Citation: | LIANG Huanjie, YU Jiahan, YANG Zekun, et al. Effect of Buffalo Milk Exosomes on Lipid Metabolism Disorder in Liver of Mouse Induced by High-fat-diet[J]. Science and Technology of Food Industry, 2024, 45(22): 297−304. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070247. |
[1] |
TREFTS E, GANNON M, WASSERMAN D H. The liver[J]. Curr Biol,2017,27(21):R1147−R1151. doi: 10.1016/j.cub.2017.09.019
|
[2] |
GEISLER C E, RENQUIST B J. Hepatic lipid accumulation:cause and consequence of dysregulated glucoregulatory hormones[J]. J Endocrinol,2017,234(1):R1−R21. doi: 10.1530/JOE-16-0513
|
[3] |
BJORNSTAD P, NEHUS E, EL GHORMLI L, et al. Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes:An observational analysis of data from the TODAY clinical trial[J]. American Journal of Kidney Diseases,2018,71(1):65−74. doi: 10.1053/j.ajkd.2017.07.015
|
[4] |
PEREIRA P C. Milk nutritional composition and its role in human health[J]. Nutrition,2014,30(6):619−627. doi: 10.1016/j.nut.2013.10.011
|
[5] |
CACHO N T, LAWRENCE R M. Innate immunity and breast milk[J]. Frontiers in Immunology,2017,8:584. doi: 10.3389/fimmu.2017.00584
|
[6] |
SHIN S, LEE H, KIM C E, et al. Association between milk consumption and metabolic syndrome among korean adults:Results from the health examinees study[J]. Nutrients,2017,9(10):1102. doi: 10.3390/nu9101102
|
[7] |
宋志臣. 喝牛奶可降低胆固醇[J]. 乳品与人类, 2001(1):29. [SONG Zhichen. Drinking milk can lower cholesterol[J]. Dairy and Human, 2001 (1):29.]
SONG Zhichen. Drinking milk can lower cholesterol[J]. Dairy and Human, 2001 (1): 29.
|
[8] |
CHIOFALO B, DUGO P, BONACCORSI I L, et al. Comparison of major lipid components in human and donkey milk:New perspectives for a hypoallergenic diet in humans[J]. Immunopharmacology and Immunotoxicology,2011,33(4):633−644. doi: 10.3109/08923973.2011.555409
|
[9] |
MELNIK B C, SCHMITZ G. MicroRNAs:Milk's epigenetic regulators[J]. Best Practice & Research Clinical Endocrinology & Metabolism,2017,31(4):427−442.
|
[10] |
李春梅, 钟璇, 韩佳临, 等. 水牛乳成分、理化特性及其干酪产品研究进展[J]. 食品科技, 2023, 48(8):44−50. [LI Chunmei, ZHONG Xuan, HAN Jialin, et al. Research progress on the composition, physicochemical properties, and cheese products of buffalo milk[J]. Food Technology, 2023, 48 (8):44−50.]
LI Chunmei, ZHONG Xuan, HAN Jialin, et al. Research progress on the composition, physicochemical properties, and cheese products of buffalo milk[J]. Food Technology, 2023, 48 (8): 44−50.
|
[11] |
MUNIR J, LEE M, RYU S. Exosomes in food:Health benefits and clinical relevance in diseases[J]. Advances in Nutrition,2020,11(3):687−696. doi: 10.1093/advances/nmz123
|
[12] |
THÉRY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Current Protocols in Cell Biology,2006,30(1):3−22.
|
[13] |
RAPOSO G, STOORVOGEL W. Extracellular vesicles:Exosomes, microvesicles, and friends[J]. Journal of Cell Biology,2013,200(4):373−383. doi: 10.1083/jcb.201211138
|
[14] |
ALSAWEED M, HARTMANN P, GEDDES D, et al. MicroRNAs in breastmilk and the lactating breast:Potential immunoprotectors and developmental regulators for the infant and the mother[J]. International Journal of Environmental Research and Public Health,2015,12(11):13981−14020. doi: 10.3390/ijerph121113981
|
[15] |
MELNIK B C, JOHN S, SCHMITZ G. Milk:an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?[J]. Journal of Translational Medicine,2014,12(1):43. doi: 10.1186/1479-5876-12-43
|
[16] |
CHEN T, XIE M, SUN J J, et al. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells[J]. Scientific Reports,2016,6(1):33862. doi: 10.1038/srep33862
|
[17] |
REIF S, ELBAUM-SHIFF Y, KOROUKHOV N, et al. Cow and human milk-derived exosomes ameliorate colitis in DSS murine model[J]. Nutrients, 2020, 12(9).
|
[18] |
REINHARDT T A, LIPPOLIS J D, NONNECKE B J, et al. Bovine milk exosome proteome[J]. J Proteomics,2012,75(5):1486−1492. doi: 10.1016/j.jprot.2011.11.017
|
[19] |
LI B, HOCK A, WU R Y, et al. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis[J]. PLoS One,2019,14(1):e211431.
|
[20] |
SAMUEL M, CHISANGA D, LIEM M, et al. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth[J]. Sci Rep,2017,7(1):5933. doi: 10.1038/s41598-017-06288-8
|
[21] |
GAO H N, GUO H Y, ZHANG H. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment[J]. Journal of Dairy Science,2019,102(2):985−996. doi: 10.3168/jds.2018-14946
|
[22] |
张梦丹, 王浪, 李伟, 等. 骆驼奶中外泌体对Ⅰ型糖尿病小鼠治疗的作用研究[J]. 食品研究与开发, 2020, 41(24):8−11. [ZHANG Mengdan, WANG Lang, LI Wei, et al. Study on the therapeutic effect of exocrine body in camel milk on type I diabetes mice[J]. Food Research and Development, 2020, 41 (24):8−11.]
ZHANG Mengdan, WANG Lang, LI Wei, et al. Study on the therapeutic effect of exocrine body in camel milk on type I diabetes mice[J]. Food Research and Development, 2020, 41 (24): 8−11.
|
[23] |
El-KATTAWY A M, ALGEZAWY O, ALFAIFI M Y, et al. Therapeutic potential of camel milk exosomes against HepaRG cells with potent apoptotic, anti-inflammatory, and anti-angiogenesis effects for colostrum exosomes[J]. Biomed Pharmacother,2021,143:112220. doi: 10.1016/j.biopha.2021.112220
|
[24] |
ZHAO W J, BIAN Y P, WANG Q H, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress[J]. Acta Pharmacologica Sinica,2022,43(3):645−658. doi: 10.1038/s41401-021-00681-w
|
[25] |
JIANG X, WU Y Y, ZHONG H, et al. Human milk-derived extracellular vesicles alleviate high fat diet-induced non-alcoholic fatty liver disease in mice[J]. Mol Biol Rep,2023,50(3):2257−2268. doi: 10.1007/s11033-022-08206-2
|
[26] |
LI M M, XIAO Y, XIAO L G, et al. Epigoitrin alleviates lipid and glucose metabolic disorders induced by a high-fat diet[J]. Food Funct,2022,13(13):7260−7273. doi: 10.1039/D2FO00242F
|
[27] |
FOERSTER F, GAIRING S J, MÜLLER L, et al. NAFLD-driven HCC:Safety and efficacy of current and emerging treatment options[J]. Journal of Hepatology,2022,76(2):446−457. doi: 10.1016/j.jhep.2021.09.007
|
[28] |
徐强, 黄松, 季珂, 等. DEHP促进酒精结合高脂饮食诱导大鼠酒精性脂肪肝的机制[J]. 安徽医科大学学报, 2021, 56(11):1718-1722. [XU Qiang, HUANG Song, JI Ke, et al. The mechanism of DEHP promoting the induction of alcoholic fatty liver in rats by combining alcohol with a high-fat diet[J]. Journal of Anhui Medical University, 2021, 56 (11):1718−1722.]
XU Qiang, HUANG Song, JI Ke, et al. The mechanism of DEHP promoting the induction of alcoholic fatty liver in rats by combining alcohol with a high-fat diet[J]. Journal of Anhui Medical University, 2021, 56 (11): 1718−1722.
|
[29] |
MOHS A, OTTO T, SCHNEIDER K M, et al. Hepatocyte-specific NRF2 activation controls fibrogenesis and carcinogenesis in steatohepatitis[J]. J Hepatol,2021,74(3):638−648. doi: 10.1016/j.jhep.2020.09.037
|
[30] |
ZHUANG X, DENG Z B, MU J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage[J]. J Extracell Vesicles,2015,4:28713. doi: 10.3402/jev.v4.28713
|
[31] |
ZHENG J, SHARP S J, IMAMURA F, et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes:EPIC-InterAct case-cohort study in eight European countries[J]. BMJ,2020,370:m2194.
|
[32] |
ZENG B, CHEN T, XIE M Y, et al. Exploration of long noncoding RNA in bovine milk exosomes and their stability during digestion in vitro[J]. J Dairy Sci,2019,102(8):6726−6737. doi: 10.3168/jds.2019-16257
|
[33] |
YAMAUCHI M, SHIMIZU K, RAHMAN M, et al. Efficient method for isolation of exosomes from raw bovine milk[J]. Drug Dev Ind Pharm,2019,45(3):359−364. doi: 10.1080/03639045.2018.1539743
|
[34] |
WU J H, DONG T, CHEN T, et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J]. Metabolism,2020,103:154006. doi: 10.1016/j.metabol.2019.154006
|
[35] |
YING W, RIOPEL M, BANDYOPADHYAY G, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity[J]. Cell,2017,171(2):372−384. doi: 10.1016/j.cell.2017.08.035
|
[36] |
PARDO F, VILLALOBOS-LABRA R, SOBREVIA B, et al. Extracellular vesicles in obesity and diabetes mellitus[J]. Mol Aspects Med,2018,60:81−91. doi: 10.1016/j.mam.2017.11.010
|
[37] |
KANG H, HATA A. The role of microRNAs in cell fate determination of mesenchymal stem cells:balancing adipogenesis and osteogenesis[J]. BMB Rep,2015,48(6):319−323. doi: 10.5483/BMBRep.2015.48.6.206
|
[38] |
SHI C M, ZHANG M, TONG M L, et al. MiR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt Signaling[J]. Sci Rep,2015,5:9930. doi: 10.1038/srep09930
|
[39] |
KANG M, YAN L M, ZHANG W Y, et al. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression[J]. Mol Biol Rep,2013,40(8):5027−5034. doi: 10.1007/s11033-013-2603-6
|