Citation: | DAI Taotao, QIU Yuxuan, ZHANG Wenhui, et al. Effect of Temperature on 3D Printing Performance of Plant Protein-based Ink[J]. Science and Technology of Food Industry, 2024, 45(13): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070150. |
[1] |
吴金鸿, 施依, 陈婷珠, 等. 3D打印技术在未来食品加工业中的机遇与挑战[J]. 上海交通大学学报,2021,55(S1):97−99. [WU J H, SHI Y, CHEN T Z, et al. Opportunities and challenges of 3D printing technology in the future food processing industry[J]. Journal of Shanghai Jiao Tong University,2021,55(S1):97−99.]
WU J H, SHI Y, CHEN T Z, et al. Opportunities and challenges of 3D printing technology in the future food processing industry[J]. Journal of Shanghai Jiao Tong University, 2021, 55(S1): 97−99.
|
[2] |
YANG F, ZHANG M, BHANDARI B. Recent development in 3D food printing[J]. Critical Reviews in Food Science and Nutrition,2017,57:3145−3153. doi: 10.1080/10408398.2015.1094732
|
[3] |
SUN J, PENG Z, ZHOU W, et al. A review on 3D printing for customized food fabrication[J]. Procedia Manufacturing,2015,1:308−319. doi: 10.1016/j.promfg.2015.09.057
|
[4] |
CHEN H, XIE F, CHEN L, et al. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors[J]. Journal of Food Engineering,2019,244:150−158. doi: 10.1016/j.jfoodeng.2018.09.011
|
[5] |
PHUHONGSUNG P, ZHANG M, BHANDARI B. 4D printing of products based on soy protein isolate via microwave heating for flavor development[J]. Food Research International,2020,137:109605. doi: 10.1016/j.foodres.2020.109605
|
[6] |
LIU Y, YU Y, LIU C, et al. Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing[J]. LWT-Food Science and Technology,2019,102:338−346. doi: 10.1016/j.lwt.2018.12.053
|
[7] |
WANG S, LIU S. 3D printing of soy protein- and gluten-based gels facilitated by thermosensitive cocoa butter in a model study[J]. ACS Food Science & Technology,2022,1:1990−1996.
|
[8] |
MARTINEZ-MONZO J, CARDENAS J, GARCIA-SEGOVIA P. Effect of temperature on 3D printing of commercial potato puree[J]. Food Biophysics,2019,14:225−234. doi: 10.1007/s11483-019-09576-0
|
[9] |
ZENG X, CHEN H, CHEN L, et al. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing[J]. Food Chemistry,2021,342:128362. doi: 10.1016/j.foodchem.2020.128362
|
[10] |
TIAN H, WANG K, QIU R, et al. Effects of incubation temperature on the mechanical and structure performance of beeswax-carrageenan-xanthan hybrid gelator system in 3D printing[J]. Food Hydrocolloids,2022,127:107541. doi: 10.1016/j.foodhyd.2022.107541
|
[11] |
SCHREUDERS F K G, DEKKERS B L, BODNAR I, et al. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation[J]. Journal of Food Engineering,2019,261:32−39. doi: 10.1016/j.jfoodeng.2019.04.022
|
[12] |
LIU Z, BHANDARI B, PRAKASH S, et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
|
[13] |
ACHAYUTHAKAN P, SUPHANTHARIKA M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum[J]. Carbohydrate Polymers,2008,71:9−17. doi: 10.1016/j.carbpol.2007.05.006
|
[14] |
IKEDA S, NISHINARI K. On solid-like rheological behaviors of globular protein solutions[J]. Food Hydrocolloids,2001,15:401−406. doi: 10.1016/S0268-005X(01)00052-2
|
[15] |
LIU Y, LIU D, WEI G, et al. 3D printed milk protein food simulant:Improving the printing performance of milk protein concentration by incorporating whey protein isolate[J]. Innovative Food Science & Emerging Technologies,2018,49:116−126.
|
[16] |
董雷超, 陈炫宏, 王赛, 等. 马铃薯淀粉对豌豆蛋白3D打印材料结构及特性的影响[J]. 中国食品学报,2020,20(1):127−133. [DONG L C, CHEN X H, WANG S, et al. Effect of potato starch on the structure and characteristics of pea protein 3D printing materials[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(1):127−133.]
DONG L C, CHEN X H, WANG S, et al. Effect of potato starch on the structure and characteristics of pea protein 3D printing materials[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 127−133.
|
[17] |
田韩, 李欣, 冯佩琪, 等. 蜂蜡-水凝胶复合型荔枝材料的3D打印工艺[J]. 现代食品科技,2020,36(8):202−210. [TIAN H, LI X, FENG P Q, et al. 3D printing process of beeswax-hydrogel composite lychee material[J]. Modern Food Science and Technology,2020,36(8):202−210.]
TIAN H, LI X, FENG P Q, et al. 3D printing process of beeswax-hydrogel composite lychee material[J]. Modern Food Science and Technology, 2020, 36(8): 202−210.
|
[18] |
WOLDEYES M A, QI W, RAZINKOV V I, et al. Temperature dependence of protein solution viscosity and protein-protein interactions:Insights into the origins of high-viscosity protein solutions[J]. Molecular Pharmaceutics,2020,17:4473−4482. doi: 10.1021/acs.molpharmaceut.0c00552
|
[19] |
SWEENEY M, CAMPBELL L L, HANSON J, et al. Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing[J]. Journal of Materials Science,2017,52:13040−13053. doi: 10.1007/s10853-017-1404-z
|
[20] |
CHEN J, SUN H, MU T, et al. Effect of temperature on rheological, structural, and textural properties of soy protein isolate pastes for 3D food printing[J]. Journal of Food Engineering,2022,323:110917. doi: 10.1016/j.jfoodeng.2021.110917
|
[21] |
LIU Z, ZHANG M, BHANDARI B. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes[J]. International Journal of Biological Macromolecules,2018,117:1179−1187. doi: 10.1016/j.ijbiomac.2018.06.048
|
[22] |
LIU Z, ZHANG M, BHANDARI B, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering,2018,220:76−82. doi: 10.1016/j.jfoodeng.2017.04.017
|
[23] |
曹非凡. 白姑鱼糜3D打印适应性以及射频热凝胶技术研究[D]. 上海:上海海洋大学, 2023. [CAO F F. Research on 3D printing adaptability of surimi and radiofrequency thermogel technology[D]. Shanghai:Shanghai Ocean University, 2023.]
CAO F F. Research on 3D printing adaptability of surimi and radiofrequency thermogel technology[D]. Shanghai: Shanghai Ocean University, 2023.
|
[24] |
TUNICK M H. Small-strain dynamic rheology of food protein networks[J]. Journal of Agricultural and Food Chemistry,2011,59:1481−1486. doi: 10.1021/jf1016237
|
[25] |
MORESI M, BRUNO M, PARENTE E. Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests[J]. Journal of Food Engineering,2004,64:179−186. doi: 10.1016/j.jfoodeng.2003.09.030
|
[26] |
GABRIELE D, DE CINDIO B, D'ANTONA P. A weak gel model for foods[J]. Rheologica Acta,2001,40:120−127. doi: 10.1007/s003970000139
|
[27] |
FAN H, ZHANG M, LIU Z, et al. Effect of microwave-salt synergetic pre-treatment on the 3D printing performance of spi-strawberry ink system[J]. LWT-Food Science and Technology,2020,122:109004. doi: 10.1016/j.lwt.2019.109004
|
[28] |
HAN M, WANG P, XU X, et al. Low-field nmr study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J]. Food Research International,2014,62:1175−1182. doi: 10.1016/j.foodres.2014.05.062
|
[29] |
CHEN Y, ZHANG M, BHANDARI B. 3D printing of steak-like foods based on textured soybean protein[J]. Foods,2021,10:2011. doi: 10.3390/foods10092011
|
[30] |
DOYLE B B, BENDIT E G, BLOUT E R. Infrared spectroscopy of collagen and collagen-like polypeptides[J]. Biopolymers,1975,14:937−957. doi: 10.1002/bip.1975.360140505
|
[31] |
WANG Y Y, WANG C Y, WANG S T, et al. Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases[J]. Food Chemistry,2021,345:128765. doi: 10.1016/j.foodchem.2020.128765
|
[32] |
TANG S Q, DU Q H, FU Z. Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed[J]. Ultrasonics Sonochemistry,2021,71:105357. doi: 10.1016/j.ultsonch.2020.105357
|
1. |
马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
![]() | |
2. |
严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 .
![]() | |
3. |
祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
![]() | |
4. |
文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .
![]() |