HAN Jiejun, HONG Zhengyi, GONG Tiangui, et al. Protective Effect and Mechanism of Paeonia suffruticosa Seed Ethanol Extract on Photoaging of HaCaT Cells Induced by UVB[J]. Science and Technology of Food Industry, 2024, 45(15): 351−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080212.
Citation: HAN Jiejun, HONG Zhengyi, GONG Tiangui, et al. Protective Effect and Mechanism of Paeonia suffruticosa Seed Ethanol Extract on Photoaging of HaCaT Cells Induced by UVB[J]. Science and Technology of Food Industry, 2024, 45(15): 351−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080212.

Protective Effect and Mechanism of Paeonia suffruticosa Seed Ethanol Extract on Photoaging of HaCaT Cells Induced by UVB

More Information
  • Received Date: August 20, 2023
  • Available Online: June 04, 2024
  • Objective: To study the protective effect and mechanism of ethanol extract from Paeonia suffruticosa seed on photoaging of HaCaT cells induced by UVB. Method: The anti-photoaging active ingredients in the ethanol extract of Paeonia suffruticosa seed were analyzed using ultra-performance liquid chromatography/quadrupole time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS), and the photoaging cell model was established by stimulating HaCaT cells with UVB. Cell viability was determined by the multiple table tournament (MTT) method. The effect of ethanol extract from Paeonia suffruticosa seed on cell migration was detected by cell scratch assay. The related cytokines affecting senescence such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-22 (IL-22), interferon-γ (IFN-γ), and tansforming growth factor-β (TGF-β) were detected by enzyme-linked immunosorbent (ELISA) experiment, and the levels of reactive oxygen species (ROS) and nuclear factor-κ-gene binding (NF-κB) were used as indicators to study the anti-photoaging activity and mechanism of Paeonia suffruticosa seed ethanol extract at different concentrations on HaCaT cells. Results: The top five components with the highest content were 1-stearoylglycerol (10.73%), erucamide (3.17%), 5-[(2R,3S)-6-hydroxy-2-(4-hydroxyphenyl)-4-[(E)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol (2.20%), α,α-trehalose (1.90%) and albiflorin (1.45%). After treatment with different concentrations of Paeonia suffruticosa seed ethanol extract, the viability of HaCaT cells was above 80%. The concentration of 6.25 μg/mL of Paeonia suffruticosa seed ethanol extract showed no significant cytotoxicity to HaCaT cells. Both the concentrations of 12.5 μg/mL (H group) and 6.25 μg/mL (L group) of Paeonia suffruticosa seed ethanol extract could inhibit the migration ability of HaCaT cells. The H group significantly reduced the levels of IL-1, IL-6, IL-22, IFN-γ, and TGF-β in cells (P<0.05), thereby resisting skin aging. The L group reduced ROS production and decreased the content of NF-κB protein factor (P<0.05), effectively inhibiting the photoaging response of HaCaT cells. Conclusion: Ethanol extract from Paeonia suffruticosa seed can improve oxidative stress and inflammation induced by UVB, and has the effect of anti-photoaging.
  • [1]
    胡云飞. 基于药物分析组合技术研究凤丹药材的道地性[D]. 合肥:安徽中医药大学, 2015. [HU Y F. Research on the authenticity of Fengdan medicinal materials based on drug analysis combination technology[D]. Hefei:Anhui University of Chinese Medicine, 2015.]

    HU Y F. Research on the authenticity of Fengdan medicinal materials based on drug analysis combination technology[D]. Hefei: Anhui University of Chinese Medicine, 2015.
    [2]
    田给林, 赵贵红. 牡丹鲜花在食品中的应用现状及展望[J]. 食品研究与开发,2010,31(4):4. [TIAN G L, ZHAO G H. Food of peony flowers's exploitation and development prospects[J]. Food Research and Development,2010,31(4):4.]

    TIAN G L, ZHAO G H. Food of peony flowers's exploitation and development prospects[J]. Food Research and Development, 2010, 31(4): 4.
    [3]
    龙正莉, 杨立新, 杨蓉, 等. 牡丹组植物的药用民族植物学研究与考证[J]. 广西植物,2021,41(2):10. [LONG Z L, YANG L X, YANG R, et al. Medicinal ethnobotany research on Paeonia sect. Moutan through textual evidence[J]. Guihaia,2021,41(2):10.]

    LONG Z L, YANG L X, YANG R, et al. Medicinal ethnobotany research on Paeonia sect. Moutan through textual evidence[J]. Guihaia, 2021, 41(2): 10.
    [4]
    王晓, 时新刚, 郑成超, 等. 牡丹花提取物清除活性氧及对·OH引发的DNA损伤的保护作用[J]. 食品与发酵工业,2004,30(7):55−58. [WANG X, SHI X G, ZHENG C C, et al. Effects of extract from peony flowers on removal of reactive oxygen species and preventing dna damage caused by hydroxyl radical[J]. Food & Fermentation Industries,2004,30(7):55−58.]

    WANG X, SHI X G, ZHENG C C, et al. Effects of extract from peony flowers on removal of reactive oxygen species and preventing dna damage caused by hydroxyl radical[J]. Food & Fermentation Industries, 2004, 30(7): 55−58.
    [5]
    刘建华, 董福英. 牡丹花营养成分分析及其评价[J]. 山东科学,1999,12(4):3. [LIU J H, DONG F Y. The analysis and appreciation for the nutritions of peony flower[J]. Shandong Science,1999,12(4):3.]

    LIU J H, DONG F Y. The analysis and appreciation for the nutritions of peony flower[J]. Shandong Science, 1999, 12(4): 3.
    [6]
    周畅. 牡丹籽油作为化妆品基础油的开发研究[D]. 上海:上海交通大学, 2015. [ZHOU C. Research on the development of peony seed oil as a base oil for cosmetics[D]. Shanghai:Shanghai Jiao Tong University, 2015.]

    ZHOU C. Research on the development of peony seed oil as a base oil for cosmetics[D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [7]
    向芳, 张国豪. 皮肤衰老的研究进展[J]. 贵州医药,2011,35(12):1138−1140. [XIANG F, ZHANG G H. Advances in the study of skin aging[J]. Guizhou Medical Journal,2011,35(12):1138−1140.]

    XIANG F, ZHANG G H. Advances in the study of skin aging[J]. Guizhou Medical Journal, 2011, 35(12): 1138−1140.
    [8]
    ZHANG X, WANG H, XU Y, et al. Advances on the anti-inflammatory activity of oleanolic acid and derivatives[J]. Mini-Reviews in Medicinal Chemistry,2021,21(15):2020−2038. doi: 10.2174/1389557521666210126142051
    [9]
    梁栋, 房盟盟, 马康, 等. ‘凤丹’牡丹籽油抗光老化功效[J]. 林业科技通讯,2023(2):76−78. [LIANG D, FANG M M, MA K, et al. Anti photoaging effect of 'Fengdan' peony seed oil[J]. Forest Science and Technology,2023(2):76−78.]

    LIANG D, FANG M M, MA K, et al. Anti photoaging effect of 'Fengdan' peony seed oil[J]. Forest Science and Technology, 2023(2): 76−78.
    [10]
    周源, 李文宇, 范润哥, 等. 光老化人角质形成细胞模型的构建[J]. 广西医科大学学报,2022,39(2):5. [ZHOU Y, LI W Y, FAN R G, et al. Construction of photoaging human keratinocyte model[J]. Journal of Guangxi Medical University,2022,39(2):5.]

    ZHOU Y, LI W Y, FAN R G, et al. Construction of photoaging human keratinocyte model[J]. Journal of Guangxi Medical University, 2022, 39(2): 5.
    [11]
    BENNETT M F, ROBINSON M K, BARON E D, et al. Skin Immune systems and inflammation:Protector of the skin or promoter of aging?[J]. Journal of Investigative Dermatology Symposium Proceedings,2008,13(1):15−19. doi: 10.1038/jidsymp.2008.3
    [12]
    XIAO Z, YANG S, CHEN J, et al. Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells[J]. Journal of Functional Foods,2020,74:104198. doi: 10.1016/j.jff.2020.104198
    [13]
    王学红, 尹星星, 陆杰, 等. 树莓果油抑制UVB诱导HaCaT细胞光老化的作用研究[J]. 西南农业学报,2023,36(2):9. [WANG X H, YIN X X, LU J, et al. Inhibition effects of raspberry pulp oil on photoaging of HaCaT cells induced by UVB[J]. Southwest China Journal of Agricultural Sciences,2023,36(2):9.]

    WANG X H, YIN X X, LU J, et al. Inhibition effects of raspberry pulp oil on photoaging of HaCaT cells induced by UVB[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(2): 9.
    [14]
    张红玉, 王成章, 原姣姣, 等. 牡丹籽壳提取物及不同极性部位的抗氧化活性研究[J]. 中国油脂,2016,41(7):4. [ZHANG H Y, WANG C Z, YUAN J J, et al. Antioxidant activities of peony seed shell extract and different polarity fractions[J]. China Oils and Fats,2016,41(7):4.]

    ZHANG H Y, WANG C Z, YUAN J J, et al. Antioxidant activities of peony seed shell extract and different polarity fractions[J]. China Oils and Fats, 2016, 41(7): 4.
    [15]
    符史良, 陈洪, 谢建英, 等. 桐花树叶醇提物的气相色谱-质谱分析[J]. 湛江海洋大学学报,2006,26(4):2. [FU S L, CHEN H, XIE J Y, et al. Gas chromatography-mass spectrometry (GC-MS) analysis of the alcoholic extracts of the leaves of Tongkat Ali[J]. Journal of Guangdong Ocean University,2006,26(4):2.]

    FU S L, CHEN H, XIE J Y, et al. Gas chromatography-mass spectrometry (GC-MS) analysis of the alcoholic extracts of the leaves of Tongkat Ali[J]. Journal of Guangdong Ocean University, 2006, 26(4): 2.
    [16]
    苏华振, 魏明. 寻常型银屑病皮损中Notch1表达及对体外培养HaCaT细胞的影响[J]. 中国医药生物技术,2019,14(5):412−420. [SU H Z, WEI M. Expression of Notch1 in skin lesions of patients with psoriasis vulgaris and its effects on the growth of HaCaT cells in vitro[J]. Chinese Medicinal Biotechnology,2019,14(5):412−420.]

    SU H Z, WEI M. Expression of Notch1 in skin lesions of patients with psoriasis vulgaris and its effects on the growth of HaCaT cells in vitro[J]. Chinese Medicinal Biotechnology, 2019, 14(5): 412−420.
    [17]
    ZHANG H, SHAN Y, WU Y, et al. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264. 7 cells[J]. International Immunopharmacologyl,2017,52:93−100.
    [18]
    李敏, 丁毅, 郭琼, 等. Hsa-let-7b-5p靶向ΔNp63抑制HaCaT细胞的增殖, 迁移和侵袭[J]. 中国组织化学与细胞化学杂志,2020,29(4):6. [LI M, DING Y, GUO Q, et al. Hsa-let-7b-5p inhibits proliferation, migration and invasion of HaCaT cells by targeting ΔNp63[J]. Chinese Journal of Histochemistry and Cytochemistry,2020,29(4):6.]

    LI M, DING Y, GUO Q, et al. Hsa-let-7b-5p inhibits proliferation, migration and invasion of HaCaT cells by targeting ΔNp63[J]. Chinese Journal of Histochemistry and Cytochemistry, 2020, 29(4): 6.
    [19]
    孙璇, 李萍, 孙静, 等. 槐提取物和维生素C组合物对紫外照射诱导的HaCaT细胞光损伤的保护作用[J]. 食品工业科技,2024,45(1):303−309. [SUN X, LI P, SUN J, et al. Protective effect of Sophora japonica L. extract and vitamin C composition on photodamage of HaCat cells induced by ultraviolet irradiation[J]. Science and Technology of Food Industry,2024,45(1):303−309.]

    SUN X, LI P, SUN J, et al. Protective effect of Sophora japonica L. extract and vitamin C composition on photodamage of HaCat cells induced by ultraviolet irradiation[J]. Science and Technology of Food Industry, 2024, 45(1): 303−309.
    [20]
    曾颖, 付桂莉. 黄芩提取物抑制IL-22诱导的人角质形成细胞系HaCaT过度增殖[J]. 基础医学与临床,2023,43(1):123−129. [ZENG Y, FU G L. Scutellaria extract inhibits IL-22-induced hyperproliferation of human keratinocyte cell line HaCat[J]. Basic and Clinical Medicine,2023,43(1):123−129.]

    ZENG Y, FU G L. Scutellaria extract inhibits IL-22-induced hyperproliferation of human keratinocyte cell line HaCat[J]. Basic and Clinical Medicine, 2023, 43(1): 123−129.
    [21]
    郑柳怡, 谢凯枫, 杨九妹, 等. 玉屏风颗粒对HaCaT特应性皮炎细胞模型的保护作用研究[J]. 广东药科大学学报,2021,37(2):66−71. [ZHENG L Y, XIE K F, YANG J M, et al. Protective effect of Yupingfeng granule on HaCaT cell model of atopic dermatitis[J]. Journal of Guangdong Pharmaceutical,2021,37(2):66−71.]

    ZHENG L Y, XIE K F, YANG J M, et al. Protective effect of Yupingfeng granule on HaCaT cell model of atopic dermatitis[J]. Journal of Guangdong Pharmaceutical, 2021, 37(2): 66−71.
    [22]
    张俊焱. 藏药翁布化合物及精油对紫外线UVB所致HaCat细胞损伤的保护作用研究[D]. 西宁:青海师范大学, 2022. [ZHANG J Y. Study on the protective effect of Tibetan medicine Wengbu compounds and essential oils on UVB-induced HaCat cell damage[D]. Xining:Qinghai Normal University, 2022.]

    ZHANG J Y. Study on the protective effect of Tibetan medicine Wengbu compounds and essential oils on UVB-induced HaCat cell damage[D]. Xining: Qinghai Normal University, 2022.
    [23]
    LI M, DONG L, DU H, et al. Potential mechanisms underlying the protective effects of Tricholoma matsutake Singer peptides against LPS-induced inflammation in RAW264.7 macrophages[J]. Food Chemistry,2021,353:129452. doi: 10.1016/j.foodchem.2021.129452
    [24]
    苗淼, 刘佳, 谈静, 等. 芍药苷抑制NF-κB通路减少银屑病HaCaT细胞炎症的作用研究[J]. 中医药信息,2023,40(3):47−51. [MIAO N, LIU J, TAN J, et al. Paeoniflorin lnhibiting NF-κB pathway and reducing lnflammation of HaCaT cells in treatment of psoriasis[J]. Information on Traditional Chinese Medicine,2023,40(3):47−51.]

    MIAO N, LIU J, TAN J, et al. Paeoniflorin lnhibiting NF-κB pathway and reducing lnflammation of HaCaT cells in treatment of psoriasis[J]. Information on Traditional Chinese Medicine, 2023, 40(3): 47−51.
    [25]
    张彤. 九种野生牡丹种子和籽油化学成分及其生物活性研究[D]. 洛阳:河南科技大学2022. [ZHANG T. Study on the chemical composition and biological activity of seeds and seed oil of nine wild peony species[D]. Luoyang:Henan University of Science and Technology, 2022.]

    ZHANG T. Study on the chemical composition and biological activity of seeds and seed oil of nine wild peony species[D]. Luoyang: Henan University of Science and Technology, 2022.
    [26]
    JATTUJAN P, SRISIRIRUNG S, WATCHARAPORN W, et al. 2-Butoxytetrahydrofuran and palmitic acid from Holothuria scabra enhance C. elegans lifespan and healthspan via DAF-16/FOXO and SKN-1/NRF2 signaling pathways[J]. Pharmaceuticals (Basel),2022,15(11):1374. doi: 10.3390/ph15111374
    [27]
    APAZA TICONA L, PEÑA-ROJAS G, ANDÍA-AYME V, et al. Anti-glycative and anti-inflammatory effects of macamides isolated from Tropaeolum tuberosum in skin cells[J]. Natural Product Research,2022,36(22):5803−5807. doi: 10.1080/14786419.2021.2016751
    [28]
    LIU W, YIN D X, ZHANG T, et al. Major fatty acid compositions and antioxidant activity of cultivated Paeonia ostii under different nitrogen fertilizer application[J]. Chemistry & Biodiversity,2020,17(12):e2000617.
    [29]
    周景瑞, 王洪琳, 张琴, 等. 贵州地区牡丹籽油脂肪酸组成分析[J]. 安徽农业科学,2021,49(19):177−179. [ZHOU J R, WANG H L, ZHANG Q, et al. Analysis of fatty acid composition of peony seed oil in Guizhou regions[J]. Journal of Anhui Agricultural Sciences,2021,49(19):177−179.] doi: 10.3969/j.issn.0517-6611.2021.19.046

    ZHOU J R, WANG H L, ZHANG Q, et al. Analysis of fatty acid composition of peony seed oil in Guizhou regions[J]. Journal of Anhui Agricultural Sciences, 2021, 49(19): 177−179. doi: 10.3969/j.issn.0517-6611.2021.19.046
    [30]
    侯天兰, 王顺利, 米生权, 等. 牡丹籽油营养成分和功能作用研究进展[J]. 中国油脂,2021,46(8):51−55,71. [HOU T L, WANG S L, MI S Q, et al. Progress on nutritional components and functional activities of peony seed oil[J]. China Oils and Fats,2021,46(8):51−55,71.]

    HOU T L, WANG S L, MI S Q, et al. Progress on nutritional components and functional activities of peony seed oil[J]. China Oils and Fats, 2021, 46(8): 51−55,71.
    [31]
    GURTNER G C, WERNER S, BARRANDON Y, et al. Wound repair and regeneration[J]. Nature,2008,453(7193):314−321. doi: 10.1038/nature07039
    [32]
    ZHANG J, DOU W, ZHANG E, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2014,306(1):G27−G36. doi: 10.1152/ajpgi.00465.2012
    [33]
    HIRANO T. IL-6 in inflammation, autoimmunity and cancer[J]. International Immunology,2021,33(3):127−148. doi: 10.1093/intimm/dxaa078
    [34]
    孙奇. IL-22—炎症性疾病关键因子[J]. 免疫学杂志,2011,27(9):821−825. [SUN Q. IL-22:The key cytokine in inflammatory diseases[J]. Immunological Journal,2011,27(9):821−825.]

    SUN Q. IL-22: The key cytokine in inflammatory diseases[J]. Immunological Journal, 2011, 27(9): 821−825.
    [35]
    章昊旻, 王子, 郭元睿, 等. 清疕饮调控S1P/S1PR5信号通路对HaCaT炎症模型的影响[J]. 环球中医药,2023,16(12):2434−2443. [ZHANG H M, WANG Z, GUO Y R, et al. Qingbi decoction regulate and control the S1P/S1PR5 signaling pathway to influence HaCaT inflammation model[J]. Global Traditional Chinese Medicine,2023,16(12):2434−2443.] doi: 10.3969/j.issn.1674-1749.2023.12.006

    ZHANG H M, WANG Z, GUO Y R, et al. Qingbi decoction regulate and control the S1P/S1PR5 signaling pathway to influence HaCaT inflammation model[J]. Global Traditional Chinese Medicine, 2023, 16(12): 2434−2443. doi: 10.3969/j.issn.1674-1749.2023.12.006
    [36]
    STEWART A G, THOMAS B, KOFF J. TGF-β:Master regulator of inflammation and fibrosis[J]. Respirology,2018,23(12):1096−1097. doi: 10.1111/resp.13415
    [37]
    甘嘉荷, 廖勇. 皮肤炎症性衰老与治疗策略[J]. 实用皮肤病学杂志,2022,15(1):35−40. [GAN J H, LIAO Y. Skin inflammaging and treatment strategies[J]. Journal of Practical Dermatology,2022,15(1):35−40.]

    GAN J H, LIAO Y. Skin inflammaging and treatment strategies[J]. Journal of Practical Dermatology, 2022, 15(1): 35−40.
    [38]
    叶希韵. 紫外线致皮肤光老化研究进展[J]. 生物学教学,2015,40(11):2−5. [YE X Y. Research progress of skin photoaging caused by ultraviolet rays[J]. Biology Teaching,2015,40(11):2−5.]

    YE X Y. Research progress of skin photoaging caused by ultraviolet rays[J]. Biology Teaching, 2015, 40(11): 2−5.
    [39]
    刘少英, 孟祥璟, 张祥奎, 等. 皮肤光老化机制及抗光老化药物[J]. 生理科学进展,2018,49(4):265−269. [LIU S Y, MENG X J, ZHANG X K, et al. The mechanism of skin photoaging and anti photoaging drugs[J]. Progress in Physiological Sciences,2018,49(4):265−269.]

    LIU S Y, MENG X J, ZHANG X K, et al. The mechanism of skin photoaging and anti photoaging drugs[J]. Progress in Physiological Sciences, 2018, 49(4): 265−269.
    [40]
    KONG L, WANG S, WU X, et al. Paeoniflorin attenuates ultraviolet B-induced apoptosis in human keratinocytes by inhibiting the ROS-p38-p53 pathway[J]. Molecular Medicine Reports,2016,13(4):3553−3558. doi: 10.3892/mmr.2016.4953
    [41]
    刘爱华. p53和p38对UV诱导的细胞凋亡的抑制效应及其机制研究[D]. 广州:第一军医大学, 2008. [LIU A H. Study on the inhibitory effects and mechanisms of p53 and p38 on UV-induced cell apoptosis[D]. Guangzhou:First Military Medical University, 2008.]

    LIU A H. Study on the inhibitory effects and mechanisms of p53 and p38 on UV-induced cell apoptosis[D]. Guangzhou: First Military Medical University, 2008.
    [42]
    杨玲, 胡中华. 中波紫外线对HaCaT细胞NF-κB及miRNA表达的影响及调控机制研究[J]. 皮肤病与性病,2023,45(1):1−6. [YANG L, HU Z H. Expression levels of NF-κB and microRNA and involved mechanisms in HaCaT cells induced by ultraviolet B[J]. Dermatology and Venereology,2023,45(1):1−6.]

    YANG L, HU Z H. Expression levels of NF-κB and microRNA and involved mechanisms in HaCaT cells induced by ultraviolet B[J]. Dermatology and Venereology, 2023, 45(1): 1−6.
    [43]
    郭婷. 牡丹籽油抗炎作用的分子机理研究[D]. 长沙:中南林业科技大学, 2020. [GUO T. Study on the molecular mechanism of anti-inflammatory effect of peony seed oil[D]. Changsha:Central South University of Forestry and Technology, 2020.]

    GUO T. Study on the molecular mechanism of anti-inflammatory effect of peony seed oil[D]. Changsha: Central South University of Forestry and Technology, 2020.
  • Related Articles

    [1]XU Liyi, YU Hongda, JIANG Dongyi, ZHENG Jingshao, LIN Jiawei, HUANG Wei. Effects of the Mixing Ratio of Purple Rice and Indica Rice on the Properties of Mixed Powder and the Quality of Purple Rice Noodles[J]. Science and Technology of Food Industry, 2022, 43(17): 114-121. DOI: 10.13386/j.issn1002-0306.2021120267
    [2]ZHU Yuting, HU Zhihe, HUO Chenchen, MI Chunying. Effect of Adding Compound Sugar on the Quality of Solidified Yogurt[J]. Science and Technology of Food Industry, 2022, 43(12): 268-282. DOI: 10.13386/j.issn1002-0306.2021090082
    [3]TIAN Li, ZHAO Yuhui, ZHANG Li, SONG Yuxia. Formulation Optimization and Protein Nutrition Evaluation of Agriophyllum sargassum Compound Meal Replacement Powder[J]. Science and Technology of Food Industry, 2022, 43(1): 213-219. DOI: 10.13386/j.issn1002-0306.2021040196
    [4]ZHONG Yadong, PAN Meng, XU Dechang, SUN Yonggan, HU Jielun, NIE Shaoping, ZHONG Hongguang, YAO Meixiang, XIE Mingyong. Ameliorative Effect of Poria cocos-Yam Riched Rice Paste and Hericium erinaceus Biscuit on Rats with Functional Dyspepsia[J]. Science and Technology of Food Industry, 2021, 42(22): 355-362. DOI: 10.13386/j.issn1002-0306.2021020065
    [5]LIU Ming, YUE Chong-hui, ZHU Yun-heng, TAN Bin, MENG Ning, LIU Yan-xiang, ZAN Xue-mei. Effect of the Ratio of Amylose to Amylopectin in Brown Rice Compound Powder on the Quality and Structure of Extruded Instant Porridge[J]. Science and Technology of Food Industry, 2020, 41(1): 73-78. DOI: 10.13386/j.issn1002-0306.2020.01.013
    [6]ZHANG Wen-ling-zi, ZHANG Ze-sheng, LIU Ya-ping, WANG Meng, GAO Wen-ge. Hypolipidemic Activity of Hawthorn,Sterol Ester and Functional Red Yeast Rice Compound[J]. Science and Technology of Food Industry, 2019, 40(20): 316-324. DOI: 10.13386/j.issn1002-0306.2019.20.051
    [7]AN Ding, ZHANG Qiu-jun, NI Hui, JIANG Ze-dong, XIAO An-feng. Study on Compound of Agar to Exploit Yoghourt Stabilizer[J]. Science and Technology of Food Industry, 2018, 39(15): 219-222,233. DOI: 10.13386/j.issn1002-0306.2018.15.039
    [8]CHEN Zi-han, JIANG Ji-hong, JU Xiu-yun, LIU Jin-juan. The bioactive compounds and their antioxidant activity of kinds of edible rice[J]. Science and Technology of Food Industry, 2018, 39(3): 71-75,81. DOI: 10.13386/j.issn1002-0306.2018.03.015
    [9]YAN Na, GAO Xue-yan, WANG Ru-hua, WANG Fang, HUA Ze-tian. Research progress in polyphenol compounds in rice[J]. Science and Technology of Food Industry, 2015, (19): 374-378. DOI: 10.13386/j.issn1002-0306.2015.19.068
    [10]Screening of phytopathogenic fungi by minor ginsenoside compound K production and optimization of biotransformation conditions[J]. Science and Technology of Food Industry, 2013, (11): 160-164. DOI: 10.13386/j.issn1002-0306.2013.11.020
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (97) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return