Analysis of Postharvest Quality and Volatile Substances of Different Tomato Varieties
-
Graphical Abstract
-
Abstract
In order to clarify the differences of postharest quality and volatile substances of different tomato varieties, the volatile substances of different tomato varieties ('567' 'Provence' 'Youshi No.3' 'Warrior 808' 'Meiqi') were determined by gas chromatography-ion mobility spectroscopy (GC-IMS), and the quality indexes were discussed. '567' tomato fruit was round-shaped. The 'Provence' tomato was near-round and had the highest titrable acid content. 'Youshi No.3' tomato fruit was round-shaped, whose soluble solid content and fruit firmness was the highest. 'Warrior 808' tomato was a near-round fruit. 'Meiqi' tomato fruit was near-round, whose the skin color was the most shiny, which contained the most red color and the highest vitamin C content. A total of 57 volatile substances were detected in 5 varieties of tomato fruits, of which 51 volatile substances were identified, including 18 aldehydes, 11 esters, 8 ketones, 8 alcohols, 2 furans, 3 terpenes and 1 others. There were differences in the main volatiles of different varieties of tomatoes. The volatiles present in all five varieties of tomatoes were ethyl butyrate (apple flavour), trans-2-hexenal (green banana). Hexanol (fruity flavour), propionic acid (sour flavour), and hexyl acetate (fruity flavour) were the main odour substances of 'Meiqi' tomato. Basilene (tropical citrus flavour), ethyl acetyl propionate (fruity flavour), ethyl isobutyrate (sweet flavour) were the main odour substances of '567' tomato. And 2-methylbutyl acetate (sweet banana flavour) was the main odour substance of 'Provence' tomato. Moreover, (Z)-4-heptenal (creamy flavour) was the main odour substance of 'Warrior 808' tomato. Lastly, 1-octen-3-one (mushroom flavour) was the main odour substance of 'Youshi No.3' tomato. In light of this, the differences of postharvest quality of different varieties of tomato fruits were identified in this experiment, and gas chromatography-ion mobility spectroscopy can effectively evaluate the differences of volatile substances.
-
-