YAN Jing, XUE Qiuyan, WANG Yang, et al. Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(6): 8−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070044.
Citation: YAN Jing, XUE Qiuyan, WANG Yang, et al. Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(6): 8−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070044.

Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans

More Information
  • Received Date: July 06, 2022
  • Available Online: January 13, 2023
  • This research aimed to investigate the hypolipidemic and antioxidant effects of fermented rice buckwheat. A high-fat model of Caenorhabditis elegans (C. elegans) was established by high sugar (10 mmol/L) induction. After the treatment of fermented rice buckwheat, its effects on the longevity, motility, egg production, reactive oxygen species (ROS) levels, resistance to oxidative stress, and antioxidant enzyme activity of high-fat C. elegans were determined. At the same time, its effect on the triglyceride and free fatty acid content in high-fat C. elegans were examined. The results showed that the maximum life span of high-fat C. elegans intervened by fermented rice buckwheat significantly increased by 30.90% (P<0.01), significantly increased motility by 28.57% (P<0.01), and increased egg production (P>0.05). Furthermore, fermented rice buckwheat could significantly increase the antioxidant enzyme activity (P<0.01), reduce malondialdehyde content and ROS levels (P<0.01), and significantly enhance their ability to resist oxidative stress (P<0.01). In addition, fermented rice buckwheat could also significantly reduce the triglyceride and free fatty acid content of high-fat C. elegans, respectively, reduced by 56.58% and 130.54% (P<0.01). In summary, fermented rice buckwheat exhibited a lipid-lowering effect by enhancing resistance to oxidative stress, reducing fat deposition, and improving the antioxidant enzyme activity of high-fat C. elegans.
  • [1]
    LIU J, AYADA I, ZHANG X, et al. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults[J]. Clinical Gastroenterology and Hepatology,2021:e573−e582.
    [2]
    WANG Y C, MCPHERSON K, MARSH T, et al. Health and economic burden of the projected obesity trends in the USA and the UK[J]. The Lancet, 2011, 378(9793).
    [3]
    MAFALDA C, MARCO P, VITOR V, et al. Obesity: The metabolic disease, advances on drug discovery and natural product research[J]. Current Topics in Medicinal Chemistry,2016,16(23):2577−2604.
    [4]
    王齐, 伲罗, 王琳, 等. 精准扶贫推动下西盟米荞产业发展现状调查[J]. 安徽农业科学,2017,45(24):251−253. [WANG Q, NI L, WANG L, et al. Investigation on the development status of rice buckwheat industry under the promotion of targeted poverty alleviation[J]. Journal of Anhui Agricultural Sciences,2017,45(24):251−253. doi: 10.3969/j.issn.0517-6611.2017.24.079
    [5]
    王自芬. “西盟米荞”产业开发现状与市场前景[J]. 农民致富之友,2017(2):37−38. [WANG Z F. Industrial development status and market prospect of "Ximeng rice buckwheat"[J]. Friends of Farmers Getting Rich,2017(2):37−38. doi: 10.3969/j.issn.1003-1650.2017.02.034
    [6]
    杨庆华, 张亚飞, 田晓静, 等. 谷物发酵产品的营养功能提升与益生功能研究进展[J/OL]. 食品与发酵工业: 1−10 [2022-05-24]. doi: 10.13995/j.cnki.11-1802/ts.031278.

    YANG Q H, ZHANG Y F, TIAN X J, et al. Advances in nutritional and probiotics of cereal fermented products[J/OL]. Food and Fermentation Industry: 1−10[2022-05-24]. doi: 10.13995/j.cnki.11-1802/TS.031278.
    [7]
    程珂. 发酵大麦提取物调节秀丽隐杆线虫脂代谢及其机制研究[D]. 镇江: 江苏大学, 2018.

    CHENG K. Effects of fermented barley extract on lipid metabolism of Caenorhabditis elegans and its mechanism[D]. Zhenjiang: Jiangsu University, 2018.
    [8]
    严静, 蔡易熹, 薛秋艳, 等. 不同处理方式对米荞营养成分及抗氧化活性的影响[J]. 食品工业科技,2022,43(5):121−129. [YAN J, CAI Y X, XUE Q Y, et al. Effects of different treatments on the nutritional composition and antioxidant activity of rice buckwheat[J]. Science and Technology of Food Industry,2022,43(5):121−129.
    [9]
    SHEN P Y, YUE Y R, PARK Y H. A living model for obesity and aging research: Caenorhabditis elegans[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(5): 741-754.
    [10]
    LUO Z L, YU Z Y, YIN D Q. Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances[J]. Environmental Pollution,2022:294.
    [11]
    李俊健, 高杰贤, 林锦铭, 黎攀, 杜冰. 不同发酵方式对柚皮泡菜理化特性和风味的影响[J]. 食品与发酵工业,2021,47(20):212−218. [LI J J, GAO J X, LIN J M, LI P, DU B. Effects of different fermentation methods on physicochemical characteristics and flavor of pomelo peel pickles[J]. Food and Fermentation Industry,2021,47(20):212−218. doi: 10.13995/j.cnki.11-1802/ts.027289
    [12]
    YAN J, XUE Q Y, CHEN W Y, et al. Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota[J]. Food Research International, 2022. DOI: 10.1016/j.foodres.2022.111125
    [13]
    吉鑫. 绿茶主要组分对线虫脂质代谢的影响及机制[D]. 武汉: 华中科技大学, 2019.

    JI X. Effect and mechanism of main components of green tea on lipid metabolism of nematodes[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [14]
    LIN C X, ZHANG X Y, XIAO J, et al. Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans[J]. Food & Function, 2019, 10(3):1398-1410.
    [15]
    HUANG Q, LI R H, YI T, et al. Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity[J]. Communications Biology,2021,4(1):1335.
    [16]
    王凤, 肖楚翔, 刘淑珍, 等. 榴莲核黄酮的提取及其对秀丽隐杆线虫氧化和衰老的影响[J]. 食品科学,2021,42(9):123−129. [WANG F, XIAO C X, LIU S Z, et al. Extraction of durian riboflavone and its effects on oxidation and senescence of Caenorhabditis elegans[J]. Food Science,2021,42(9):123−129. doi: 10.7506/spkx1002-6630-20200409-127
    [17]
    ZHANG X Y, LI W, TANG Y Z, et al. Mechanism of pentagalloyl glucose in alleviating fat accumulation in Caenorhabditis elegans[J]. Journal of Agricultural and Food Chemistry,2019,67(51):14110−14120.
    [18]
    李玉英, 李元通, 张立伟. 连翘花黄色素对秀丽隐杆线虫应激抗性的影响[J]. 中国药理学与毒理学杂志,2019,33(9):711. [LI Y Y, Li Y T, ZHANG L W. Effect of forsythia flavin on stress resistance in Caenorhabditis elegans[J]. Chinese Journal of Pharmacology and Toxicology,2019,33(9):711.
    [19]
    JONATHAN A F, ANGELICA G M, RAFAEL R R, et al. High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans[J]. PloS One,2019,14(12):e0226652.
    [20]
    LEE S J, MURPHY C T, KENYON C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression[J]. Cell Metabolism,2009,10(5):379−391.
    [21]
    FITZENBERGER E, BOLL M, WENZEL U. Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans[J]. BBA-Molecular Basis of Disease,2013,1832(4):565−573.
    [22]
    文明明, 赵治恒, 毕洁, 等. 高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究[J]. 食品工业科技,2021,42(21):377−384. [WEN M M, ZHAO Z H, BI J, et al. Effects of high-glucose diet on development and antioxidant capacity of Drosophila melanogaster and its mechanism study[J]. Science and Technology of Food Industry,2021,42(21):377−384. doi: 10.13386/j.issn1002-0306.2020120149
    [23]
    IVAN G, BIBHUSITA P, LAURENT G, et al. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress[J]. Nature Communications,2017(8):15868. doi: 10.1038/ncomms15868
    [24]
    SUSANNAH H, HANS U H, WIM W. Baicalein modulates stress-resistance and lifespan in C. elegans via skn-1 but not daf-16[J]. Fitoterapia,2016,113:123−127. doi: 10.1016/j.fitote.2016.06.018
    [25]
    SUN Q C, YUE Y R, SHEN P Y, et al. Cranberry product decreases fat accumulation in Caenorhabditis elegans[J]. Journal of Medicinal Food,2016:427.
    [26]
    宗华. 饮食诱导脂肪沉积对线虫产卵量的影响[D]. 合肥: 合肥工业大学, 2017.

    ZONG H. Effect of diet-induced fat deposition on oviposition quantity of Nematodes[D]. Hefei: Hefei University of Technology, 2017.
    [27]
    王慧, 赵江, 杨胜楠, 等. D-手性肌醇对高糖导致氧化损伤线虫延缓衰老的作用及机制[J]. 食品工业科技,2019,40(2):282−286. [WANG H, ZHAO J, YANG S N, et al. Effect and mechanism of D-chiral inositol on anti-senescence of high glucose induced oxidative damage nematodes[J]. Food Industry Technology,2019,40(2):282−286. doi: 10.13386/j.issn1002-0306.2019.02.049
    [28]
    李洁. 多菌灵对秀丽隐杆线虫脂代谢的影响及机制研究[D]. 镇江: 江苏大学, 2021.

    LI J. Effects of carbendazim on lipid metabolism of Caenorhabditis elegans and its mechanism[D]. Zhenjiang: Jiangsu University, 2021.
    [29]
    YU X, SU Q, SHEN T, et al. Antioxidant peptides from Sepia esculenta hydrolyzate attenuate oxidative stress and fat accumulation in Caenorhabditis elegans[J]. Marine Drugs,2020,18(10):490. doi: 10.3390/md18100490
    [30]
    FENG S, CHENG H, XU Z, et al. Panax notoginseng polysaccharide increases stress resistance and extends lifespan in Caenorhabditis elegans[J]. Journal of Functional Foods,2018,45:15−23. doi: 10.1016/j.jff.2018.03.034
    [31]
    王力, 肖嵋方, 陈弘培, 刘斌, 曾峰. 牡蛎多肽组分OE-I抗氧化活性及其对秀丽隐杆线虫抗衰老作用[J]. 食品科学,2022,43(3):152−160. [WANG L, XIAO M F, CHEN H P, LIU B, ZENG F. Antioxidant activity of Oyster polypeptide OE-I and its anti-aging effect on Caenorhabditis elegans[J]. Food Science,2022,43(3):152−160. doi: 10.7506/spkx1002-6630-20210201-016
    [32]
    孙鑫娟. 发酵大麦β-葡聚糖的特性及其对脂代谢调节作用研究[D]. 镇江: 江苏大学, 2019.

    SUN X J. Study on the characteristics of β-glucan in fermented barley and its regulation on lipid metabolism[D]. Zhenjiang: Jiangsu University, 2019.
    [33]
    黄壮, 李静, 杜鸿志, 等. 三七醇提物对秀丽隐杆线虫的降脂作用[J]. 世界科学技术-中医药现代化,2020,22(5):1648−1653. [HUANG Z, LI J, DU H Z, et al. Lipid-lowering effect of alcohol extract of Panax notoginseng on Caenorhabditis elegans[J]. World Science and Technology-Modernization of TCM,2020,22(5):1648−1653.
    [34]
    QIN X J, WANG W Q, CHU W H. Antioxidant and reducing lipid accumulation effects of rutin in Caenorhabditis elegans[J]. BioFactors (Oxford, England),2021,47(4):686−693.
    [35]
    LIN C X, CHEN Y, LIN Y Z, et al. Antistress and anti-aging activities of Caenorhabditis elegans were enhanced by Momordica saponin extract[J]. European Journal of Nutrition, 2020, 60(4):1819-1832.
    [36]
    于海涛, 马洪波, 富校轶, 等. 高脂饮食诱导肥胖大鼠血清游离脂肪酸水平分析[J]. 吉林医药学院学报,2015,36(6):415−417. [YU H T, MA H B, FU X Yi, et al. Analysis of serum free fatty acid level in obese rats induced by high fat diet[J]. Journal of Jilin University of Medicine,2015,36(6):415−417. doi: 10.13845/j.cnki.issn1673-2995.2015.06.006
    [37]
    FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature,2000,408(6809):239−247. doi: 10.1038/35041687
    [38]
    FANG Z Y, CHEN Y T, WANG G, et al. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model[J]. Food & Function,2019:10.
  • Cited by

    Periodical cited type(4)

    1. 赖岚玉,李敏,赵文俊,黎攀,杜冰. 益生菌发酵对姜制天麻活性成分及其抗氧化活性的影响. 现代食品科技. 2024(02): 91-99 .
    2. 龚春淼,王晓楠,费鹏,李岩,赵小萌,段泊安,陈树兴. 4株双歧杆菌对秀丽隐杆线虫的体内抗衰老作用. 食品科学. 2024(13): 146-152 .
    3. 吕晨豪,李俊健,陈昶安,何致霖,杜冰,黎攀. 发酵陈皮水提物体外抗氧化活性及对秀丽隐杆线虫抗衰老作用. 食品工业科技. 2023(17): 428-437 . 本站查看
    4. 张余威,赵文俊,李伟杰,杜冰,黎攀. 灭活芽孢杆菌DU-106对秀丽隐杆线虫的抗衰老作用. 食品科学. 2023(23): 134-141 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (310) PDF downloads (44) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return