ZHANG Haotong, ZHOU Xuewei, QIAO Kaina, et al. Research Status of Peptide-Calcium Chelation and Absorption Mechanism[J]. Science and Technology of Food Industry, 2024, 45(19): 383−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080325.
Citation: ZHANG Haotong, ZHOU Xuewei, QIAO Kaina, et al. Research Status of Peptide-Calcium Chelation and Absorption Mechanism[J]. Science and Technology of Food Industry, 2024, 45(19): 383−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080325.

Research Status of Peptide-Calcium Chelation and Absorption Mechanism

More Information
  • Received Date: September 03, 2023
  • Available Online: August 01, 2024
  • Calcium is one of the essential macro-elements in the human body. The scientific calcium supplementation is greatly significant to maintaining life and health. The peptide-calcium chelates with good calcium binding capacity and high bioavailability have attracted more attention. This work reviews the binding sites, binding modes, and intermolecular forces between calcium and peptides in peptide-calcium chelates. Compared with free calcium, chelated calcium is more easily absorbed in the intestine according to the summarization of the calcium absorption pathways. Peptide-calcium chelates, as a new generation of calcium supplements, have a rich source of raw materials, high bioavailability, good economic value, and broad development prospects. Further research is needed on the safety, physicochemical stability, digestive stability, and Ca2+ release mechanism of peptide-calcium chelates after intestinal absorption. This paper aims to provide new insight into the development of novel calcium supplements.
  • [1]
    王培霞, 张勤, 周石仙, 等. 骨质疏松症营养干预研究进展[J]. 中国骨质疏松杂志,2023,29(3):409−412,443. [WANG Peixia, ZHANG Qin, ZHOU Shixian, et al. Advances in nutritional intervention of osteoporosis[J]. Chinese Journal of Osteoporosis,2023,29(3):409−412,443.]

    WANG Peixia, ZHANG Qin, ZHOU Shixian, et al. Advances in nutritional intervention of osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(3): 409−412,443.
    [2]
    ZHANG Xiaowei, JIA Qi, LI Mengyu, et al. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism[J]. Food Research International,2021,141:110169. doi: 10.1016/j.foodres.2021.110169
    [3]
    LIU Ting, LI Tao, XU Dandi, et al. Small-conductance calcium-activated potassium channels in the heart:Expression, regulation and pathological implications[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2023,378(1879):20220171. doi: 10.1098/rstb.2022.0171
    [4]
    QI Liwei, WANG Kangyu, ZHOU Jiaojiao, et al. Phosphorylation modification of bovine bone collagen peptide enhanced its effect on mineralization of MC3T3-E1 cells via improving calcium-binding capacity[J]. Food Chemistry,2024(433):137365.
    [5]
    李奕, 程永强, 唐宁. 肠道中钙和铁相互作用对其吸收影响的研究进展[J]. 食品科学,2024,45(4):323−335. [LI Yi, CHENG Yongqiang, TANG Ning. Review on effects of calcium and iron interactions on their absorptions in the intestine[J]. Food Science,2024,45(4):323−335.] doi: 10.7506/spkx1002-6630-20230313-132

    LI Yi, CHENG Yongqiang, TANG Ning. Review on effects of calcium and iron interactions on their absorptions in the intestine[J]. Food Science, 2024, 45(4): 323−335. doi: 10.7506/spkx1002-6630-20230313-132
    [6]
    CUI Qun, LI Na, NIE Fujiao, et al. Vitamin K2 promotes the osteogenic differentiation of periodontal ligament stem cells via the Wnt/β-catenin signaling pathway[J]. Arch Oral Biol,2021,124:105057. doi: 10.1016/j.archoralbio.2021.105057
    [7]
    石景, 邹烨, 马晶晶, 等. 食源肽螯合钙的研究进展[J]. 食品工业科技,2023,44(11):460−467. [SHI Jing, ZOU Hua, MA Jingjing, et al. Research progress in food-derived calcium chelated peptides[J]. Science and Technology of Food Industry,2023,44(11):460−467.]

    SHI Jing, ZOU Hua, MA Jingjing, et al. Research progress in food-derived calcium chelated peptides[J]. Science and Technology of Food Industry, 2023, 44(11): 460−467.
    [8]
    中国营养学会骨营养与健康分会, 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症患者的营养和运动管理专家共识[J]. 中华内分泌代谢杂志,2020,13(5):396−410. [Bone Nutrition and Health Branch-Chinese Nutrition Society. Chinese Society of Osteoporosis And Bone Mineral Research. Expert consensus on nutritional and exercise management of patients with primary osteoporosis[J]. Chinese Journal of Endocrinology and Metabolism,2020,13(5):396−410.] doi: 10.3760/cma.j.cn311282-20200408-00261

    Bone Nutrition and Health Branch-Chinese Nutrition Society. Chinese Society of Osteoporosis And Bone Mineral Research. Expert consensus on nutritional and exercise management of patients with primary osteoporosis[J]. Chinese Journal of Endocrinology and Metabolism, 2020, 13(5): 396−410. doi: 10.3760/cma.j.cn311282-20200408-00261
    [9]
    李侠, 许翠萍, 顾帅, 等. 绿豆中植酸和单宁对钙吸收的影响[J]. 吉林农业大学学报,2016,38(3):364−368. [LI Xia, XU Cuiping, GU Shuai, et al. Effects of phytic acid and tannin from mung bean on calcium absorption[J]. Journal of Jilin Agricultural University,2016,38(3):364−368.]

    LI Xia, XU Cuiping, GU Shuai, et al. Effects of phytic acid and tannin from mung bean on calcium absorption[J]. Journal of Jilin Agricultural University, 2016, 38(3): 364−368.
    [10]
    赵梓月, 王思远, 廖森泰, 等. 多肽螯合钙的研究进展[J]. 食品研究与开发,2020,41(5):218−224. [ZHAO Ziyue, WANG Siyuan, LIAO Sentai, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development,2020,41(5):218−224.] doi: 10.12161/j.issn.1005-6521.2020.05.033

    ZHAO Ziyue, WANG Siyuan, LIAO Sentai, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development, 2020, 41(5): 218−224. doi: 10.12161/j.issn.1005-6521.2020.05.033
    [11]
    金子琪. 蛋清肽螯合钙的结构表征及其促钙吸收途径的研究[D]. 大连:大连工业大学, 2019:5−10. [JIN Ziqi. Study on the structural characterization of egg white peptide chelated calcium and its pathways of promoting calcium absorption[D]. Dalian:Dalian Polytechnic University, 2019:5−10.]

    JIN Ziqi. Study on the structural characterization of egg white peptide chelated calcium and its pathways of promoting calcium absorption[D]. Dalian: Dalian Polytechnic University, 2019: 5−10.
    [12]
    MICHOS E D, CAINZOS-ACHIRICA M, HERAVI A S, et al. Vitamin D, calcium supplements, and implications for cardiovascular health[J]. Journal of the American College of Cardiology,2021(4):77.
    [13]
    XU Zhe, HAN Shiying, CHEN Hui, et al. Characterization of chelation and absorption of calcium by a mytilus edulis derived osteogenic peptide[J]. Frontiers in Nutrition,2022,9:840638. doi: 10.3389/fnut.2022.840638
    [14]
    CUI Pengbo, LIN Songyi L, JIN Ziqi, et al. In vitro digestion profile and calcium absorption studies of sea cucumber ovum derived heptapeptide-calcium complex[J]. Food & Function,2018,9(9):4521−5026.
    [15]
    苑晴晴, 罗琴, 何凯鑫, 等. 肽钙螯合物的研究进展[J]. 粮食与食品工业,2023,30(2):24−26. [YUAN Qingqing, LUO Qin, HE Kaixin, et al. Progress of calcium chelate of microalgal peptide[J]. Cereal and Food Industry,2023,30(2):24−26.]

    YUAN Qingqing, LUO Qin, HE Kaixin, et al. Progress of calcium chelate of microalgal peptide[J]. Cereal and Food Industry, 2023, 30(2): 24−26.
    [16]
    郭艳. 水解米渣蛋白及制备氨基酸螯合钙的工艺研究[D]. 成都:四川大学, 2006:5−10. [GUO Yan. Hydrolysis of rice residue protein and synthesis of complex amino acid with calcium[D]. Chengdu:Sichuan University, 2006:5−10.]

    GUO Yan. Hydrolysis of rice residue protein and synthesis of complex amino acid with calcium[D]. Chengdu: Sichuan University, 2006: 5−10.
    [17]
    孙小东. 核桃蛋白肽改善骨质疏松活性评价和钙螯合肽的制备与结构表征[D]. 昆明:昆明理工大学, 2021:10−13. [SUN Xiaodong. Evaluation of the activity of walnut protein peptide in improving osteoporosis and preparation and structural characterization of calcium chelating peptide[D]. Kunming:Kunming University of Science and Technology, 2021:10−13.]

    SUN Xiaodong. Evaluation of the activity of walnut protein peptide in improving osteoporosis and preparation and structural characterization of calcium chelating peptide[D]. Kunming: Kunming University of Science and Technology, 2021: 10−13.
    [18]
    SI Kai, GONG Tingting, DING Suyun, et al. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex[J]. Food Chemistry,2023,404(PtA):134567.
    [19]
    FERRARETTO A, GRAVAGHI C, FIORILLI A, et al. Casein-derived bioactive phosphopeptides:Role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells[J]. FEBS Letters,2003,551(1−3):92−98. doi: 10.1016/S0014-5793(03)00741-5
    [20]
    刘卫震, 王冠华, 袁延佩, 等. 酪蛋白磷酸肽-钙螯合物的分级、表征及持钙特性[J]. 食品工业科技,2024,45(10):93−100. [LIU Weizhen, WANG Guanhua, YUAN Yanpei, et al. Fractionation, characterization and calcium-holding properties of casein phosphopeptide-calcium chelates[J]. Science and Technology of Food Industry,2024,45(10):93−100.]

    LIU Weizhen, WANG Guanhua, YUAN Yanpei, et al. Fractionation, characterization and calcium-holding properties of casein phosphopeptide-calcium chelates[J]. Science and Technology of Food Industry, 2024, 45(10): 93−100.
    [21]
    李雪芬, 杜斌, 丁轲, 等. 金属螯合肽分离纯化及其抗氧化活性的研究进展[J]. 中国食物与营养,2016,22(3):35−39. [LI Xuefen, DU Bin, DING Ke, et al. Progress in the isolation and purification of metal-chelating peptides and their antioxidant activity[J]. Food and Nutrition in China,2016,22(3):35−39.] doi: 10.3969/j.issn.1006-9577.2016.03.008

    LI Xuefen, DU Bin, DING Ke, et al. Progress in the isolation and purification of metal-chelating peptides and their antioxidant activity[J]. Food and Nutrition in China, 2016, 22(3): 35−39. doi: 10.3969/j.issn.1006-9577.2016.03.008
    [22]
    STORCKSDIECK S, BONSMANN G, HURRELL R F. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources[J]. Journal of Food Science,2007,72(1):19−29.
    [23]
    WANG Li, DING Yuanyuan, ZHANG Xinxia, et al. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination[J]. Food Chemistry,2017,239(15):416−426.
    [24]
    SUN Na, HU Shengjie, WANG Di, et al. Calcium delivery systems assembled using antarctic krill derived heptapeptides:Exploration of the assembly mechanism, in vitro digestion profile, and calcium absorption behavior[J]. Journal of Agricultural and Food Chemistry,2022(6):70.
    [25]
    HUANG Guangrong, REN Lie, JIANG Jiaxin. Purification of a histidine-containing peptide with calcium binding activity from shrimp processing byproducts hydrolysate[J]. European Food Research & Technology,2011,232(2):281−287.
    [26]
    JUNG W K, KIM S K. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame[J]. European Food Research & Technology,2007,224:763−767.
    [27]
    HUANG Shunli, ZHAO Lina, CAI Xixi, et al. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate[J]. Journal of Dairy Research,2015,82(1):29−35. doi: 10.1017/S0022029914000715
    [28]
    CHAROENPHUN N, CHEIRSILP B, SIRINUPONG N, et al. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate[J]. European Food Research and Technology,2013,236(1):57−63. doi: 10.1007/s00217-012-1860-2
    [29]
    LEE S H, SONG K B. Article isolation of a calcium-binding peptide from enzymatic hydrolysates of porcine blood plasma protein[J]. Journal of the Korean Society for Applied Biological Chemistry,2009,52(3):290−294. doi: 10.3839/jksabc.2009.051
    [30]
    CHEN Da, MU Xinmin, HUANG Hai, et al. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats[J]. Journal of Functional Foods,2014,6:575−584. doi: 10.1016/j.jff.2013.12.001
    [31]
    李超楠. 米蛋白肽-钙螯合物的制备及其性质研究[D]. 大庆:黑龙江八一农垦大学, 2019:3-5. [LI Chaonan. Preparation and properties of rice protein peptide-calcium chelate[D]. Daqing:Heilongjiang Bayi Agricultural University, 2019:3-5.]

    LI Chaonan. Preparation and properties of rice protein peptide-calcium chelate[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019: 3-5.
    [32]
    CAI Xixi, LIN Jiaping, WANG Shaoyun. Novel peptide with specific calcium-binding capacity from Schizochytrium sp. protein hydrolysates and calcium bioavailability in Caco-2 cells[J]. Marine Drugs,2017,15(1):2−14.
    [33]
    JUNG W K, KARAWITA R, HEO S J, et al. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalco gramma) backbone by pepsinolytic hydrolysis[J]. Process Biochemistry,2006,41(9):2097−2100. doi: 10.1016/j.procbio.2006.05.008
    [34]
    JIANG Lan, LI Shuhong, WANG Nan, et al. Preparation of dextran-casein phosphopeptide conjugates, evaluation of its calcium binding capacity and digestion in vitro[J]. Food Chemistry,2021,352:129332. doi: 10.1016/j.foodchem.2021.129332
    [35]
    LIU Guo, GUO Baoyan, LUO Minna, et al. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides[J]. Food Science and Nutrition,2024,64(4):996−1014.
    [36]
    LUO Minna, XIAO Jie, SUN Shengwei, et al. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation[J]. Food & Function,2020,11:5284−5292.
    [37]
    YILMAZ B, DUYGU A. Bioactivities of hen's egg yolk phosvitin and its functional phosphopeptides in food industry and health[J]. Journal of Food Science,2020,85(10):2969−2976. doi: 10.1111/1750-3841.15447
    [38]
    CHAKRABARTI S, REN Jiandong, WU Jianping. Phosvitin derived phospho-peptides show better osteogenic potential than intact phosvitin in MC3T3-E1 osteoblastic cells[J]. Nutrients,2020,12(10):2998. doi: 10.3390/nu12102998
    [39]
    SAMARAWEERA H, MOON S, LEE E, et al. Characterisation of phosvitin phosphopeptides using MALDI-TOF mass spectrometry[J]. Food Chemistry,2014,165(15):98−103.
    [40]
    LONNERDAL B, GLAZIER C. Calcium binding by alpha-lactalbumin in human milk and bovine milk[J]. Journal of Nutrition,1985,115:1209−1216. doi: 10.1093/jn/115.9.1209
    [41]
    AN Jiulong, ZHANG Yinxiao, YING Zhiwei, et al. The formation, structural characteristics, absorption pathways and bioavailability of calcium-peptide chelates[J]. Foods,2022,11(18):2762. doi: 10.3390/foods11182762
    [42]
    NARA M, MORII H, TANOKURA M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2013,1828(10):2319−2327. doi: 10.1016/j.bbamem.2012.11.025
    [43]
    PERMYAKOV E. α-Lactalbumin, amazing calcium-binding protein[J]. Biomolecules,2010(9):1210.
    [44]
    PENG Zhe, HOU Hu, ZHANG Kai, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry,2017,221:373−378. doi: 10.1016/j.foodchem.2016.10.078
    [45]
    ZHANG Y, STOCKMANN R, NG K, et al. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,20(1):652−685.
    [46]
    KHARE E, HOLTEN-ANDERSEN N, BUEHLER M. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties[J]. Nature Reviews Materials,2021,6:421−436. doi: 10.1038/s41578-020-00270-z
    [47]
    LIN Yanlan, CAI Xixi, WU Xiaoping, et al. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake[J]. Journal of Functional Foods,2019,65:103717.
    [48]
    ZHANG J, LIANG L, TIAN Z, et al. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study[J]. Food Chemistry,2012,133(2):390−399. doi: 10.1016/j.foodchem.2012.01.049
    [49]
    宋丽, 朱临娴, 宋璐杉, 等. 钙结合卵黄高磷蛋白磷酸肽的制备及其肽钙螯合物的结构表征[J]. 食品科学,2023,44(6):125−133. [SONG Li, ZHU Linxian, SONG Lushan, et al. Preparation of calcium-binding phosvitin phosphopeptide and structural characterization of its calcium chelate[J]. Food Science,2023,44(6):125−133.] doi: 10.7506/spkx1002-6630-20220414-167

    SONG Li, ZHU Linxian, SONG Lushan, et al. Preparation of calcium-binding phosvitin phosphopeptide and structural characterization of its calcium chelate[J]. Food Science, 2023, 44(6): 125−133. doi: 10.7506/spkx1002-6630-20220414-167
    [50]
    刘佳琛, 程永强, 唐宁. 钙的生物利用度与多肽螯合钙研究进展[J]. 食品工业科技,2023,44(23):354−365. [LIU Jiachen, CHENG Yongqiang, TANG Ning. Progress on bioavailability of calcium and calcium-peptide chelates[J]. Science and Technology of Food Industry,2023,44(23):354−365.]

    LIU Jiachen, CHENG Yongqiang, TANG Ning. Progress on bioavailability of calcium and calcium-peptide chelates[J]. Science and Technology of Food Industry, 2023, 44(23): 354−365.
    [51]
    PEREZ A, PICOTTO G, CARPENTIERI A, et al. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway[J]. Digestion,2008,77(1):22−34. doi: 10.1159/000116623
    [52]
    KHANAL R C, NEMERE I. Regulation of intestinal calcium transport[J]. Annual Review of Nutrition,2008(28):179−196.
    [53]
    DEBARBOZA G D, GUIZZARDI S, DETALAMONI N T, et al. Molecular aspects of intestinal calcium absorption[J]. World Journal of Gastroenterology,2015,1(23):7142−7154.
    [54]
    NEED A, O'LOUGHLIN P D, MORRIS, H A, et al. Vitamin D metabolites and calcium absorption in severe vitamin d deficiency[J]. Journal of Bone and Mineral Research,2008(23):1859−1863.
    [55]
    FLEET J C. Vitamin D-mediated regulation of intestinal calcium absorption[J]. Nutrients,2022,14(16):3351. doi: 10.3390/nu14163351
    [56]
    TSUKITA S, FURUSE M, ITOH M. Multifunctional strands in tight junctions[J]. Nature Reviews Molecular Cell Biology,2001,2(4):285−293. doi: 10.1038/35067088
    [57]
    FUJITA H, SUGIMOTO K, INATOMI S, et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes[J]. Molecular Biology of the Cell,2008,19(5):1912−1921.
    [58]
    PETERSEN O H, FEDIRKO N V. Calcium signalling:Store-operated channel found at last[J]. Current Biology,2001,11(13):520−523. doi: 10.1016/S0960-9822(01)00309-8
    [59]
    WANG Xueqi, ZHANG Zhen, XU Hongyan, et al. Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis[J]. The Royal Society of Chemistry,2020,10(20):11624−11633.
    [60]
    KATIMBA H A, WANG Rongchun, CHENG Cuiling. Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans[J]. Critical Reviews in Food Science and Nutrition,2023,63(19):3959−3979. doi: 10.1080/10408398.2021.1996328
    [61]
    FERNANDEZ-MUSOLES R, SALOM J B, CASTELLO-RUIZ M, et al. Bioavailability of antihypertensive lactoferricin B-derived peptides:Transepithelial transport and resistance to intestinal and plasma peptidases[J]. International Dairy Journal,2013,32(2):169−174. doi: 10.1016/j.idairyj.2013.05.009
    [62]
    PALM C, JAYAMANNE M, KJELLANDER M, et al. Peptide degradation is a critical determinant for cell-penetrating peptide uptake[J]. BBA–Biomembranes,2007,1768(7):1769−1776. doi: 10.1016/j.bbamem.2007.03.029
    [63]
    YU Songfeng, WANG Wenjun, BU Tingting, et al. Digestion, absorption, and transport properties of soy-fermented Douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestionand Caco-2 cell monolayers[J]. Food Research International,2023,164:112340. doi: 10.1016/j.foodres.2022.112340
    [64]
    XU Qingbiao, FAN Hongbing, YU Wenlin, et al. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers[J]. Journal of Agricultural and Food Chemistry,2017,65(34):7406−7414. doi: 10.1021/acs.jafc.7b02176
    [65]
    GILBERT E R, WONG E A, WEBB K E. Board-invited review:Peptide absorption and utilization:Implications for animal nutrition and health[J]. Journal of Animal Science,2008,86(9):2135. doi: 10.2527/jas.2007-0826
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (244) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return