CHEN Qiang, WANG Lu, XU Zhengrong, et al. Optimization of Ultrasound-assisted Extraction of Phytoglycogen from Sweet Corn and Its Bioactivity Evaluation[J]. Science and Technology of Food Industry, 2024, 45(19): 177−186. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070133.
Citation: CHEN Qiang, WANG Lu, XU Zhengrong, et al. Optimization of Ultrasound-assisted Extraction of Phytoglycogen from Sweet Corn and Its Bioactivity Evaluation[J]. Science and Technology of Food Industry, 2024, 45(19): 177−186. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070133.

Optimization of Ultrasound-assisted Extraction of Phytoglycogen from Sweet Corn and Its Bioactivity Evaluation

More Information
  • Received Date: July 16, 2023
  • Available Online: August 04, 2024
  • The optimal extraction process of phytoglycogen (PG) from sweet corn by ultrasound-assisted method was studied, and the physicochemical properties and biological activities of PG were evaluated in this paper. The effects of solid-liquid ratio, ultrasonic power and ultrasonic time on the yield of PG were investigated and the process parameters were further optimized by orthogonal experiment. Furthermore, the physicochemical properties of PG obtained by ultrasound-assisted method were investigated. Meanwhile, the antioxidation, cytotoxicity, apoptosis and hemolysis of PG were evaluated in vitro. The results showed that the optimal extraction conditions were as follows: Solid-liquid ratio of 1:9 (g/mL), ultrasonic power of 160 W and ultrasonic time of 80 min, the actual yield was 14.31%±0.38%. The PG particle size obtained by ultrasound-assisted method was lower than that obtained by traditional water extraction and alcohol precipitation method. In vitro antioxidant experiment showed that PG had a certain antioxidant capacity, especially it was more sensitive to DPPH free radicals, and the clearance rate reached 54.58%±1.39% at 20 mg/mL. The results of biosafety evaluation showed that the survival rate of mouse fibroblasts (3T3) was higher than 95% after incubation with different concentrations of PG for 24 or 48 h. Meanwhile, PG had no obvious apoptotic effect on cells, and the apoptotic rate was lower than 7% at the maximum concentration. After 2 h of co-incubation, the hemolysis rate caused by PG on red blood cells was also much lower than the national standard (5%), which confirmed that PG had good biocompatibility with normal cells and red blood cells. Overall, this study showed that ultrasound-assisted method could improve the yield and physicochemical properties of PG, and also confirmed that PG was a non-toxic natural nanoparticle, which had great application potential in drug or food factor delivery.
  • [1]
    XUE J, INZERO J, HU Q, et al. Development of easy, simple and low-cost preparation of highly purified phytoglycogen nanoparticles from corn[J]. Food Hydrocolloids,2019,95:256−261. doi: 10.1016/j.foodhyd.2019.04.041
    [2]
    王荣杰. 植物糖原Pickering乳液的制备及其理化性质的研究[D]. 无锡:江南大学, 2022. [WANG R J. Preparation and physicochemical properties of Pickering emulsion stabilized by phytoglycogen[D]. Wuxi:Jiangnan University, 2022.]

    WANG R J. Preparation and physicochemical properties of Pickering emulsion stabilized by phytoglycogen[D]. Wuxi: Jiangnan University, 2022.
    [3]
    张瑞琪, 杨成. 阳离子植物糖原的制备及性能研究[J]. 日用化学工业,2019,49(11):727−732. [ZHANG R Q, YANG C. Preparation and properties of cationic phytoglycogen[J]. China Surfactant Detergent & Cosmetics,2019,49(11):727−732.]

    ZHANG R Q, YANG C. Preparation and properties of cationic phytoglycogen[J]. China Surfactant Detergent & Cosmetics, 2019, 49(11): 727−732.
    [4]
    FUJITA N, HANSHIRO I, SUZUKI S, et al. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α-glucan[J]. Journal of Experimental Botany,2012,63(16):5859−5872. doi: 10.1093/jxb/ers235
    [5]
    PUSHPAMALAR J, VEERAMACHINENI A K, OWH C, et al. Biodegradable polysaccharides for controlled drug delivery[J]. ChemPlusChem,2016,81(6):504−514. doi: 10.1002/cplu.201600112
    [6]
    韩兴曼, 樊金玲, 王攀, 等. 植物糖原负载提高姜黄素的稳定性和生物活性[J]. 食品科学,2020,41(15):39−47. [HAN X M, FAN J L, WANG P, et al. Enhanced stability and bioactivity of curcumin encapsulated in phytoglycogen nanoparticles[J]. Food Science,2020,41(15):39−47.] doi: 10.7506/spkx1002-6630-20190703-036

    HAN X M, FAN J L, WANG P, et al. Enhanced stability and bioactivity of curcumin encapsulated in phytoglycogen nanoparticles[J]. Food Science, 2020, 41(15): 39−47. doi: 10.7506/spkx1002-6630-20190703-036
    [7]
    XUE J, LI Z, DUAN H, et al. Chemically modified phytoglycogen:physicochemical characteri-zations and applications to encapsulate curcumin[J]. Colloids and Surfaces B:Biointerfaces,2021,205:111829−111837. doi: 10.1016/j.colsurfb.2021.111829
    [8]
    CHEN H, YAO Y. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin[J]. Food Chemistry,2017,221:248−257. doi: 10.1016/j.foodchem.2016.10.064
    [9]
    王蕊, 吕肖瑞, 张鹏敏, 等. 植物糖原的提取纯化、结构修饰及应用研究进展[J]. 食品科学,2024,45(3):258−294. [WANG R, LÜ X R, ZHANG P M, et al. Research progress on extraction, purification, structural modification, and application of phytoglycogen. [J]. Food Science,2024,45(3):258−294.]

    WANG R, LÜ X R, ZHANG P M, et al. Research progress on extraction, purification, structural modification, and application of phytoglycogen. [J]. Food Science, 2024, 45(3): 258−294.
    [10]
    LU F, MENCIA A, BI L, et al. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants[J]. Journal of Controlled Release,2015,204:51−59. doi: 10.1016/j.jconrel.2015.03.002
    [11]
    CHEN C, HUANG D, YANG Q, et al. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers[J]. International Journal of Biological Macromolecules,2023,253:126645. doi: 10.1016/j.ijbiomac.2023.126645
    [12]
    MIELES-GÓMEZ L, QUINTANA S E, GARCÍA-ZAPATEIRO L A. Ultrasound-assisted extraction of mango (Mangifera Indica) kernel starch:Chemical, techno-functional, and pasting properties[J]. Gels,2023,9(2):136. doi: 10.3390/gels9020136
    [13]
    LIU R, BOEHLEIN S K, TRACY W F, et al. Characterizing the physical properties and cell compatibility of phytoglycogen extracted from different sweet corn varieties[J]. Molecules,2020,25(3):637. doi: 10.3390/molecules25030637
    [14]
    贾娟, 王婷婷, 傅航, 等. 响应面优化超声辅助法提取杜仲叶中绿原酸的工艺研究[J]. 保鲜与加工,2021,21(3):97−103. [JIA J, WANG T T, FU H, et al. Ultrasonic assisted extraction technique optimization of chlorogenic acid from Eucommia ulmoides leaves by response surface methodology[J]. Storage and Process,2021,21(3):97−103.] doi: 10.3969/j.issn.1009-6221.2021.03.015

    JIA J, WANG T T, FU H, et al. Ultrasonic assisted extraction technique optimization of chlorogenic acid from Eucommia ulmoides leaves by response surface methodology[J]. Storage and Process, 2021, 21(3): 97−103. doi: 10.3969/j.issn.1009-6221.2021.03.015
    [15]
    MIAO M. Phytoglycogen-based systems[J]. Bioactive Delivery Systems for Lipophilic Nutraceuticals:Formulation, Fabrication, and Application,2023(19):322.
    [16]
    HUANG G, CHEN F, YANG W, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology,2021,109:564−568.
    [17]
    HORWITZ W. Official methods of analysis[M]. Washington, DC:Association of Official Analytical Chemists, 1975.
    [18]
    郭璐璐. 金福菇多糖TLH-3提取分离以及抗氧化活性片段筛选[D]. 合肥:安徽大学, 2014. [GUO L L. Extraction, separation and screening of antioxidant activity of polysaccharide TLH-3 from Tricholoma lobayense[D]. Hefei:Anhui University, 2014.]

    GUO L L. Extraction, separation and screening of antioxidant activity of polysaccharide TLH-3 from Tricholoma lobayense[D]. Hefei: Anhui University, 2014.
    [19]
    HUANG R, ZHANG Y, SHEN S, et al. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts:An in vitro study[J]. Food Chemistry,2020,326:126785. doi: 10.1016/j.foodchem.2020.126785
    [20]
    胡晓彤, 叶玉洁, 石光, 等. 桑黄子实体多糖的提取及其对D-半乳糖诱导的3T3细胞损伤的保护作用[J]. 食品科学,2020,41(19):204−211. [HU X T, YE Y J, SHI G, et al. Extraction of polysaccharides from fruiting bodies of Phellinus igniarius and its protective effect on D-galactose induced 3T3 cell injury[J]. Food Science,2020,41(19):204−211.] doi: 10.7506/spkx1002-6630-20190906-078

    HU X T, YE Y J, SHI G, et al. Extraction of polysaccharides from fruiting bodies of Phellinus igniarius and its protective effect on D-galactose induced 3T3 cell injury[J]. Food Science, 2020, 41(19): 204−211. doi: 10.7506/spkx1002-6630-20190906-078
    [21]
    ARNAO M B, CANO A, ACOSTA M. The hydrophilic and lipophilic contribution to total antioxidant activity[J]. Food Chem,2001,73(2):239−244. doi: 10.1016/S0308-8146(00)00324-1
    [22]
    GOVARDHAN SINGH R S, NEGI P S, RADHA C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour[J]. Journal of Functional Foods,2013,5(4):1883−1891. doi: 10.1016/j.jff.2013.09.009
    [23]
    李龙昱. 基于MTT法研究唐古特大黄多糖对不同肿瘤细胞的抑制作用[J]. 中国高原医学与生物学杂志,2019,40(3):180−183. [LI L Y. The composition of tangufican maxim polysaccharides and the inhibitory effect on different tumor cells[J]. Chinese High Altitude Medicine and Biology,2019,40(3):180−183.]

    LI L Y. The composition of tangufican maxim polysaccharides and the inhibitory effect on different tumor cells[J]. Chinese High Altitude Medicine and Biology, 2019, 40(3): 180−183.
    [24]
    包桥桥, 李梦茹, 黄榕, 等. 异鼠李素调控AKT-FOXO1通路改善胰岛素抵抗HepG2细胞糖代谢作用机制[J]. 食品工业科技,2020,41(23):320−324. [BAO Q Q, LI M R, HUANG R, et al. The mechanism of isorhamnetin regulating AKT-FOXO1 pathways on improve the insulin resistance model of HepG2 cells[J]. Science and Technology of Food Industry,2020,41(23):320−324.]

    BAO Q Q, LI M R, HUANG R, et al. The mechanism of isorhamnetin regulating AKT-FOXO1 pathways on improve the insulin resistance model of HepG2 cells[J]. Science and Technology of Food Industry, 2020, 41(23): 320−324.
    [25]
    阳丹, 蔡舒, 彭成海, 等. 老香黄多糖的分离纯化及其体外胃黏膜保护活性研究[J]. 食品工业科技,2023,44(19):440−448. [YANG D, CAI S, PENG C H, et al. Studies on isolation, purification and gastric mucosal protective activity in vitro of laoxianghuang polysaccharide[J]. Science and Technology of Food Industry,2023,44(19):440−448.]

    YANG D, CAI S, PENG C H, et al. Studies on isolation, purification and gastric mucosal protective activity in vitro of laoxianghuang polysaccharide[J]. Science and Technology of Food Industry, 2023, 44(19): 440−448.
    [26]
    冯朵, 王靖, 蒋勇军, 等. 肉苁蓉总苷对HepG2细胞增殖、凋亡及Wnt/β-catenin通路相关蛋白表达的影响[J]. 食品工业科技,2023,44(20):389−397 [FENG D, WANG J, JIANG Y J, et al. Effects of total glycosides of cistanche deserticola on proliferation, apoptosis and expression of Wnt/β-catenin signaling pathway related protein of HepG2 cells[J]. Science and Technology of Food Industry,2023,44(20):389−397.]

    FENG D, WANG J, JIANG Y J, et al. Effects of total glycosides of cistanche deserticola on proliferation, apoptosis and expression of Wnt/β-catenin signaling pathway related protein of HepG2 cells[J]. Science and Technology of Food Industry, 2023, 44(20): 389−397.
    [27]
    王晓红. 新型基于普鲁兰多糖的药物/基因共递送载体研究[D]. 大连:大连理工大学, 2015. [WANG X H. A novel pullulan-based co-carrier for drug and gene[D]. Dalian:Dalian University of Technology, 2015.]

    WANG X H. A novel pullulan-based co-carrier for drug and gene[D]. Dalian: Dalian University of Technology, 2015.
    [28]
    WEI X, DING S, LIU S, et al. Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges[J]. Carbohydrate Polymers,2021,264:118028. doi: 10.1016/j.carbpol.2021.118028
    [29]
    钱燕芳, 石晨莹, 陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析[J]. 食品工业科技,2022,43(16):201−210. [QIAN Y F, SHI C Y, CHEN G T. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori Fructus and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(16):201−210.]

    QIAN Y F, SHI C Y, CHEN G T. Optimization of ultrasound-assisted extraction and decolorization process of polysaccharides from Mori Fructus and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(16): 201−210.
    [30]
    SOROURIAN R, KHAJEHRAHIMI A E, TADAYONI M, et al. Ultrasound-assisted extraction of polysaccharides from Typha domingensis:Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2020,160:758−768. doi: 10.1016/j.ijbiomac.2020.05.226
    [31]
    秦德利, 贾坤, 窦珺荣, 等. 茶树花多糖超声波辅助热水浸提工艺优化[J]. 食品工业科技,2015,36(4):215−218,223. [QIN D L, JIA K, DOU J R, et al. Optimization of ultrasound-assisted hot water extraction of polysaccharides from tea flower[J]. Science and Technology of Food Industry,2015,36(4):215−218,223.]

    QIN D L, JIA K, DOU J R, et al. Optimization of ultrasound-assisted hot water extraction of polysaccharides from tea flower[J]. Science and Technology of Food Industry, 2015, 36(4): 215−218,223.
    [32]
    王威振, 杨盼盼, 遆永瑞, 等. 龙牙百合多糖的超声辅助提取及其抗氧化、降血脂活性分析[J]. 食品工业科技,2023,44(18):251−257. [WANG W Z, YANG P P, TI Y R, et al. Ultrasound-assisted extraction and analysis of antioxidation and hypolipidemia activities of polysaccharides from Lilium brownii var. Viridulum[J]. Science and Technology of Food Industry,2023,44(18):251−257.]

    WANG W Z, YANG P P, TI Y R, et al. Ultrasound-assisted extraction and analysis of antioxidation and hypolipidemia activities of polysaccharides from Lilium brownii var. Viridulum[J]. Science and Technology of Food Industry, 2023, 44(18): 251−257.
    [33]
    冼丽清, 李珊, 冯彬, 等. 百色红茶多糖提取工艺优化及其对油脂抗氧化活性研究[J]. 化学研究与应用,2022,34(5):1025−1031. [XIAN L Q, LI S, FENG B, et al. Optimization of extraction technology of polysaccharides from Baise-black tea and its antioxidant activity on grease[J]. Chemical Research and Application,2022,34(5):1025−1031.] doi: 10.3969/j.issn.1004-1656.2022.05.013

    XIAN L Q, LI S, FENG B, et al. Optimization of extraction technology of polysaccharides from Baise-black tea and its antioxidant activity on grease[J]. Chemical Research and Application, 2022, 34(5): 1025−1031. doi: 10.3969/j.issn.1004-1656.2022.05.013
    [34]
    贺便, 成超超, 王攀. 双酶法-超声辅助提取松针多糖工艺优化[J]. 安徽农学通报,2019,25(7):19−22. [HE B, CHENG C C, WANG P. Optimization of double enzyme method-ultrasonic assisted extraction of pine needle polysaccharide[J]. Anhui Agricultural Science Bulletin,2019,25(7):19−22.] doi: 10.3969/j.issn.1007-7731.2019.07.007

    HE B, CHENG C C, WANG P. Optimization of double enzyme method-ultrasonic assisted extraction of pine needle polysaccharide[J]. Anhui Agricultural Science Bulletin, 2019, 25(7): 19−22. doi: 10.3969/j.issn.1007-7731.2019.07.007
    [35]
    曾凡珂, 潘蕾蔓, 张祎, 等. 荸荠皮多糖的理化性质及抗氧化活性[J]. 现代食品科技,2022,38(3):82−88,81. [ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J]. Modern Food Science and Technology,2022,38(3):82−88,81.]

    ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J]. Modern Food Science and Technology, 2022, 38(3): 82−88,81.
    [36]
    DÍAZ-MONTES E. Dextran:Sources, structures, and properties[J]. Polysaccharides,2021,2(3):554−565. doi: 10.3390/polysaccharides2030033
    [37]
    QIN Z, LIU H M, LV T T, et al. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits[J]. International Journal of Biological Macromolecules,2020,147:1146−1155. doi: 10.1016/j.ijbiomac.2019.10.083
    [38]
    PEREZ-CASTINEIRA J. Chemistry and biochemistry of food[M]. Walter de Gruyter GmbH & Co KG, 2020.
    [39]
    HOLZER M, VOGEL V, MÄNTELE W, et al. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage[J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,72(2):428−437. doi: 10.1016/j.ejpb.2009.02.002
    [40]
    李风铃. 嗜热葡萄糖淀粉酶与α-淀粉酶克隆表达和酶学研究[D]. 合肥:安徽大学, 2019. [LI F L. Cloning, expression and enzymology studies of hyperthermophilic glucoamylases and α-amylase[D]. Hefei:Anhui University, 2019.]

    LI F L. Cloning, expression and enzymology studies of hyperthermophilic glucoamylases and α-amylase[D]. Hefei: Anhui University, 2019.
  • Related Articles

    [1]MO Haoran, HUANG Mingzheng, ZHANG Qun, TANG Weiyuan, LI Tingting, XU Cunbin, LIU Xiaozhu, YU Zhihai, LI Xin. Analysis the Volatiles and Its Aroma Contribution in Rosa Sterilis by HS-SPME and LLE-SAFE[J]. Science and Technology of Food Industry, 2023, 44(20): 289-297. DOI: 10.13386/j.issn1002-0306.2022090300
    [2]DENG Jiantianye, YAN Meihong, SHANG Bohao, LI Yilong, XIAO Tian, ZHU Mingzhi, WANG Kunbo. Study on Aroma Components in Different Types of Dark Tea Based on HS-SPME-GC-MS[J]. Science and Technology of Food Industry, 2023, 44(18): 378-386. DOI: 10.13386/j.issn1002-0306.2022110337
    [3]SUN Mingchao, YANG Youyou, YU Yanan, CHEN Han, ZHAO Qingyu, ZHANG Junmin, ZHAO Jinshan. Composition Analysis Based on Gas Chromatography-Orbitrap-Mass Spectrometry and Evaluation of the Antioxidant Activity of Four Plants Essential Oils[J]. Science and Technology of Food Industry, 2022, 43(17): 338-354. DOI: 10.13386/j.issn1002-0306.2021120014
    [4]SHI Ke, SUN Xiao-tao, SHEN Cai-hong, AO Ling, ZHENG Fu-ping, HUANG Ming-quan, SUN Jin-yuan, LI He-he. Study on the Key Aroma Components of Luzhou-flavor Baijiu Based on Overall Sensory Evaluation Model by Direct-Gas Chromatography-Olfaction[J]. Science and Technology of Food Industry, 2020, 41(7): 208-219. DOI: 10.13386/j.issn1002-0306.2020.07.035
    [5]WU Lin, ZHANG Qiang, ZANG Hui-ming, XU Zhen-biao, XU De-bing. Evaluation of Volatile Aroma Components in Blueberry Peel, Pulp and Juice by Odor Activity Value[J]. Science and Technology of Food Industry, 2020, 41(1): 195-200. DOI: 10.13386/j.issn1002-0306.2020.01.031
    [6]LIU Cun-fang, SHI Juan, LIU Jun-hai, ZHANG Qiang, DU Quan-chao, WANG Wei, TIAN Guang-hui. Analysis of the Volatile Composition from the Rhodiola rosea and Anti-oxidation Activities and Antimicrobial Effectiveness[J]. Science and Technology of Food Industry, 2020, 41(1): 32-37. DOI: 10.13386/j.issn1002-0306.2020.01.006
    [7]CHEN Hai-tao, SUN Jie, PU Dan-dan, SUN Bao-guo, ZHANG Yu-yu. Identification of flavor- active compounds in Inner Mongolia dried beef by OAV calculation and GC-MS-O[J]. Science and Technology of Food Industry, 2016, (15): 304-308. DOI: 10.13386/j.issn1002-0306.2016.15.050
    [8]ZHU Li-jie, SHI Yue, LIU Xiu-ying, WANG Bo, TANG Ming-li, LIU He, HE Yu-tang, MA Tao. Solid phase micro- extraction combined with gas chromatography- mass spectrometry analysis of volatile flavor compounds of corn pancake[J]. Science and Technology of Food Industry, 2016, (10): 102-105. DOI: 10.13386/j.issn1002-0306.2016.10.011
    [9]XU Yan, ZHANG Xiu-guo, HUANG Guo-qiang, ZHANG Qin, YANG Jia-lin, SUN Xue-ping. Antibacterial activities and GC- MS analysis of low polar components from Styela canopus Savigny[J]. Science and Technology of Food Industry, 2015, (21): 295-298. DOI: 10.13386/j.issn1002-0306.2015.21.052
    [10]XU Yan, ZHANG Xiu-guo, HUANG Guo-qiang, ZHANG Qin, YANG Jia-lin, SUN Xue-ping. Antibacterial activities and GC- MS analysis of low polar components from Scapharca subcrenata Lischke[J]. Science and Technology of Food Industry, 2015, (11): 127-130. DOI: 10.13386/j.issn1002-0306.2015.11.017
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (94) PDF downloads (19) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return