出版社, 2020:1902. [Chinese Pharmacopoeia Commission. Pharmacopoeia of the people's republic of China 2020[M]. Beijing:China Medical Science Press, 2020:1902.]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the people's republic of China 2020[M]. Beijing: China Medical Science Press, 2020: 1902.
|
[2] |
WU J Q, PENG W, QIN R X, et al. Crataegus pinnatifida:Chemical constituents, pharmacology, and potential applications[J]. Molecules,2014,19(2):1685−1712. doi: 10.3390/molecules19021685
|
[3] |
楼陆军, 罗洁霞, 高云. 山楂的化学成分和药理作用研究概述[J]. 中国药业,2014,23(3):92−94. [LOU L J, LUO J X, GAO Y. Overview of chemical compositions and pharmacological action of Crataegus pinnatifida Bunge[J]. China Pharmaceuticals,2014,23(3):92−94.]
LOU L J, LUO J X, GAO Y. Overview of chemical compositions and pharmacological action of Crataegus pinnatifida Bunge[J]. China Pharmaceuticals, 2014, 23(3): 92−94.
|
[4] |
杨晓宁, 孙欣光, 周丽娟, 等. 不同产地山楂及其炮制品质量研究[J]. 中国中医药信息杂志,2022,29(7):105−110. [YANG X N, SUN X G, ZHOU L J, et al. Quality study of Crataegus fructus from different producing areas and its processed products[J]. Chinese Journal of Information on Traditional Chinese Medicine,2022,29(7):105−110.]
YANG X N, SUN X G, ZHOU L J, et al. Quality study of Crataegus fructus from different producing areas and its processed products[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2022, 29(7): 105−110.
|
[5] |
崔洁, 刘心悦, 常冠华, 等. 基于HPLC和AHP对不同产地山楂的比较研究[J]. 时珍国医国药,2021,32(9):2254−2257. [CUI J, LIU X Y, CHANG G H, et al. Comparative study on contents of four chemical components of dajinxing Crataegus pinnatifida Bge. var. major N. E. Br. fruits from different habitats[J]. Lishizhen Medicine and Materia Medica Research,2021,32(9):2254−2257.]
CUI J, LIU X Y, CHANG G H, et al. Comparative study on contents of four chemical components of dajinxing Crataegus pinnatifida Bge. var. major N. E. Br. fruits from different habitats[J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(9): 2254−2257.
|
[6] |
王夏茵, 岳宝森, 张炜华, 等. 不同产地天麻HPLC指纹图谱、含量测定及化学模式识别研究[J]. 中南药学,2023,21(5):1358−1362. [WANG X Y, YUE B S, ZHANG W H, et al. HPLC fingerprint, content determination and pattern recognition of Gastrodia elata Bl. from different regions[J]. Central South Pharmacy,2023,21(5):1358−1362.]
WANG X Y, YUE B S, ZHANG W H, et al. HPLC fingerprint, content determination and pattern recognition of Gastrodia elata Bl. from different regions[J]. Central South Pharmacy, 2023, 21(5): 1358−1362.
|
[7] |
范胜莲, 何清春, 吴诗慧. 气相色谱-质谱联用技术对不同产地冬虫夏草的鉴别研究[J]. 四川中医,2021,39(5):48−51. [FAN S L, HE Q C, WU S H. Study on the identification of chinese caterpillar fungus in different producing areas by gas chromatography-mass spectrometry[J]. Journal of Sichuan of Traditional Chinese Medicine,2021,39(5):48−51.]
FAN S L, HE Q C, WU S H. Study on the identification of chinese caterpillar fungus in different producing areas by gas chromatography-mass spectrometry[J]. Journal of Sichuan of Traditional Chinese Medicine, 2021, 39(5): 48−51.
|
[8] |
贺光云, 侯雪, 闫志农, 等. 基于超高效液相色谱-四极杆串联飞行时间质谱的绿茶产地溯源研究[J]. 农产品质量与安全,2021,5(5):63−68. [HE G Y, HOU X, YAN Z N, et al. The geographical origin traceability of green tea by ultra high performance liquid chromatography-quadrupole time-offlight mass spectrometry[J]. Quality and Safety of Agro-Products,2021,5(5):63−68.]
HE G Y, HOU X, YAN Z N, et al. The geographical origin traceability of green tea by ultra high performance liquid chromatography-quadrupole time-offlight mass spectrometry[J]. Quality and Safety of Agro-Products, 2021, 5(5): 63−68.
|
[9] |
张海芳, 纳日, 韩育梅, 等. 光谱无损检测技术在农产品产地溯源中的研究进展[J]. 食品工业科技,2023,44(8):17−25. [ZHANG H F, NA R, HAN Y M, et al. Research progress of spectral nondestructive testing technology in traceability of agricultural products[J]. Science and Technology of Food Industry,2023,44(8):17−25.]
ZHANG H F, NA R, HAN Y M, et al. Research progress of spectral nondestructive testing technology in traceability of agricultural products[J]. Science and Technology of Food Industry, 2023, 44(8): 17−25.
|
[10] |
ZAREEF M, ARSLAN M, HASSAN M M, et al. Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques:A review[J]. Trends in Food Science & Technology,2021,116:815−828.
|
[11] |
张立欣, 张楠楠, 张晓. 基于机器学习算法对苹果产地的判别分析[J]. 激光与光电子学进展,2022,59(4):451−457. [ZHANG L X, ZHANG N N, ZHANG X. Discriminant analysis of apple origin based on machine learning algorithm[J]. Laser & Optoelectronics Progress,2022,59(4):451−457.]
ZHANG L X, ZHANG N N, ZHANG X. Discriminant analysis of apple origin based on machine learning algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(4): 451−457.
|
[12] |
SUN Y, LI Y H, PAN L Q, et al. Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging[J]. Postharvest Biology and Technology,2021,171:111320. doi: 10.1016/j.postharvbio.2020.111320
|
[13] |
SMALLMAN L, ARTEMIOU A, MORGAN J. Sparse generalised principal component analysis[J]. Pattern Recognition,2018,83:443−455. doi: 10.1016/j.patcog.2018.06.014
|
[14] |
LI J B, HUANG W Q, CHEN L P, et al. Variable selection in visible and near-infrared spectral analysis for noninvasive determination of soluble solids content of ‘Ya’ pear[J]. Food Analytical Methods,2014,7(9):1891−1902. doi: 10.1007/s12161-014-9832-8
|
[15] |
第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800−2806. [DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis,2019,39(9):2800−2806.]
DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2800−2806.
|
[16] |
吴静珠, 李晓琪, 林珑, 等. 基于AlexNet卷积神经网络的大米产地高光谱快速判别[J]. 中国食品学报,2022,22(1):282−288. [WU J Z, LI X Q, LIN L, et al. Fast hyperspectral discrimination of rice origin based on AlexNet convolutional neural network[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(1):282−288.]
WU J Z, LI X Q, LIN L, et al. Fast hyperspectral discrimination of rice origin based on AlexNet convolutional neural network[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 282−288.
|
[17] |
LI X L, WEI Y Z, XU J, et al. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology[J]. Postharvest Biology and Technology,2018,143:112−118. doi: 10.1016/j.postharvbio.2018.05.003
|
[18] |
陈书媛, 张友超, 杨杰, 等. 基于高光谱成像技术的白茶储藏年份判别[J]. 食品工业科技,2021,42(18):276−283. [CHEN S Y, ZHANG Y C, YANG J, et al. Discrimination of storage time of white tea using hyperspectral imaging[J]. Science and Technology of Food Industry,2021,42(18):276−283.]
CHEN S Y, ZHANG Y C, YANG J, et al. Discrimination of storage time of white tea using hyperspectral imaging[J]. Science and Technology of Food Industry, 2021, 42(18): 276−283.
|
[19] |
朱潘雨, 方雯昕, 黄敏, 等. 基于高光谱图像的小麦种子纯度/含水量检测系统[J]. 计算机测量与控制,2023,31(4):76−82. [ZHU P Y, FANG W X, HUANG M, et al. Wheat seed purity or moisture content detection system based on hyperspectral images[J]. Computer Measurement & Control,2023,31(4):76−82.]
ZHU P Y, FANG W X, HUANG M, et al. Wheat seed purity or moisture content detection system based on hyperspectral images[J]. Computer Measurement & Control, 2023, 31(4): 76−82.
|
[20] |
ZHOU J, HUANG S, WANG M Z, et al. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil:A multi-dataset investigation[J]. Engineering with Computers,2021,38:4197−4215.
|
[21] |
MATLAB中文论坛. MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社, 2010:289. [MATLAB Chinese Forum. Matlab neural network analysis of 30 cases[M]. Beijing:Beihang University Press, 2010:289.]
MATLAB Chinese Forum. Matlab neural network analysis of 30 cases[M]. Beijing: Beihang University Press, 2010: 289.
|
[22] |
周元哲. 机器学习入门[M]. 北京:清华大学出版社, 2022:268. [ZHOU Y Z. Introduction to machine learning[M]. Beijing:Tsinghua University Press, 2022:268.]
ZHOU Y Z. Introduction to machine learning[M]. Beijing: Tsinghua University Press, 2022: 268.
|
[23] |
PAUL A, MUKHERJEE D P, DAS P, et al. Improved random forest for classification[J]. IEEE Transactions on Image Processing,2018,27(8):4012−4024. doi: 10.1109/TIP.2018.2834830
|
[24] |
ZHANG J, HUANG W J, ZHOU Q F. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content[J]. PLoS One,2014,9(11):e110812. doi: 10.1371/journal.pone.0110812
|
[25] |
YU K Q, ZHAO Y R, LIU Z Y, et al. Application of visible and near-infrared hyperspectral imaging for detection of defective features in loquat[J]. Food and Bioprocess Technology,2014,7(11):3077−3087. doi: 10.1007/s11947-014-1357-z
|
[26] |
JIANG S Q, HE H J, MA H J, et al. Quick assessment of chicken spoilage based on hyperspectral NIR spectra combined with partial least squares regression[J]. International Journal of Agricultural and Biological Engineering,2021,14:243−250. doi: 10.25165/j.ijabe.20211401.5726
|
[27] |
YANG L, GAO H Q, MENG L W, et al. Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit[J]. Food Chemistry,2021,334:127614. doi: 10.1016/j.foodchem.2020.127614
|
[28] |
张悦, 王游游, 张婷, 等. 高光谱结合图分割算法快速鉴别不同尺度产地陈皮[J]. 化学试剂,2023,45(1):136−143. [ZHANG Y, WANG Y Y, ZHANG T, et al. Identification of Citri reticulatae pericarpium form different scales geographical origin by hyperspectral imaging combined with image segmentation algorithm[J]. Chemical Reagents,2023,45(1):136−143.]
ZHANG Y, WANG Y Y, ZHANG T, et al. Identification of Citri reticulatae pericarpium form different scales geographical origin by hyperspectral imaging combined with image segmentation algorithm[J]. Chemical Reagents, 2023, 45(1): 136−143.
|
[29] |
MANSURI S M, CHAKRABORTY S K, MAHANTI N K, et al. Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling[J]. Food Control,2022,139:109077. doi: 10.1016/j.foodcont.2022.109077
|
[30] |
LI X, FENG F, GAO R Z, et al. Application of near infrared reflectance (NIR) spectroscopy to identify potential PSE meat[J]. Journal of the Science of Food and Agriculture,2016,96(9):3148−3156. doi: 10.1002/jsfa.7493
|
[31] |
MA C Y, REN Z S, ZHANG Z H, et al. Development of simplified models for nondestructive testing of rice (with husk) protein content using hyperspectral imaging technology[J]. Vibrational Spectroscopy,2021,114:103230. doi: 10.1016/j.vibspec.2021.103230
|
[32] |
李涛, 钟玉琴, 曲明亮. 高光谱成像技术鉴别红景天的品种[J]. 华西药学杂志,2021,36(5):526−530. [LI T, ZHONG Y Q, QU M L. Identification of Rhodiola varieties by hyperspectral imaging technology[J]. West China Journal of Pharmaceutical Sciences,2021,36(5):526−530.]
LI T, ZHONG Y Q, QU M L. Identification of Rhodiola varieties by hyperspectral imaging technology[J]. West China Journal of Pharmaceutical Sciences, 2021, 36(5): 526−530.
|
[33] |
宁素云, 孟美黛, 王鹏, 等. 基于UHPLC-Q ExactiveOrbitrap-MS法的山楂不同部位化学成分分析[J]. 广州化工,2021,49(13):97−101. [NING S Y, MENG M D, WANG P, et al. Analysis of chemical constituents in different parts of hawthorn by UHPLC-Q ExactiveOrbitrap-MS[J]. Guangzhou Chemical Industry,2021,49(13):97−101.]
NING S Y, MENG M D, WANG P, et al. Analysis of chemical constituents in different parts of hawthorn by UHPLC-Q ExactiveOrbitrap-MS[J]. Guangzhou Chemical Industry, 2021, 49(13): 97−101.
|