Citation: | CHEN Qiang, WANG Lu, XU Zhengrong, et al. Optimization of Ultrasound-assisted Extraction of Phytoglycogen from Sweet Corn and Its Bioactivity Evaluation[J]. Science and Technology of Food Industry, 2024, 45(19): 177−186. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070133. |
[1] |
XUE J, INZERO J, HU Q, et al. Development of easy, simple and low-cost preparation of highly purified phytoglycogen nanoparticles from corn[J]. Food Hydrocolloids,2019,95:256−261. doi: 10.1016/j.foodhyd.2019.04.041
|
[2] |
王荣杰. 植物糖原Pickering乳液的制备及其理化性质的研究[D]. 无锡:江南大学, 2022. [WANG R J. Preparation and physicochemical properties of Pickering emulsion stabilized by phytoglycogen[D]. Wuxi:Jiangnan University, 2022.]
WANG R J. Preparation and physicochemical properties of Pickering emulsion stabilized by phytoglycogen[D]. Wuxi: Jiangnan University, 2022.
|
[3] |
张瑞琪, 杨成. 阳离子植物糖原的制备及性能研究[J]. 日用化学工业,2019,49(11):727−732. [ZHANG R Q, YANG C. Preparation and properties of cationic phytoglycogen[J]. China Surfactant Detergent & Cosmetics,2019,49(11):727−732.]
ZHANG R Q, YANG C. Preparation and properties of cationic phytoglycogen[J]. China Surfactant Detergent & Cosmetics, 2019, 49(11): 727−732.
|
[4] |
FUJITA N, HANSHIRO I, SUZUKI S, et al. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α-glucan[J]. Journal of Experimental Botany,2012,63(16):5859−5872. doi: 10.1093/jxb/ers235
|
[5] |
PUSHPAMALAR J, VEERAMACHINENI A K, OWH C, et al. Biodegradable polysaccharides for controlled drug delivery[J]. ChemPlusChem,2016,81(6):504−514. doi: 10.1002/cplu.201600112
|
[6] |
韩兴曼, 樊金玲, 王攀, 等. 植物糖原负载提高姜黄素的稳定性和生物活性[J]. 食品科学,2020,41(15):39−47. [HAN X M, FAN J L, WANG P, et al. Enhanced stability and bioactivity of curcumin encapsulated in phytoglycogen nanoparticles[J]. Food Science,2020,41(15):39−47.] doi: 10.7506/spkx1002-6630-20190703-036
HAN X M, FAN J L, WANG P, et al. Enhanced stability and bioactivity of curcumin encapsulated in phytoglycogen nanoparticles[J]. Food Science, 2020, 41(15): 39−47. doi: 10.7506/spkx1002-6630-20190703-036
|
[7] |
XUE J, LI Z, DUAN H, et al. Chemically modified phytoglycogen:physicochemical characteri-zations and applications to encapsulate curcumin[J]. Colloids and Surfaces B:Biointerfaces,2021,205:111829−111837. doi: 10.1016/j.colsurfb.2021.111829
|
[8] |
CHEN H, YAO Y. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin[J]. Food Chemistry,2017,221:248−257. doi: 10.1016/j.foodchem.2016.10.064
|
[9] |
王蕊, 吕肖瑞, 张鹏敏, 等. 植物糖原的提取纯化、结构修饰及应用研究进展[J]. 食品科学,2024,45(3):258−294. [WANG R, LÜ X R, ZHANG P M, et al. Research progress on extraction, purification, structural modification, and application of phytoglycogen. [J]. Food Science,2024,45(3):258−294.]
WANG R, LÜ X R, ZHANG P M, et al. Research progress on extraction, purification, structural modification, and application of phytoglycogen. [J]. Food Science, 2024, 45(3): 258−294.
|
[10] |
LU F, MENCIA A, BI L, et al. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants[J]. Journal of Controlled Release,2015,204:51−59. doi: 10.1016/j.jconrel.2015.03.002
|
[11] |
CHEN C, HUANG D, YANG Q, et al. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers[J]. International Journal of Biological Macromolecules,2023,253:126645. doi: 10.1016/j.ijbiomac.2023.126645
|
[12] |
MIELES-GÓMEZ L, QUINTANA S E, GARCÍA-ZAPATEIRO L A. Ultrasound-assisted extraction of mango (Mangifera Indica) kernel starch:Chemical, techno-functional, and pasting properties[J]. Gels,2023,9(2):136. doi: 10.3390/gels9020136
|
[13] |
LIU R, BOEHLEIN S K, TRACY W F, et al. Characterizing the physical properties and cell compatibility of phytoglycogen extracted from different sweet corn varieties[J]. Molecules,2020,25(3):637. doi: 10.3390/molecules25030637
|
[14] |
贾娟, 王婷婷, 傅航, 等. 响应面优化超声辅助法提取杜仲叶中绿原酸的工艺研究[J]. 保鲜与加工,2021,21(3):97−103. [JIA J, WANG T T, FU H, et al. Ultrasonic assisted extraction technique optimization of chlorogenic acid from Eucommia ulmoides leaves by response surface methodology[J]. Storage and Process,2021,21(3):97−103.] doi: 10.3969/j.issn.1009-6221.2021.03.015
JIA J, WANG T T, FU H, et al. Ultrasonic assisted extraction technique optimization of chlorogenic acid from Eucommia ulmoides leaves by response surface methodology[J]. Storage and Process, 2021, 21(3): 97−103. doi: 10.3969/j.issn.1009-6221.2021.03.015
|
[15] |
MIAO M. Phytoglycogen-based systems[J]. Bioactive Delivery Systems for Lipophilic Nutraceuticals:Formulation, Fabrication, and Application,2023(19):322.
|
[16] |
HUANG G, CHEN F, YANG W, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology,2021,109:564−568.
|
[17] |
HORWITZ W. Official methods of analysis[M]. Washington, DC:Association of Official Analytical Chemists, 1975.
|
[18] |
郭璐璐. 金福菇多糖TLH-3提取分离以及抗氧化活性片段筛选[D]. 合肥:安徽大学, 2014. [GUO L L. Extraction, separation and screening of antioxidant activity of polysaccharide TLH-3 from Tricholoma lobayense[D]. Hefei:Anhui University, 2014.]
GUO L L. Extraction, separation and screening of antioxidant activity of polysaccharide TLH-3 from Tricholoma lobayense[D]. Hefei: Anhui University, 2014.
|
[19] |
HUANG R, ZHANG Y, SHEN S, et al. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts:An in vitro study[J]. Food Chemistry,2020,326:126785. doi: 10.1016/j.foodchem.2020.126785
|
[20] |
胡晓彤, 叶玉洁, 石光, 等. 桑黄子实体多糖的提取及其对D-半乳糖诱导的3T3细胞损伤的保护作用[J]. 食品科学,2020,41(19):204−211. [HU X T, YE Y J, SHI G, et al. Extraction of polysaccharides from fruiting bodies of Phellinus igniarius and its protective effect on D-galactose induced 3T3 cell injury[J]. Food Science,2020,41(19):204−211.] doi: 10.7506/spkx1002-6630-20190906-078
HU X T, YE Y J, SHI G, et al. Extraction of polysaccharides from fruiting bodies of Phellinus igniarius and its protective effect on D-galactose induced 3T3 cell injury[J]. Food Science, 2020, 41(19): 204−211. doi: 10.7506/spkx1002-6630-20190906-078
|
[21] |
ARNAO M B, CANO A, ACOSTA M. The hydrophilic and lipophilic contribution to total antioxidant activity[J]. Food Chem,2001,73(2):239−244. doi: 10.1016/S0308-8146(00)00324-1
|
[22] |
GOVARDHAN SINGH R S, NEGI P S, RADHA C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour[J]. Journal of Functional Foods,2013,5(4):1883−1891. doi: 10.1016/j.jff.2013.09.009
|
[23] |
李龙昱. 基于MTT法研究唐古特大黄多糖对不同肿瘤细胞的抑制作用[J]. 中国高原医学与生物学杂志,2019,40(3):180−183. [LI L Y. The composition of tangufican maxim polysaccharides and the inhibitory effect on different tumor cells[J]. Chinese High Altitude Medicine and Biology,2019,40(3):180−183.]
LI L Y. The composition of tangufican maxim polysaccharides and the inhibitory effect on different tumor cells[J]. Chinese High Altitude Medicine and Biology, 2019, 40(3): 180−183.
|
[24] |
包桥桥, 李梦茹, 黄榕, 等. 异鼠李素调控AKT-FOXO1通路改善胰岛素抵抗HepG2细胞糖代谢作用机制[J]. 食品工业科技,2020,41(23):320−324. [BAO Q Q, LI M R, HUANG R, et al. The mechanism of isorhamnetin regulating AKT-FOXO1 pathways on improve the insulin resistance model of HepG2 cells[J]. Science and Technology of Food Industry,2020,41(23):320−324.]
BAO Q Q, LI M R, HUANG R, et al. The mechanism of isorhamnetin regulating AKT-FOXO1 pathways on improve the insulin resistance model of HepG2 cells[J]. Science and Technology of Food Industry, 2020, 41(23): 320−324.
|
[25] |
阳丹, 蔡舒, 彭成海, 等. 老香黄多糖的分离纯化及其体外胃黏膜保护活性研究[J]. 食品工业科技,2023,44(19):440−448. [YANG D, CAI S, PENG C H, et al. Studies on isolation, purification and gastric mucosal protective activity in vitro of laoxianghuang polysaccharide[J]. Science and Technology of Food Industry,2023,44(19):440−448.]
YANG D, CAI S, PENG C H, et al. Studies on isolation, purification and gastric mucosal protective activity in vitro of laoxianghuang polysaccharide[J]. Science and Technology of Food Industry, 2023, 44(19): 440−448.
|
[26] |
冯朵, 王靖, 蒋勇军, 等. 肉苁蓉总苷对HepG2细胞增殖、凋亡及Wnt/β-catenin通路相关蛋白表达的影响[J]. 食品工业科技,2023,44(20):389−397 [FENG D, WANG J, JIANG Y J, et al. Effects of total glycosides of cistanche deserticola on proliferation, apoptosis and expression of Wnt/β-catenin signaling pathway related protein of HepG2 cells[J]. Science and Technology of Food Industry,2023,44(20):389−397.]
FENG D, WANG J, JIANG Y J, et al. Effects of total glycosides of cistanche deserticola on proliferation, apoptosis and expression of Wnt/β-catenin signaling pathway related protein of HepG2 cells[J]. Science and Technology of Food Industry, 2023, 44(20): 389−397.
|
[27] |
王晓红. 新型基于普鲁兰多糖的药物/基因共递送载体研究[D]. 大连:大连理工大学, 2015. [WANG X H. A novel pullulan-based co-carrier for drug and gene[D]. Dalian:Dalian University of Technology, 2015.]
WANG X H. A novel pullulan-based co-carrier for drug and gene[D]. Dalian: Dalian University of Technology, 2015.
|
[28] |
WEI X, DING S, LIU S, et al. Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges[J]. Carbohydrate Polymers,2021,264:118028. doi: 10.1016/j.carbpol.2021.118028
|
[29] |
钱燕芳, 石晨莹, 陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(16):201−210. [QIAN Y F, SHI C Y, CHEN G T. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori Fructus and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(16):201−210.]
QIAN Y F, SHI C Y, CHEN G T. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori Fructus and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(16): 201−210.
|
[30] |
SOROURIAN R, KHAJEHRAHIMI A E, TADAYONI M, et al. Ultrasound-assisted extraction of polysaccharides from Typha domingensis:Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2020,160:758−768. doi: 10.1016/j.ijbiomac.2020.05.226
|
[31] |
秦德利, 贾坤, 窦珺荣, 等. 茶树花多糖超声波辅助热水浸提工艺优化[J]. 食品工业科技,2015,36(4):215−218,223. [QIN D L, JIA K, DOU J R, et al. Optimization of ultrasound-assisted hot water extraction of polysaccharides from tea flower[J]. Science and Technology of Food Industry,2015,36(4):215−218,223.]
QIN D L, JIA K, DOU J R, et al. Optimization of ultrasound-assisted hot water extraction of polysaccharides from tea flower[J]. Science and Technology of Food Industry, 2015, 36(4): 215−218,223.
|
[32] |
王威振, 杨盼盼, 遆永瑞, 等. 龙牙百合多糖的超声辅助提取及其抗氧化、降血脂活性分析[J]. 食品工业科技,2023,44(18):251−257. [WANG W Z, YANG P P, TI Y R, et al. Ultrasound-assisted extraction and analysis of antioxidation and hypolipidemia activities of polysaccharides from Lilium brownii var. Viridulum[J]. Science and Technology of Food Industry,2023,44(18):251−257.]
WANG W Z, YANG P P, TI Y R, et al. Ultrasound-assisted extraction and analysis of antioxidation and hypolipidemia activities of polysaccharides from Lilium brownii var. Viridulum[J]. Science and Technology of Food Industry, 2023, 44(18): 251−257.
|
[33] |
冼丽清, 李珊, 冯彬, 等. 百色红茶多糖提取工艺优化及其对油脂抗氧化活性研究[J]. 化学研究与应用,2022,34(5):1025−1031. [XIAN L Q, LI S, FENG B, et al. Optimization of extraction technology of polysaccharides from Baise-black tea and its antioxidant activity on grease[J]. Chemical Research and Application,2022,34(5):1025−1031.] doi: 10.3969/j.issn.1004-1656.2022.05.013
XIAN L Q, LI S, FENG B, et al. Optimization of extraction technology of polysaccharides from Baise-black tea and its antioxidant activity on grease[J]. Chemical Research and Application, 2022, 34(5): 1025−1031. doi: 10.3969/j.issn.1004-1656.2022.05.013
|
[34] |
贺便, 成超超, 王攀. 双酶法-超声辅助提取松针多糖工艺优化[J]. 安徽农学通报,2019,25(7):19−22. [HE B, CHENG C C, WANG P. Optimization of double enzyme method-ultrasonic assisted extraction of pine needle polysaccharide[J]. Anhui Agricultural Science Bulletin,2019,25(7):19−22.] doi: 10.3969/j.issn.1007-7731.2019.07.007
HE B, CHENG C C, WANG P. Optimization of double enzyme method-ultrasonic assisted extraction of pine needle polysaccharide[J]. Anhui Agricultural Science Bulletin, 2019, 25(7): 19−22. doi: 10.3969/j.issn.1007-7731.2019.07.007
|
[35] |
曾凡珂, 潘蕾蔓, 张祎, 等. 荸荠皮多糖的理化性质及抗氧化活性[J]. 现代食品科技,2022,38(3):82−88,81. [ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J]. Modern Food Science and Technology,2022,38(3):82−88,81.]
ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J]. Modern Food Science and Technology, 2022, 38(3): 82−88,81.
|
[36] |
DÍAZ-MONTES E. Dextran:Sources, structures, and properties[J]. Polysaccharides,2021,2(3):554−565. doi: 10.3390/polysaccharides2030033
|
[37] |
QIN Z, LIU H M, LV T T, et al. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits[J]. International Journal of Biological Macromolecules,2020,147:1146−1155. doi: 10.1016/j.ijbiomac.2019.10.083
|
[38] |
PEREZ-CASTINEIRA J. Chemistry and biochemistry of food[M]. Walter de Gruyter GmbH & Co KG, 2020.
|
[39] |
HOLZER M, VOGEL V, MÄNTELE W, et al. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage[J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,72(2):428−437. doi: 10.1016/j.ejpb.2009.02.002
|
[40] |
李风铃. 嗜热葡萄糖淀粉酶与α-淀粉酶克隆表达和酶学研究[D]. 合肥:安徽大学, 2019. [LI F L. Cloning, expression and enzymology studies of hyperthermophilic glucoamylases and α-amylase[D]. Hefei:Anhui University, 2019.]
LI F L. Cloning, expression and enzymology studies of hyperthermophilic glucoamylases and α-amylase[D]. Hefei: Anhui University, 2019.
|
[1] | MO Haoran, HUANG Mingzheng, ZHANG Qun, TANG Weiyuan, LI Tingting, XU Cunbin, LIU Xiaozhu, YU Zhihai, LI Xin. Analysis the Volatiles and Its Aroma Contribution in Rosa Sterilis by HS-SPME and LLE-SAFE[J]. Science and Technology of Food Industry, 2023, 44(20): 289-297. DOI: 10.13386/j.issn1002-0306.2022090300 |
[2] | DENG Jiantianye, YAN Meihong, SHANG Bohao, LI Yilong, XIAO Tian, ZHU Mingzhi, WANG Kunbo. Study on Aroma Components in Different Types of Dark Tea Based on HS-SPME-GC-MS[J]. Science and Technology of Food Industry, 2023, 44(18): 378-386. DOI: 10.13386/j.issn1002-0306.2022110337 |
[3] | SUN Mingchao, YANG Youyou, YU Yanan, CHEN Han, ZHAO Qingyu, ZHANG Junmin, ZHAO Jinshan. Composition Analysis Based on Gas Chromatography-Orbitrap-Mass Spectrometry and Evaluation of the Antioxidant Activity of Four Plants Essential Oils[J]. Science and Technology of Food Industry, 2022, 43(17): 338-354. DOI: 10.13386/j.issn1002-0306.2021120014 |
[4] | SHI Ke, SUN Xiao-tao, SHEN Cai-hong, AO Ling, ZHENG Fu-ping, HUANG Ming-quan, SUN Jin-yuan, LI He-he. Study on the Key Aroma Components of Luzhou-flavor Baijiu Based on Overall Sensory Evaluation Model by Direct-Gas Chromatography-Olfaction[J]. Science and Technology of Food Industry, 2020, 41(7): 208-219. DOI: 10.13386/j.issn1002-0306.2020.07.035 |
[5] | WU Lin, ZHANG Qiang, ZANG Hui-ming, XU Zhen-biao, XU De-bing. Evaluation of Volatile Aroma Components in Blueberry Peel, Pulp and Juice by Odor Activity Value[J]. Science and Technology of Food Industry, 2020, 41(1): 195-200. DOI: 10.13386/j.issn1002-0306.2020.01.031 |
[6] | LIU Cun-fang, SHI Juan, LIU Jun-hai, ZHANG Qiang, DU Quan-chao, WANG Wei, TIAN Guang-hui. Analysis of the Volatile Composition from the Rhodiola rosea and Anti-oxidation Activities and Antimicrobial Effectiveness[J]. Science and Technology of Food Industry, 2020, 41(1): 32-37. DOI: 10.13386/j.issn1002-0306.2020.01.006 |
[7] | CHEN Hai-tao, SUN Jie, PU Dan-dan, SUN Bao-guo, ZHANG Yu-yu. Identification of flavor- active compounds in Inner Mongolia dried beef by OAV calculation and GC-MS-O[J]. Science and Technology of Food Industry, 2016, (15): 304-308. DOI: 10.13386/j.issn1002-0306.2016.15.050 |
[8] | ZHU Li-jie, SHI Yue, LIU Xiu-ying, WANG Bo, TANG Ming-li, LIU He, HE Yu-tang, MA Tao. Solid phase micro- extraction combined with gas chromatography- mass spectrometry analysis of volatile flavor compounds of corn pancake[J]. Science and Technology of Food Industry, 2016, (10): 102-105. DOI: 10.13386/j.issn1002-0306.2016.10.011 |
[9] | XU Yan, ZHANG Xiu-guo, HUANG Guo-qiang, ZHANG Qin, YANG Jia-lin, SUN Xue-ping. Antibacterial activities and GC- MS analysis of low polar components from Styela canopus Savigny[J]. Science and Technology of Food Industry, 2015, (21): 295-298. DOI: 10.13386/j.issn1002-0306.2015.21.052 |
[10] | XU Yan, ZHANG Xiu-guo, HUANG Guo-qiang, ZHANG Qin, YANG Jia-lin, SUN Xue-ping. Antibacterial activities and GC- MS analysis of low polar components from Scapharca subcrenata Lischke[J]. Science and Technology of Food Industry, 2015, (11): 127-130. DOI: 10.13386/j.issn1002-0306.2015.11.017 |