GUO Zichen, LIU Qian, WANG Yunting, et al. Effects of Probiotic Compound Preparations on Antioxidant Indexes, Cytokines and Intestinal Flora in Mice Treated with Ceftriaxone Sodium[J]. Science and Technology of Food Industry, 2022, 43(15): 383−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110359.
Citation: GUO Zichen, LIU Qian, WANG Yunting, et al. Effects of Probiotic Compound Preparations on Antioxidant Indexes, Cytokines and Intestinal Flora in Mice Treated with Ceftriaxone Sodium[J]. Science and Technology of Food Industry, 2022, 43(15): 383−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110359.

Effects of Probiotic Compound Preparations on Antioxidant Indexes, Cytokines and Intestinal Flora in Mice Treated with Ceftriaxone Sodium

More Information
  • Received Date: November 29, 2021
  • Available Online: June 01, 2022
  • Objective: To explore the effect of a probiotic compound preparation composed of Bifidobacterium longum BB536 and Bifidobacterium lactis HN019 on dysbiosis of murine gut microbiota induced by ceftriaxone sodium. Methods: Ceftriaxone sodium (2 mg/g) was given to mice for 5 days to construct intestinal flora dysbiosis model mice and then they were randomly divided into model group, low-dose (2×105 CFU/g), medium-dose (4×105 CFU/g) and high-dose (1.2×106 CFU/g) groups of probiotic compound preparations. In addition, normal mice were set as the control group. From the 6th day, each dose group was administered with the corresponding dose of probiotic compound preparation, the control group and model group were administered with equal volume of normal saline for 30 days. After the gavage, the mice feces were collected to count the intestinal flora and 16S rDNA high-throughput sequencing was performed to analyze the diversity and structure of the flora. The levels of IL-2, IL-6, IL-1β and TNF-α in serum were measured. The contents of MDA, T-SOD, GSH and GSH-PX in the jejunum and liver were measured. Results: After administration of ceftriaxone sodium, the levels of IL-2, IL-6, IL-1β and TNF-α in serum showed an upward trend, the level of MDA in the jejunum increased significantly (P<0.05) and the level of T-SOD decreased significantly (P<0.05). After the intervention of high-dose probiotic compound preparation, the levels of IL-6 and IL-1β were significantly decreased (P<0.05), the levels of IL-2 and TNF-α were significantly decreased (P<0.01). In addition, the levels of MDA in the jejunum and liver were significantly decreased, the level of T-SOD was significantly increased (P<0.05), the level of GSH-PX was significantly increased (P<0.01) and the level of GSH in the jejunum was significantly increased (P<0.01). In terms of intestinal microbes, the number of Enterococci and Enterobacteria in the feces decreased, while the number of Lactobacilli and Bifidobacteria increased when the probiotic compound preparation was administered after antibiotic injury compared with that before the probiotic compound preparation was administered. The results of microbial diversity analysis showed that the microbial richness of each dose group was restored compared with the model group, and the predicted intestinal function of the middle-dose and high-dose groups was closer to that of the control group. Conclusion: The probiotic compound preparation can promote the production of antioxidants, reduce the level of cytokines, promote the reproduction of beneficial bacteria, increase the abundance of intestinal flora and improve the intestinal flora imbalance caused by ceftriaxone sodium.
  • [1]
    朱莹莹, 李春保, 周光宏. 饮食、肠道微生物与健康的关系研究进展[J]. 食品科学,2015,36(15):234−239. [ZHU Y Y, LI C B, ZHOU G H. Research progress on the relationship between diet, intestinal microflora and health[J]. Food Science,2015,36(15):234−239. doi: 10.7506/spkx1002-6630-201515043

    ZHU Y Y, LI C B, ZHOU G H. Research progress on the relationship between diet, intestinal microflora and health[J]. Food Science, 2015, 36(15): 234-239. doi: 10.7506/spkx1002-6630-201515043
    [2]
    SIGAL L, ERAN S. Identifying gut microbes that affect human health[J]. Nature,2020,587(7834):373−374. doi: 10.1038/d41586-020-03069-8
    [3]
    何兰, 宋文婷, 段作文, 等. 微生物代谢产物影响肠道微生态系统的研究进展[J]. 食品工业科技,2021,41(6):360−365. [HE L, SONG W T, DUAN Z W, et al. Research progress on the effects of microbial metabolism products on intestinal microecosystem[J]. Science and Technology of Food Industry,2021,41(6):360−365.

    HE L, SONG W T, DUAN Z W, et al. Research progress on the effects of Microbial metabolism products on intestinal microecosystem[J]. Science and Technology of food industry, 2021, 41(6): 360-365.
    [4]
    IANIRO G, TILG H, GASBARRINI A. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut,2016,65(11):1906−1915. doi: 10.1136/gutjnl-2016-312297
    [5]
    LANGE K, BUERGER M, STALLMACH A, et al. Effects of antibiotics on gut microbiota[J]. Digestive Diseases,2016,34(3):260−268. doi: 10.1159/000443360
    [6]
    HAO W Z, LI X J, ZHANG P W, et al. A review of antibiotics, depression, and the gut microbiome[J]. Psychiatry Research,2020,284:112691. doi: 10.1016/j.psychres.2019.112691
    [7]
    赵彦位, 路江浩, 鄢梦洁, 等. 益生菌对微生态系统的改善作用及其应用研究进展[J]. 食品工业科技,2021,42(4):369−379. [ZHAO Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry,2021,42(4):369−379.

    [ZHAO Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of food industry, 2021, 42(4): 369-379.
    [8]
    WONG C B, ODAMAKI T, XIAO J Z. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action[J]. Journal of Functional Foods,2019,54:506−519. doi: 10.1016/j.jff.2019.02.002
    [9]
    LAU A S Y, YANAGISAWA N, HOR Y Y, et al. Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in malaysian pre-school children[J]. Beneficial Microbes,2018,9(1):61−70. doi: 10.3920/BM2017.0063
    [10]
    TOSCANO M, DE G R, STRONATI L, et al. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study[J]. World Journal of Gastroenterology,2017,23(15):2696−2704. doi: 10.3748/wjg.v23.i15.2696
    [11]
    堵雅芳, 石羽杰, 刘彪, 等. 乳双歧杆菌HN019与健康[J]. 卫生与研究,2019,48(5):850−852. [DU Y F, SHI Y J, LIU B, et al. Bifidobacterium lactic HN019 and health[J]. Health and Research,2019,48(5):850−852.

    DU Y F, SHI Y J, LIU B, et al. Bifidobacterium lactic HN019 and health[J]. Health and Research, 2019, 48(5): 850-852.
    [12]
    BERNINI L J, SIMAO A N C, SOUZA C H B, et al. Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome[J]. The British Journal Nutrition,2018,120(6):645−652. doi: 10.1017/S0007114518001861
    [13]
    DALEIEL J E, ANDERRSON R C, PETERS J S, et al. Promotility action of the probiotic Bifidobacterium lactis HN019 extract compared with prucalopride in isolated rat large intestine[J]. Frontiers in Neuroscience,2017,11:20. doi: 10.3389/fncom.2017.00020
    [14]
    IBARRA A, LATREILLE-BARBIER M, DONAZZOLO Y, et al. Effects of 28-day Bifidobacterium animalis subsp. lactis HN019 supplementation on colonic transit time and gastrointestinal symptoms in adults with functional constipation: A double-blind, randomized, placebo-controlled, and dose-ranging trial[J]. Gut Microbes,2018,9(3):236−251. doi: 10.1080/19490976.2017.1412908
    [15]
    BONFRATE L, DI PALO D M, CELANO G, et al. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients[J]. European Journal of Clinical Investigation,2020,50(3):e13201.
    [16]
    毛丙永, 崔树茂, 潘明罗, 等. 复合益生菌制剂对人体肠道菌群组成的调节作用[J]. 现代食品科技,2021,37(11):107−113. [MAO B Y, CUI S M, PAN M L, et al. The regulatory effect of compound probiotic preparations on the composition of human intestinal flora[J]. Modern Food Technology,2021,37(11):107−113.

    MAO B Y, CUI S M, PAN M L, et al. The regulatory effect of compound probiotic preparations on the composition of human intestinal flora[J]. Modern Food Technology, 2021, 37(11): 107-113.
    [17]
    YAO G Q, CAO C X, ZHANG M, et al. Lactobacillus casei Zhang exerts probiotic effects to antibiotic-treated rats[J]. Computational and Structural Biotechnology Journal,2021,19:5888−5897.
    [18]
    ZHONG H, WANG X G, WANG J, et al. Impact of probiotics supplement on the gut microbiota in neonates with antibiotic exposure: An open-label single-center randomized parallel controlled study[J]. World Journal of Pediatrics:WJP,2021,17(4):385−393. doi: 10.1007/s12519-021-00443-y
    [19]
    李贞贞, 刘银辉, 高树志, 等. 长短链菊粉对抗生素诱导肠道菌群紊乱小鼠调节作用的研究[J]. 中国微生态学杂志,2015,27(12):1365−1369. [LI Z Z, LIU Y H, GAO S Z, et al. Regulatory effects of long-and short-chain inulins on antibiotic-induced intestinal dysbiosis in mice[J]. Chinese Journal of Microecology,2015,27(12):1365−1369.

    LI Z Z, LIU Y H, GAO S Z, et al. Regulatory effects of long-and short-chain inulins on antibiotic-induced intestinal dysbiosis in mice[J]. Chinese Journal of Microecology, 2015, 27(12): 1365-1369.
    [20]
    蒋丰岭, 郭佳汶, 程如越, 等. 益生菌益生元复合制剂对头孢曲松引起的肠道菌群及免疫异常改善效果的研究[J]. 中国抗生素杂志,2021,46(9):884−890. [JIANG F L, GUO J W, CHENG R Y, et al. Alleviating effects of probiotic and prebiotics preparation against abnormal intestinal microbiota and immune abnormality by ceftriaxone[J]. Chinese Journal of Antibiotics,2021,46(9):884−890.

    JIANG F L, GUO J W, CHENG R Y, et al. Alleviating effects of probiotic and prebiotics preparation against abnormal intestinal microbiota and immune abnormality by ceftriaxone[J] Chinese Journal of Antibiotics, 2021, 46(9): 884-890.
    [21]
    于海宁, 李冉, 黄海勇, 等. 头孢曲松钠对小鼠肠道菌群组成及代谢的影响[J]. 浙江工业大学学报,2018,46(6):687−691. [YU H N, LI R, HUANG H Y, et al. Effects of ceftriaxone sodium on intestinal microbiota communities and metabolism in mice[J]. Journal of Zhejiang University of Technology,2018,46(6):687−691.

    YU H N, LI R, HUANG H Y, et al. Effects of ceftriaxone sodium on intestinal microbiota communities and metabolism in mice[J] Journal of Zhejiang University of Technology, 2018, 46(6): 687-691.
    [22]
    LEE C S, KIM S H. Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics[J]. Probiotics and Antimicrobial Proteins,2020,12(2):623−634. doi: 10.1007/s12602-019-09577-y
    [23]
    PUJO J, PETITFILS C, LE F P, et al. Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis[J]. Gut,2021,70(6):1088−1097. doi: 10.1136/gutjnl-2020-321173
    [24]
    CHOI J H, MOON C M, SHIN T, et al. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway[J]. Experimental Molecular Medicine,2020,52(3):423−437. doi: 10.1038/s12276-019-0359-3
    [25]
    HA J, OH H, OH N S, et al. Anti-inflammatory effect of a peptide derived from the synbiotics, fermented cudrania tricuspidata with Lactobacillus gasseri, on inflammatory bowel disease[J]. Mediators of Inflammation,2020,2020:3572809.
    [26]
    MATYAS C, HASKO G, LIAUDET L, et al. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications[J]. Nature Reviews. Cardiology,2021,18(2):117−135. doi: 10.1038/s41569-020-0433-5
    [27]
    PAONE P, CANI P D. Mucus barrier, mucins and gut microbiota: The expected slimy partners?[J]. Gut,2020,69(12):2232−2243.
    [28]
    LIU T, SUN L, ZHANG Y B, et al. Imbalanced GSH/ROS and sequential cell death[J]. J Biochem Mol Toxicol,2021,36(1):e22942−e22942.
    [29]
    DENAMUR E, CLERMONT O, BONACORSI S, et al. The population genetics of pathogenic Escherichia coli[J]. Nature Reviews. Microbiology,2021,19(1):37−54. doi: 10.1038/s41579-020-0416-x
    [30]
    GARCIA-SOLACHE M, RICE L B. The Enterococcus: A model of adaptability to its environment[J]. Clinical Microbiology Reviews,2019,32(2):e00058.
    [31]
    HAN S K, KIM J K, JOO M K, et al. Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 alleviate escherichia coli-induced depression and gut dysbiosis in mice[J]. Journal of Microbiology and Biotechnology,2020,30(8):1222−1226. doi: 10.4014/jmb.2002.02058
    [32]
    FONTANA L, PLAZA-DIAZ J, ROBLES-BOLIVAR P, et al. Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 modulate macrophage gene expression and ameliorate damage markers in the liver of Zucker-Lepr fa/fa rats[J]. Nutrients,2021,13(1):202. doi: 10.3390/nu13010202
    [33]
    OH N S, JOUNG J Y, LEE J Y, et al. Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces[J]. PLoS One,2018,13(2):e0192021. doi: 10.1371/journal.pone.0192021
    [34]
    CUFFARO B, ASSOHOUN A L W, BOUTIllIER D, et al. In vitro vharacterization of gut microbiota-derived commensal strains: Selection of parabacteroides distasonis strains alleviating TNBS-induced colitis in mice[J]. Cells,2020,9(9):2104. doi: 10.3390/cells9092104
    [35]
    FABERSANI E, MARQUEZ A, RUSSO M, et al. Lactic acid bacteria strains differently modulate gut microbiota and metabolic and immunological parameters in high-fat diet-fed mice[J]. Front Nutr,2021,8:718564. doi: 10.3389/fnut.2021.718564
    [36]
    TIAN T, ZHANG X B, LUO T, et al. Effects of short-term dietary fiber intervention on gut microbiota in young healthy people[J]. Diabetes Metab Syndr Obes,2021,14:3507−3516. doi: 10.2147/DMSO.S313385
    [37]
    FU Y R, YI Z J, PEI J L, et al. Effects of Bifidobacterium bifidum on adaptive immune senescence in aging mice[J]. Microbiol Immunol,2010,54(10):578−583.
  • Cited by

    Periodical cited type(7)

    1. 冯薇,孟然,李赵嘉,吴哲,鲁雪林,陈悦,王秀萍. 甲基磺酸乙酯对蒲公英胚性细胞基因表达的影响. 中草药. 2025(06): 2111-2121 .
    2. 冯薇,吴哲,孟然,李赵嘉,鲁雪林,张丽娜,王秀萍. 蒲公英白粉病病原菌鉴定及种质资源抗病性评价. 中国蔬菜. 2025(03): 104-110 .
    3. 晋海军,杨灵丽,梁建东,龚荣英,邢益政,王国凯,陈美娟,田维毅. 蒲公英水提液的发酵工艺优化及其机制研究. 食品与发酵工业. 2024(21): 112-120 .
    4. 刘红宁,姜佳恩,单雅慧,郑凯麒,周权,陈丽华. 茶剂产品的开发现状与创新发展趋势. 中成药. 2023(11): 3683-3688 .
    5. 程丽英,沈纪健,胡西阳,王若男,高源,李印帮. 蒲公英的营养保健价值及其在食品中开发利用现状. 食品工业. 2022(08): 331-334 .
    6. 李家磊,高扬,管立军,严松,徐娜,卢淑雯,李波,周野. 蒲公英超微粉馒头的研制及品质分析. 食品科技. 2022(12): 141-148 .
    7. 伍建军. 国民营养计划背景下的中国营养保健食品行业创新发展趋势. 食品安全质量检测学报. 2021(08): 3164-3171 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (248) PDF downloads (34) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return