WANG Changwei, FENG Xiaomei, LIU Chuyi, et al. Comparative Analysis of Nutritional Components of Wild Sea Cucumbers in Different Sea Areas[J]. Science and Technology of Food Industry, 2024, 45(5): 341−348. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070107.
Citation: WANG Changwei, FENG Xiaomei, LIU Chuyi, et al. Comparative Analysis of Nutritional Components of Wild Sea Cucumbers in Different Sea Areas[J]. Science and Technology of Food Industry, 2024, 45(5): 341−348. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070107.

Comparative Analysis of Nutritional Components of Wild Sea Cucumbers in Different Sea Areas

More Information
  • Received Date: July 13, 2023
  • Available Online: December 27, 2023
  • In order to provide reference for the comprehensive development and utilization, the nutritional function components of wild sea cucumbers in different sea areas were explored. This study comprehensively analyzed the nutritional composition of four wild sea cucumber species: Stichopus horrens, Stichopus chloronotus, Holothuria mammata, and Cucumaria frondosa. The basic nutritional composition, amino acid, fatty acid, and mineral element contents of the four sea cucumbers species were analyzed and evaluated. The results showed that the four species had high protein and low fat in common. Holothuria mammata exhibited the highest protein and lowest fat content. Stichopus chloronotus was rich in polysaccharides and ash content, while Cucumaria frondosa had notable saponin content. Each of the four sea cucumber types contained a consistent array of 17 amino acids, boasting substantial quantities of both delectable and medicinal amino acids. The essential amino acids accounted for a range of 13.78% to 20.27%, with Cucumaria frondosa displayed the most elevated content. Through the assessment of amino acid scores (AAS) and chemical scores (CS), lysine emerges was the predominant limiting amino acid across all four sea cucumber species. In terms of fatty acid composition, all species exhibited a spectrum of saturated fatty acids (SFA) within total fatty acids, with content varying from 23.84% to 36.24%. Palmitic acid (C16:0) and stearic acid (C18:0) constituted the primary components of this SFA makeup. Notably, polyunsaturated fatty acid (PUFA) content ranged from 56.39% to 72.93%, with Cucumaria frondosa displayed the highest proportion. Among the major elements, calcium (Ca) content was relatively higher in all four samples, except for Holothuria mammata. Among the trace elements, the highest content was iron (Fe). This comparative analysis showed that wild sea cucumbers in different sea areas were rich in various nutrients that the human body needs, and had different edible values and development utilization.
  • [1]
    PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. Journal of Traditional and Comple-mentary Medicine,2017,8(3):341−351.
    [2]
    MELONI D, ESPOSITO G. Hygienic and commercial issues related to the illegal fishing and processing of sea cucumbers in the Mediter-ranean:A case study on over-exploitation in Italy between 2015 and 2017[J]. Regional Studies in Marine Science,2018,19:43−46. doi: 10.1016/j.rsma.2018.03.009
    [3]
    BORDBAR S, ANWAR F, SAARI N. High-value components and bioactives from sea cucumbers for functional foods-A review[J]. Marine Drugs,2011,9(10):1761−1805. doi: 10.3390/md9101761
    [4]
    刘东竹, 于笛, 郑杰, 等. 海参加工产品开发现状及研究进展[J]. [J]. 食品与发酵工业,2022,48(23):344−351. [LIU Dongzhu, YU Di, ZHENG Jie, et al. Development status and research progress of sea cucumber processing products[J]. Food and Fermentation Industries,2022,48(23):344−351.]

    LIU Dongzhu, YU Di, ZHENG Jie, et al. Development status and research progress of sea cucumber processing products[J]. Food and Fermentation Industries, 2022, 4823): 344351.
    [5]
    SHI S J, FENG W J, HU S, et al. Bioactive compounds of sea cucumbers and their therapeutic effects[J]. Chinese Journal of Oceanology and Limnology,2016,34(3):549−558. doi: 10.1007/s00343-016-4334-8
    [6]
    杨林彤, 黄栋, 周建华, 等. 海参营养价值与主要功效成分的研究进展[J]. 食品科技,2022,47(2):168−172. [YANG Lintong, HUANG Dong, ZHOU Jianhua, et al. Research progress on nutritional value and main functional components of sea cucumber[J]. Food Science and Technology,2022,47(2):168−172.]

    YANG Lintong, HUANG Dong, ZHOU Jianhua, et al. Research progress on nutritional value and main functional components of sea cucumber[J]. Food Science and Technology, 2022, 472): 168172.
    [7]
    刘胜男, 曹荣, 赵玲, 等. 暗色等刺参( Isostichopus fuscus)营养成分分析[J]. 食品安全质量检测学报,2019,10(8):2263−2267. [LIU Shengnan, CAO Rong, ZHAO Ling, et al. Analysis on nutrients of Isostichopus fuscus[J]. Journal of Food Safety and Quality,2019,10(8):2263−2267.]

    LIU Shengnan, CAO Rong, ZHAO Ling, et al. Analysis on nutrients of Isostichopus fuscus[J]. Journal of Food Safety and Quality, 2019, 108): 22632267.
    [8]
    郗亚凡, 林海生, 曹文红, 等. 三种南海礁栖海参体壁营养成分分析[J]. 广东海洋大学学报,2023,43(2):113−119. [XI Yafan, LIN Haisheng, CAO Wenhong, et al. Analysis of nutritional components in the body wall of three reef-dwelling sea cucumbers in the South China Sea[J]. Journal of Guangdong Ocean University,2023,43(2):113−119.]

    XI Yafan, LIN Haisheng, CAO Wenhong, et al. Analysis of nutritional components in the body wall of three reef-dwelling sea cucumbers in the South China Sea[J]. Journal of Guangdong Ocean University, 2023, 432): 113119.
    [9]
    刘文娟, 孙兆跃, 任贻超. 三种野生海参体壁的氨基酸含量分析与评价[J]. 氨基酸和生物资源,2016,38(4):5−10. [LIU Wenjuan, SUN Zhaoyue, REN Yichao. Comparison of amino acid composition of three species of sea cucumber[J]. Amino Acids & Biotic Resources,2016,38(4):5−10.]

    LIU Wenjuan, SUN Zhaoyue, REN Yichao. Comparison of amino acid composition of three species of sea cucumber[J]. Amino Acids & Biotic Resources, 2016, 384): 510.
    [10]
    董晓弟, 潘如佳, 王长海. 海地瓜, 黑乳参和乌皱辐肛参营养成分对比[J]. 现代食品科技,2013,29(12):2986−2990. [DONG Xiaodi, PAN Rujia, WANG Changhai. Comparison of nutritional values of Acaudina molpadioides, Holothuria nobilis, and Actinopyga miliaris[J]. Modern Food Science and Technology,2013,29(12):2986−2990.]

    DONG Xiaodi, PAN Rujia, WANG Changhai. Comparison of nutritional values of Acaudina molpadioides, Holothuria nobilis, and Actinopyga miliaris[J]. Modern Food Science and Technology, 2013, 2912): 29862990.
    [11]
    井君, 陈山乔, 郭锐华, 等. 美洲不同品种海参营养成分的比较分析[J]. 中国海洋药物,2017,36(6):60−66. [JING Jun, CHEN Shanqiao, GUO Ruihua, et al. Comparative analysis of nutrients in different American varieties of sea cucumber[J]. Chinese Journal of Marine Drugs,2017,36(6):60−66.]

    JING Jun, CHEN Shanqiao, GUO Ruihua, et al. Comparative analysis of nutrients in different American varieties of sea cucumber[J]. Chinese Journal of Marine Drugs, 2017, 366): 6066.
    [12]
    颜孙安, 林香信, 钱爱萍, 等. 化学分析法的理想参考蛋白模式及其化学生物价研究[J]. 中国农学通报,2010,26(23):101−107. [YAN Sunan, LIN Xiangxin, QIAN Aiping, et al. The study on the ideal reference protein model of chemical analysis and biological value[J]. Chinese Agricultural Science Bulletin,2010,26(23):101−107.]

    YAN Sunan, LIN Xiangxin, QIAN Aiping, et al. The study on the ideal reference protein model of chemical analysis and biological value[J]. Chinese Agricultural Science Bulletin, 2010, 2623): 101107.
    [13]
    FOLCH J, LEES M, SLOANE S G H. A simple method for the isolation and purification of total lipids from animal tissues[J]. The Journal of Biological Chemistry,1957,226(1):497−519. doi: 10.1016/S0021-9258(18)64849-5
    [14]
    王婧媛, 王联珠, 郭莹莹, 等. 仿刺参与进口海参营养品质的比较分析[J]. 食品与发酵工业,2019,45(16):250−254. [WANG Jingyuan, WANG Lianzhu, GUO Yingying, et al. Comparative analysis of nutritional quality of Apostichopus japonicus and imported sea cucumbers[J]. Food and Fermentation Industries,2019,45(16):250−254.]

    WANG Jingyuan, WANG Lianzhu, GUO Yingying, et al. Comparative analysis of nutritional quality of Apostichopus japonicus and imported sea cucumbers[J]. Food and Fermentation Industries, 2019, 4516): 250254.
    [15]
    于东祥, 孙慧玲, 陈四清, 等. 海参健康养殖技术[M]. 北京:海洋出版社, 2010, 156. [YU Dongxiang, SUN Huiling, CHEN Siqing, et al. The health breeding technology of sea cucumber[M]. Beijing:Marine Press, 2010, 156.]

    YU Dongxiang, SUN Huiling, CHEN Siqing, et al. The health breeding technology of sea cucumber[M]. Beijing: Marine Press, 2010, 156.
    [16]
    徐琪寿. 氨基酸药理学研究进展[J]. 氨基酸和生物资源,1996,18(1):30−32. [XU Qishou. Research progress in amino acid pharmacology[J]. Amino Acids & Biotic Resources,1996,18(1):30−32.]

    XU Qishou. Research progress in amino acid pharmacology[J]. Amino Acids & Biotic Resources, 1996, 181): 3032.
    [17]
    姚赫, 林雅军. 支链氨基酸对寿命调控作用的研究进展[J]. 中华老年多器官疾病杂志,2022,21(10):793−796. [YAO He, LIN Yajun. Research progress in lifespan regulation by branched-chain amino acids[J]. Chinese Journal of Multiple Organ Disease in the Elderly,2022,21(10):793−796.]

    YAO He, LIN Yajun. Research progress in lifespan regulation by branched-chain amino acids[J]. Chinese Journal of Multiple Organ Disease in the Elderly, 2022, 2110): 793796.
    [18]
    余佳红, 童玉, 叶开, 等. 人神经干细胞微囊泡对谷氨酸诱导PC12细胞损伤的保护作用[J]. 江苏大学学报(医学版),2020,30(4):302−306. [YU Jiahong, TONG Yu, YE Kai, et al. Protective effect of human neural stem cell microvesicles against glutamate-induced cytotoxicity in PC12 cells[J]. Journal of Jiangsu University( Medicine Edition),2020,30(4):302−306.]

    YU Jiahong, TONG Yu, YE Kai, et al. Protective effect of human neural stem cell microvesicles against glutamate-induced cytotoxicity in PC12 cells[J]. Journal of Jiangsu University( Medicine Edition), 2020, 304): 302306.
    [19]
    CHORNA N E, CHORNYY A P. Metabolomics analysis of glutamate receptor function[J]. Methods in Molecular Biology (Clifton, N. J.),2019,1941:155−165.
    [20]
    GAO Y, LI Z B, QI Y X, et al. Proximate composition and nutritional quality of deep sea growth sea cucumbers ( Stichopus japonicus) from different origins[J]. Journal of the Science of Food and Agriculture,2016,96(7):2378−2383. doi: 10.1002/jsfa.7353
    [21]
    DUTTA S, RAY S, NAGARAJAN K. Glutamic acid as anticancer agent:An overview[J]. Saudi Pharmaceutical Journal,2013,21(4):337−343. doi: 10.1016/j.jsps.2012.12.007
    [22]
    SAN P, SAZO A, UTRERAS E, et al. Glycine receptor subtypes and their roles in nociception and chronic pain[J]. Frontiers in Molecular Neuroscience,2022,15:848642. doi: 10.3389/fnmol.2022.848642
    [23]
    LI P, YIN Y L, LI D F, et al. Amino acids and immune function[J]. British Journal of Nutrition,2007,98(2):237−252. doi: 10.1017/S000711450769936X
    [24]
    杨芳, 兰珊珊, 严红梅, 等. 地涌金莲及其加工过程中氨基酸和矿质元素分析[J]. 现代食品科技,2012,28(11):1569−1571. [YANG Fang, LAN Shanshan, YAN Hongmei, et al. Analysis of amino acids and mineral elements in the rough and finished product of Musella Lasiocarpa (Franch) C. Y. Wu ex H. W. Li[J]. Modern Food Science and Technology,2012,28(11):1569−1571.]

    YANG Fang, LAN Shanshan, YAN Hongmei, et al. Analysis of amino acids and mineral elements in the rough and finished product of Musella Lasiocarpa (Franch) C. Y. Wu ex H. W. Li[J]. Modern Food Science and Technology, 2012, 2811): 15691571.
    [25]
    刘瑀, 周松柏, 赵新达, 等. 不同纬度下海参共有脂肪酸的组成特征[J]. 海洋环境科学,2019,38(4):503−507. [LIU Yu, ZHOU Songbai, ZHAO Xinda, et al. Composition of common fatty acids in sea cucumber at different latitudes[J]. Marine Environmental Science,2019,38(4):503−507.]

    LIU Yu, ZHOU Songbai, ZHAO Xinda, et al. Composition of common fatty acids in sea cucumber at different latitudes[J]. Marine Environmental Science, 2019, 384): 503507.
    [26]
    CARTA G, MURRU E, BANNI S, et al. Palmitic acid:Physiological role, metabolism and nutritional implications[J]. Frontiers in Physiology,2017,8:902. doi: 10.3389/fphys.2017.00902
    [27]
    SENYILMAZ-TIEBE D, PFAFF D H, VIRTUE S, et al. Dietary stearic acid regulates mitochondria in vivo in humans[J]. Nature Communications,2018,9:3129. doi: 10.1038/s41467-018-05614-6
    [28]
    SHEASHEA M, XIAO J B, FARAG M A. MUFA in metabolic syndrome and associated risk factors:Is MUFA the opposite side of the PUFA coin?[J]. Food & Function,2021,12(24):12221−12234.
    [29]
    汤奎, 刘小林, 张帅, 等. 3种不同体色刺参体壁营养成分的比较研究[J]. 渔业科学进展,2021,42(3):155−162. [TANG Kui, LIU Xiaolin, ZHANG Shuai, et al. Comparative study on the nutrient composition in body walls of three body color variants of the sea cucumbers, Apostichopus japonicus (Selenka)[J]. Progress in Fishery Sciences,2021,42(3):155−162.]

    TANG Kui, LIU Xiaolin, ZHANG Shuai, et al. Comparative study on the nutrient composition in body walls of three body color variants of the sea cucumbers, Apostichopus japonicus (Selenka)[J]. Progress in Fishery Sciences, 2021, 423): 155162.
    [30]
    吴洪号, 张慧, 贾佳, 等. 功能性多不饱和脂肪酸的生理功能及应用研究进展[J]. 中国食品添加剂,2021,8:134−140. [WU Honghao, ZHANG Hui, JIA Jia, et al. Research progress of physiologic function and application of functional polyunsaturated fatty acids[J]. China Food Additives,2021,8:134−140.]

    WU Honghao, ZHANG Hui, JIA Jia, et al. Research progress of physiologic function and application of functional polyunsaturated fatty acids[J]. China Food Additives, 2021, 8: 134140.
    [31]
    WEN J, HU C Q, FAN S G. Chemical composition and nutritional quality of sea cucumbers[J]. Journal of the Science of Food and Agriculture,2010,90(14):2469−2474. doi: 10.1002/jsfa.4108
    [32]
    XU H G, MENG X X, WEI Y L, et al. Arachidonic acid matters[J]. Reviews in Aquaculture,2022,14(4):1912−1944. doi: 10.1111/raq.12679
    [33]
    HANNA V S, HAFEZ E A A. Synopsis of arachidonic acid metabolism:A review[J]. Journal of Advanced Research,2018,11:23−32. doi: 10.1016/j.jare.2018.03.005
    [34]
    EGERTON S, MANNION D, CULLOTY S, et al. The proximate composition of three marine pelagic fish[J]. Irish Journal of Agricultural and Food Research,2020,59(1):185−200.
    [35]
    BEGGS M R, ALEXANDER R T. Intestinal absorption and renal reabsorption of calcium throughout postnatal development[J]. Experimental Biology and Medicine (Maywood, N J),2017,242(8):840−849. doi: 10.1177/1535370217699536
    [36]
    OSREDKAR J, SUSTAR N. Copper and zinc, biological role and significance of copper/zinc imbalance[J]. Journal of Clinical Toxicology,2011,S3:2161−2175.
    [37]
    张钧柔, 张诗玄, 李婕, 等. 白细胞介素-17信号通路在锰中毒及相关的神经退行性疾病中作用的生物信息学研究[J]. 环境与职业医学,2022,39(10):1140−1145. [ZHANG Junrou, ZHANG Shixuan, LI Jie, et al. Bioinformatics study on role of IL-17 signaling in manganese poisoning and manganese-related neurodegenerative diseases[J]. Journal of Environmental and Occupational Medicine,2022,39(10):1140−1145.]

    ZHANG Junrou, ZHANG Shixuan, LI Jie, et al. Bioinformatics study on role of IL-17 signaling in manganese poisoning and manganese-related neurodegenerative diseases[J]. Journal of Environmental and Occupational Medicine, 2022, 3910): 11401145.
    [38]
    ACHILLI C, CIANA A, MINETTI G. Brain, immune system and selenium:A starting point for a new diagnostic marker for Alzheimer’s disease[J]. Perspectives in Public Health,2018,138(4):223−226. doi: 10.1177/1757913918778707
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (255) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return