Citation: | ZHANG Haotong, ZHOU Xuewei, QIAO Kaina, et al. Research Status of Peptide-Calcium Chelation and Absorption Mechanism[J]. Science and Technology of Food Industry, 2024, 45(19): 383−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080325. |
[1] |
王培霞, 张勤, 周石仙, 等. 骨质疏松症营养干预研究进展[J]. 中国骨质疏松杂志,2023,29(3):409−412,443. [WANG Peixia, ZHANG Qin, ZHOU Shixian, et al. Advances in nutritional intervention of osteoporosis[J]. Chinese Journal of Osteoporosis,2023,29(3):409−412,443.]
WANG Peixia, ZHANG Qin, ZHOU Shixian, et al. Advances in nutritional intervention of osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(3): 409−412,443.
|
[2] |
ZHANG Xiaowei, JIA Qi, LI Mengyu, et al. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism[J]. Food Research International,2021,141:110169. doi: 10.1016/j.foodres.2021.110169
|
[3] |
LIU Ting, LI Tao, XU Dandi, et al. Small-conductance calcium-activated potassium channels in the heart:Expression, regulation and pathological implications[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2023,378(1879):20220171. doi: 10.1098/rstb.2022.0171
|
[4] |
QI Liwei, WANG Kangyu, ZHOU Jiaojiao, et al. Phosphorylation modification of bovine bone collagen peptide enhanced its effect on mineralization of MC3T3-E1 cells via improving calcium-binding capacity[J]. Food Chemistry,2024(433):137365.
|
[5] |
李奕, 程永强, 唐宁. 肠道中钙和铁相互作用对其吸收影响的研究进展[J]. 食品科学,2024,45(4):323−335. [LI Yi, CHENG Yongqiang, TANG Ning. Review on effects of calcium and iron interactions on their absorptions in the intestine[J]. Food Science,2024,45(4):323−335.] doi: 10.7506/spkx1002-6630-20230313-132
LI Yi, CHENG Yongqiang, TANG Ning. Review on effects of calcium and iron interactions on their absorptions in the intestine[J]. Food Science, 2024, 45(4): 323−335. doi: 10.7506/spkx1002-6630-20230313-132
|
[6] |
CUI Qun, LI Na, NIE Fujiao, et al. Vitamin K2 promotes the osteogenic differentiation of periodontal ligament stem cells via the Wnt/β-catenin signaling pathway[J]. Arch Oral Biol,2021,124:105057. doi: 10.1016/j.archoralbio.2021.105057
|
[7] |
石景, 邹烨, 马晶晶, 等. 食源肽螯合钙的研究进展[J]. 食品工业科技,2023,44(11):460−467. [SHI Jing, ZOU Hua, MA Jingjing, et al. Research progress in food-derived calcium chelated peptides[J]. Science and Technology of Food Industry,2023,44(11):460−467.]
SHI Jing, ZOU Hua, MA Jingjing, et al. Research progress in food-derived calcium chelated peptides[J]. Science and Technology of Food Industry, 2023, 44(11): 460−467.
|
[8] |
中国营养学会骨营养与健康分会, 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症患者的营养和运动管理专家共识[J]. 中华内分泌代谢杂志,2020,13(5):396−410. [Bone Nutrition and Health Branch-Chinese Nutrition Society. Chinese Society of Osteoporosis And Bone Mineral Research. Expert consensus on nutritional and exercise management of patients with primary osteoporosis[J]. Chinese Journal of Endocrinology and Metabolism,2020,13(5):396−410.] doi: 10.3760/cma.j.cn311282-20200408-00261
Bone Nutrition and Health Branch-Chinese Nutrition Society. Chinese Society of Osteoporosis And Bone Mineral Research. Expert consensus on nutritional and exercise management of patients with primary osteoporosis[J]. Chinese Journal of Endocrinology and Metabolism, 2020, 13(5): 396−410. doi: 10.3760/cma.j.cn311282-20200408-00261
|
[9] |
李侠, 许翠萍, 顾帅, 等. 绿豆中植酸和单宁对钙吸收的影响[J]. 吉林农业大学学报,2016,38(3):364−368. [LI Xia, XU Cuiping, GU Shuai, et al. Effects of phytic acid and tannin from mung bean on calcium absorption[J]. Journal of Jilin Agricultural University,2016,38(3):364−368.]
LI Xia, XU Cuiping, GU Shuai, et al. Effects of phytic acid and tannin from mung bean on calcium absorption[J]. Journal of Jilin Agricultural University, 2016, 38(3): 364−368.
|
[10] |
赵梓月, 王思远, 廖森泰, 等. 多肽螯合钙的研究进展[J]. 食品研究与开发,2020,41(5):218−224. [ZHAO Ziyue, WANG Siyuan, LIAO Sentai, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development,2020,41(5):218−224.] doi: 10.12161/j.issn.1005-6521.2020.05.033
ZHAO Ziyue, WANG Siyuan, LIAO Sentai, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development, 2020, 41(5): 218−224. doi: 10.12161/j.issn.1005-6521.2020.05.033
|
[11] |
金子琪. 蛋清肽螯合钙的结构表征及其促钙吸收途径的研究[D]. 大连:大连工业大学, 2019:5−10. [JIN Ziqi. Study on the structural characterization of egg white peptide chelated calcium and its pathways of promoting calcium absorption[D]. Dalian:Dalian Polytechnic University, 2019:5−10.]
JIN Ziqi. Study on the structural characterization of egg white peptide chelated calcium and its pathways of promoting calcium absorption[D]. Dalian: Dalian Polytechnic University, 2019: 5−10.
|
[12] |
MICHOS E D, CAINZOS-ACHIRICA M, HERAVI A S, et al. Vitamin D, calcium supplements, and implications for cardiovascular health[J]. Journal of the American College of Cardiology,2021(4):77.
|
[13] |
XU Zhe, HAN Shiying, CHEN Hui, et al. Characterization of chelation and absorption of calcium by a mytilus edulis derived osteogenic peptide[J]. Frontiers in Nutrition,2022,9:840638. doi: 10.3389/fnut.2022.840638
|
[14] |
CUI Pengbo, LIN Songyi L, JIN Ziqi, et al. In vitro digestion profile and calcium absorption studies of sea cucumber ovum derived heptapeptide-calcium complex[J]. Food & Function,2018,9(9):4521−5026.
|
[15] |
苑晴晴, 罗琴, 何凯鑫, 等. 肽钙螯合物的研究进展[J]. 粮食与食品工业,2023,30(2):24−26. [YUAN Qingqing, LUO Qin, HE Kaixin, et al. Progress of calcium chelate of microalgal peptide[J]. Cereal and Food Industry,2023,30(2):24−26.]
YUAN Qingqing, LUO Qin, HE Kaixin, et al. Progress of calcium chelate of microalgal peptide[J]. Cereal and Food Industry, 2023, 30(2): 24−26.
|
[16] |
郭艳. 水解米渣蛋白及制备氨基酸螯合钙的工艺研究[D]. 成都:四川大学, 2006:5−10. [GUO Yan. Hydrolysis of rice residue protein and synthesis of complex amino acid with calcium[D]. Chengdu:Sichuan University, 2006:5−10.]
GUO Yan. Hydrolysis of rice residue protein and synthesis of complex amino acid with calcium[D]. Chengdu: Sichuan University, 2006: 5−10.
|
[17] |
孙小东. 核桃蛋白肽改善骨质疏松活性评价和钙螯合肽的制备与结构表征[D]. 昆明:昆明理工大学, 2021:10−13. [SUN Xiaodong. Evaluation of the activity of walnut protein peptide in improving osteoporosis and preparation and structural characterization of calcium chelating peptide[D]. Kunming:Kunming University of Science and Technology, 2021:10−13.]
SUN Xiaodong. Evaluation of the activity of walnut protein peptide in improving osteoporosis and preparation and structural characterization of calcium chelating peptide[D]. Kunming: Kunming University of Science and Technology, 2021: 10−13.
|
[18] |
SI Kai, GONG Tingting, DING Suyun, et al. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex[J]. Food Chemistry,2023,404(PtA):134567.
|
[19] |
FERRARETTO A, GRAVAGHI C, FIORILLI A, et al. Casein-derived bioactive phosphopeptides:Role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells[J]. FEBS Letters,2003,551(1−3):92−98. doi: 10.1016/S0014-5793(03)00741-5
|
[20] |
刘卫震, 王冠华, 袁延佩, 等. 酪蛋白磷酸肽-钙螯合物的分级、表征及持钙特性[J]. 食品工业科技,2024,45(10):93−100. [LIU Weizhen, WANG Guanhua, YUAN Yanpei, et al. Fractionation, characterization and calcium-holding properties of casein phosphopeptide-calcium chelates[J]. Science and Technology of Food Industry,2024,45(10):93−100.]
LIU Weizhen, WANG Guanhua, YUAN Yanpei, et al. Fractionation, characterization and calcium-holding properties of casein phosphopeptide-calcium chelates[J]. Science and Technology of Food Industry, 2024, 45(10): 93−100.
|
[21] |
李雪芬, 杜斌, 丁轲, 等. 金属螯合肽分离纯化及其抗氧化活性的研究进展[J]. 中国食物与营养,2016,22(3):35−39. [LI Xuefen, DU Bin, DING Ke, et al. Progress in the isolation and purification of metal-chelating peptides and their antioxidant activity[J]. Food and Nutrition in China,2016,22(3):35−39.] doi: 10.3969/j.issn.1006-9577.2016.03.008
LI Xuefen, DU Bin, DING Ke, et al. Progress in the isolation and purification of metal-chelating peptides and their antioxidant activity[J]. Food and Nutrition in China, 2016, 22(3): 35−39. doi: 10.3969/j.issn.1006-9577.2016.03.008
|
[22] |
STORCKSDIECK S, BONSMANN G, HURRELL R F. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources[J]. Journal of Food Science,2007,72(1):19−29.
|
[23] |
WANG Li, DING Yuanyuan, ZHANG Xinxia, et al. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination[J]. Food Chemistry,2017,239(15):416−426.
|
[24] |
SUN Na, HU Shengjie, WANG Di, et al. Calcium delivery systems assembled using antarctic krill derived heptapeptides:Exploration of the assembly mechanism, in vitro digestion profile, and calcium absorption behavior[J]. Journal of Agricultural and Food Chemistry,2022(6):70.
|
[25] |
HUANG Guangrong, REN Lie, JIANG Jiaxin. Purification of a histidine-containing peptide with calcium binding activity from shrimp processing byproducts hydrolysate[J]. European Food Research & Technology,2011,232(2):281−287.
|
[26] |
JUNG W K, KIM S K. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame[J]. European Food Research & Technology,2007,224:763−767.
|
[27] |
HUANG Shunli, ZHAO Lina, CAI Xixi, et al. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate[J]. Journal of Dairy Research,2015,82(1):29−35. doi: 10.1017/S0022029914000715
|
[28] |
CHAROENPHUN N, CHEIRSILP B, SIRINUPONG N, et al. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate[J]. European Food Research and Technology,2013,236(1):57−63. doi: 10.1007/s00217-012-1860-2
|
[29] |
LEE S H, SONG K B. Article isolation of a calcium-binding peptide from enzymatic hydrolysates of porcine blood plasma protein[J]. Journal of the Korean Society for Applied Biological Chemistry,2009,52(3):290−294. doi: 10.3839/jksabc.2009.051
|
[30] |
CHEN Da, MU Xinmin, HUANG Hai, et al. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats[J]. Journal of Functional Foods,2014,6:575−584. doi: 10.1016/j.jff.2013.12.001
|
[31] |
李超楠. 米蛋白肽-钙螯合物的制备及其性质研究[D]. 大庆:黑龙江八一农垦大学, 2019:3-5. [LI Chaonan. Preparation and properties of rice protein peptide-calcium chelate[D]. Daqing:Heilongjiang Bayi Agricultural University, 2019:3-5.]
LI Chaonan. Preparation and properties of rice protein peptide-calcium chelate[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019: 3-5.
|
[32] |
CAI Xixi, LIN Jiaping, WANG Shaoyun. Novel peptide with specific calcium-binding capacity from Schizochytrium sp. protein hydrolysates and calcium bioavailability in Caco-2 cells[J]. Marine Drugs,2017,15(1):2−14.
|
[33] |
JUNG W K, KARAWITA R, HEO S J, et al. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalco gramma) backbone by pepsinolytic hydrolysis[J]. Process Biochemistry,2006,41(9):2097−2100. doi: 10.1016/j.procbio.2006.05.008
|
[34] |
JIANG Lan, LI Shuhong, WANG Nan, et al. Preparation of dextran-casein phosphopeptide conjugates, evaluation of its calcium binding capacity and digestion in vitro[J]. Food Chemistry,2021,352:129332. doi: 10.1016/j.foodchem.2021.129332
|
[35] |
LIU Guo, GUO Baoyan, LUO Minna, et al. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides[J]. Food Science and Nutrition,2024,64(4):996−1014.
|
[36] |
LUO Minna, XIAO Jie, SUN Shengwei, et al. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation[J]. Food & Function,2020,11:5284−5292.
|
[37] |
YILMAZ B, DUYGU A. Bioactivities of hen's egg yolk phosvitin and its functional phosphopeptides in food industry and health[J]. Journal of Food Science,2020,85(10):2969−2976. doi: 10.1111/1750-3841.15447
|
[38] |
CHAKRABARTI S, REN Jiandong, WU Jianping. Phosvitin derived phospho-peptides show better osteogenic potential than intact phosvitin in MC3T3-E1 osteoblastic cells[J]. Nutrients,2020,12(10):2998. doi: 10.3390/nu12102998
|
[39] |
SAMARAWEERA H, MOON S, LEE E, et al. Characterisation of phosvitin phosphopeptides using MALDI-TOF mass spectrometry[J]. Food Chemistry,2014,165(15):98−103.
|
[40] |
LONNERDAL B, GLAZIER C. Calcium binding by alpha-lactalbumin in human milk and bovine milk[J]. Journal of Nutrition,1985,115:1209−1216. doi: 10.1093/jn/115.9.1209
|
[41] |
AN Jiulong, ZHANG Yinxiao, YING Zhiwei, et al. The formation, structural characteristics, absorption pathways and bioavailability of calcium-peptide chelates[J]. Foods,2022,11(18):2762. doi: 10.3390/foods11182762
|
[42] |
NARA M, MORII H, TANOKURA M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2013,1828(10):2319−2327. doi: 10.1016/j.bbamem.2012.11.025
|
[43] |
PERMYAKOV E. α-Lactalbumin, amazing calcium-binding protein[J]. Biomolecules,2010(9):1210.
|
[44] |
PENG Zhe, HOU Hu, ZHANG Kai, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry,2017,221:373−378. doi: 10.1016/j.foodchem.2016.10.078
|
[45] |
ZHANG Y, STOCKMANN R, NG K, et al. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,20(1):652−685.
|
[46] |
KHARE E, HOLTEN-ANDERSEN N, BUEHLER M. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties[J]. Nature Reviews Materials,2021,6:421−436. doi: 10.1038/s41578-020-00270-z
|
[47] |
LIN Yanlan, CAI Xixi, WU Xiaoping, et al. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake[J]. Journal of Functional Foods,2019,65:103717.
|
[48] |
ZHANG J, LIANG L, TIAN Z, et al. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study[J]. Food Chemistry,2012,133(2):390−399. doi: 10.1016/j.foodchem.2012.01.049
|
[49] |
宋丽, 朱临娴, 宋璐杉, 等. 钙结合卵黄高磷蛋白磷酸肽的制备及其肽钙螯合物的结构表征[J]. 食品科学,2023,44(6):125−133. [SONG Li, ZHU Linxian, SONG Lushan, et al. Preparation of calcium-binding phosvitin phosphopeptide and structural characterization of its calcium chelate[J]. Food Science,2023,44(6):125−133.] doi: 10.7506/spkx1002-6630-20220414-167
SONG Li, ZHU Linxian, SONG Lushan, et al. Preparation of calcium-binding phosvitin phosphopeptide and structural characterization of its calcium chelate[J]. Food Science, 2023, 44(6): 125−133. doi: 10.7506/spkx1002-6630-20220414-167
|
[50] |
刘佳琛, 程永强, 唐宁. 钙的生物利用度与多肽螯合钙研究进展[J]. 食品工业科技,2023,44(23):354−365. [LIU Jiachen, CHENG Yongqiang, TANG Ning. Progress on bioavailability of calcium and calcium-peptide chelates[J]. Science and Technology of Food Industry,2023,44(23):354−365.]
LIU Jiachen, CHENG Yongqiang, TANG Ning. Progress on bioavailability of calcium and calcium-peptide chelates[J]. Science and Technology of Food Industry, 2023, 44(23): 354−365.
|
[51] |
PEREZ A, PICOTTO G, CARPENTIERI A, et al. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway[J]. Digestion,2008,77(1):22−34. doi: 10.1159/000116623
|
[52] |
KHANAL R C, NEMERE I. Regulation of intestinal calcium transport[J]. Annual Review of Nutrition,2008(28):179−196.
|
[53] |
DEBARBOZA G D, GUIZZARDI S, DETALAMONI N T, et al. Molecular aspects of intestinal calcium absorption[J]. World Journal of Gastroenterology,2015,1(23):7142−7154.
|
[54] |
NEED A, O'LOUGHLIN P D, MORRIS, H A, et al. Vitamin D metabolites and calcium absorption in severe vitamin d deficiency[J]. Journal of Bone and Mineral Research,2008(23):1859−1863.
|
[55] |
FLEET J C. Vitamin D-mediated regulation of intestinal calcium absorption[J]. Nutrients,2022,14(16):3351. doi: 10.3390/nu14163351
|
[56] |
TSUKITA S, FURUSE M, ITOH M. Multifunctional strands in tight junctions[J]. Nature Reviews Molecular Cell Biology,2001,2(4):285−293. doi: 10.1038/35067088
|
[57] |
FUJITA H, SUGIMOTO K, INATOMI S, et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes[J]. Molecular Biology of the Cell,2008,19(5):1912−1921.
|
[58] |
PETERSEN O H, FEDIRKO N V. Calcium signalling:Store-operated channel found at last[J]. Current Biology,2001,11(13):520−523. doi: 10.1016/S0960-9822(01)00309-8
|
[59] |
WANG Xueqi, ZHANG Zhen, XU Hongyan, et al. Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis[J]. The Royal Society of Chemistry,2020,10(20):11624−11633.
|
[60] |
KATIMBA H A, WANG Rongchun, CHENG Cuiling. Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans[J]. Critical Reviews in Food Science and Nutrition,2023,63(19):3959−3979. doi: 10.1080/10408398.2021.1996328
|
[61] |
FERNANDEZ-MUSOLES R, SALOM J B, CASTELLO-RUIZ M, et al. Bioavailability of antihypertensive lactoferricin B-derived peptides:Transepithelial transport and resistance to intestinal and plasma peptidases[J]. International Dairy Journal,2013,32(2):169−174. doi: 10.1016/j.idairyj.2013.05.009
|
[62] |
PALM C, JAYAMANNE M, KJELLANDER M, et al. Peptide degradation is a critical determinant for cell-penetrating peptide uptake[J]. BBA–Biomembranes,2007,1768(7):1769−1776. doi: 10.1016/j.bbamem.2007.03.029
|
[63] |
YU Songfeng, WANG Wenjun, BU Tingting, et al. Digestion, absorption, and transport properties of soy-fermented Douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestionand Caco-2 cell monolayers[J]. Food Research International,2023,164:112340. doi: 10.1016/j.foodres.2022.112340
|
[64] |
XU Qingbiao, FAN Hongbing, YU Wenlin, et al. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers[J]. Journal of Agricultural and Food Chemistry,2017,65(34):7406−7414. doi: 10.1021/acs.jafc.7b02176
|
[65] |
GILBERT E R, WONG E A, WEBB K E. Board-invited review:Peptide absorption and utilization:Implications for animal nutrition and health[J]. Journal of Animal Science,2008,86(9):2135. doi: 10.2527/jas.2007-0826
|