WU Jun, WU Junting, YANG Biwen, et al. Optimization of Ultrasonic-Enzyme-Assisted Deep Eutectic Solvents Extraction Process of Total Flavonoids from Mulberry Leaves and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(3): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070033.
Citation: WU Jun, WU Junting, YANG Biwen, et al. Optimization of Ultrasonic-Enzyme-Assisted Deep Eutectic Solvents Extraction Process of Total Flavonoids from Mulberry Leaves and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(3): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070033.

Optimization of Ultrasonic-Enzyme-Assisted Deep Eutectic Solvents Extraction Process of Total Flavonoids from Mulberry Leaves and Its Antioxidant Activity

More Information
  • Received Date: July 05, 2023
  • This study used ultrasound-enzyme-assisted deep eutectic solvents to establish a green and highly efficient total flavonoids extraction process from mulberry leaves. On the basis of the results of single-factor experiments, the extraction amount of total flavonoids was used as the response value, and the Box-Behnken response surface method was used to optimize, and the antioxidative ability of total flavonoids from mulberry leaves on DPPH radicals and ABTS+ radicals was studied. The results showed that when the choline chloride/fructose/alcohol molar ratio was 1:1:3, water content 30%, liquid-solid ratio 40 mL/g, ultrasonic power 360 W, ultrasonic temperature 40 ℃, ultrasonic time 40 min, dosage of enzyme 4%, the extraction amount of total flavonoids from mulberry leaves reached 46.58 mg/g. When the mass concentration of total flavonoids from mulberry leaves was 0.08 mg/mL, the scavenging rate of DPPH radicals was 98.36%. And when the mass concentration of total flavonoids from mulberry leaves was 0.2 mg/mL, the scavenging rate of ABTS+ radicals was 72.12%. Therefore, the ultrasonic-enzyme-assisted deep eutectic solvents method was green and simple to operate, and could effectively improve the extraction yield of total flavonoids from mulberry leaves. This method provided a scientific basis for the development and utilization of mulberry leaf resources.
  • [1]
    陈星. 桑树生物碱及酚类含量比较分析[D]. 镇江:江苏科技大学, 2021. [CHEN Xing. Comparative analysis of alkaloids and phenol content in mulberry tree[D]. Zhenjiang:Jiangsu University of Science and Technology, 2021.

    CHEN Xing. Comparative analysis of alkaloids and phenol content in mulberry tree[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
    [2]
    张倩, 张立华. 桑叶的化学成分及开发利用进展[J]. 湖北农业科学,2020,59(15):16−19. [ZHANG Qian, ZHANG Lihua. Chemical constituents and development and utilization of mulberry leaves[J]. Hubei Agricultural Sciences,2020,59(15):16−19. doi: 10.14088/j.cnki.issn0439-8114.2020.15.003

    ZHANG Qian, ZHANG Lihua. Chemical constituents and development and utilization of mulberry leaves[J]. Hubei Agricultural Sciences, 2020, 5915): 1619. doi: 10.14088/j.cnki.issn0439-8114.2020.15.003
    [3]
    鲁腾辉. 桑叶醇提物提取工艺优化及在肉保鲜中的应用[D]. 吉林:吉林化工学院, 2021. [LU Tenghui. Ethanol extract from Morus alba L. leaves:Optimization of the extraction process and its application in chilled pork preservation[D]. Jilin:Jilin Institute of Chemical Technology, 2021.

    LU Tenghui. Ethanol extract from Morus alba L. leaves: Optimization of the extraction process and its application in chilled pork preservation[D]. Jilin: Jilin Institute of Chemical Technology, 2021.
    [4]
    韦芳媚. 桑叶提取物、茶多酚及其复配物的抗氧化和降血糖活性[D]. 广州:华南理工大学, 2019. [WEI Fangmei. Antioxidant and hypoglycemic activities of mulberry leaves extract, tea polyphenols and their compounds[D]. Guangzhou:South China University of Technology, 2019.

    WEI Fangmei. Antioxidant and hypoglycemic activities of mulberry leaves extract, tea polyphenols and their compounds[D]. Guangzhou: South China University of Technology, 2019.
    [5]
    WEN Peng, HU Tenggen, ROBERT J Linhardt, et al. Mulberry:A review of bioactive compounds and advanced processing technology[J]. Trends in Food Science & Technology,2019,83:138−158.
    [6]
    黄金枝, 石旭平, 胡桂萍, 等. 不同桑树品种桑叶的活性成分含量及综合功能品质评价[J]. 贵州农业科学,2022,50(6):112−118. [HUANG Jinzhi, SHI Xuping, HU Guiping, et al. Evaluation on comprehensive functional quality and active ingredients of leaves from different mulberry varieties[J]. Guizhou Agricultural Sciences,2022,50(6):112−118. doi: 10.3969/j.issn.1001-3601.2022.06.017

    HUANG Jinzhi, SHI Xuping, HU Guiping, et al. Evaluation on comprehensive functional quality and active ingredients of leaves from different mulberry varieties[J]. Guizhou Agricultural Sciences, 2022, 506): 112118. doi: 10.3969/j.issn.1001-3601.2022.06.017
    [7]
    WU Qiguo, HU Yeqing. Systematic evaluation of the mechanisms of mulberry leaf ( Morus alba L.) acting on diabetes based on network pharmacology and molecular docking[J]. Combinatorial Chemistry & High Throughput Screening,2021,24(5):668−682.
    [8]
    BAI Huixin, JIANG Wei, WANG Xufang, et al. Component changes of mulberry leaf tea processed with honey and its application to in vitro and in vivo models of diabetes[J]. Food Additives & Contaminants: Part A,2021,38(11):1840−1852.
    [9]
    CHEN Yuan, NI Jiajia, LI Hongwei. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken[J]. BMC Veterinary Research,2019,15(1):77−82. doi: 10.1186/s12917-019-1822-z
    [10]
    KWAK K W, HAN M S, KIM S Y, et al. A role of mulberry leaves in improving resistance to virus ediated disease in Allomyrina dichotoma[J]. Entomological Research,2020,50(2):82−89. doi: 10.1111/1748-5967.12410
    [11]
    马珂, 喻凯, 何雨轩, 等. 桑叶水提物对肥胖症大鼠脂代谢及肠道菌群的影响[J]. 华西药学杂志,2019,34(3):249−252. [MA Ke, YU Kai, HE Yuxuan, et al. Effects of the mulberry leaves water extract on lipid metabolism and intestinal flora in obese rats[J]. West China Journal of Pharmaceutical Sciences,2019,34(3):249−252. doi: 10.13375/j.cnki.wcjps.2019.03.009

    MA Ke, YU Kai, HE Yuxuan, et al. Effects of the mulberry leaves water extract on lipid metabolism and intestinal flora in obese rats[J]. West China Journal of Pharmaceutical Sciences, 2019, 343): 249252. doi: 10.13375/j.cnki.wcjps.2019.03.009
    [12]
    ZHANG Huaran, LI Ming, WANG Miaomiao, et al. Antioxidant flavan derivatives from the leaves of Morus alba[J]. Phytochemistry Letters,2019,29:84−90. doi: 10.1016/j.phytol.2018.11.002
    [13]
    MA Guangqun, CHAI Xiaoyun, HOU Guige, et al. Phytochemistry, bioactivities and future prospects of mulberry leaves:A review[J]. Food Chemistry,2022,15(372):131335.
    [14]
    吴禹践. 桑叶天然产物提取工艺优化及生物活性研究[D]. 哈尔滨:东北林业大学, 2022. [WU Yujian. Study on extraction process optimization and bioactivity of natural products from mulberry leaves[D]. Harbin:Northeast Forestry University, 2022.

    WU Yujian. Study on extraction process optimization and bioactivity of natural products from mulberry leaves[D]. Harbin: Northeast Forestry University, 2022.
    [15]
    ZANNOU O, KOCA I, ALDAWOUD T M S, et al. Recovery and stabilization of anthocyanins and phenolic antioxidants of roselle ( Hibiscus sabdariffa L.) with hydrophilic deep eutectic solvents[J]. Molecules,2020,25(16):3715. doi: 10.3390/molecules25163715
    [16]
    HERNÁNDEZ C E, PLAZA M, MARINA M L, et al. Sustainable extraction of proteins and bioactive substances from pomegranate peel ( Punica granatum L.) using pressurized liquids and deep eutectic solvents[J]. Innovative Food Science & Emerging Technologies,2020,60:102314.
    [17]
    雷永伟, 刘欣, 安艳霞, 等. 低共熔溶剂提取荞麦壳黄酮的工艺优化[J]. 食品研究与开发,2023,44(13):160−166. [LEI Yongwei, LIU Xin, AN Yanxia, et al. Optimization of extraction technology of buckwheat hull flavonoids in deep eutectic solvent[J]. Food Research and Development,2023,44(13):160−166. doi: 10.12161/j.issn.1005-6521.2023.13.024

    LEI Yongwei, LIU Xin, AN Yanxia, et al. Optimization of extraction technology of buckwheat hull flavonoids in deep eutectic solvent[J]. Food Research and Development, 2023, 4413): 160166. doi: 10.12161/j.issn.1005-6521.2023.13.024
    [18]
    罗朝丹, 任二芳, 黄燕婷, 等. 番石榴叶黄酮超声辅助低共熔溶剂提取工艺及品种差异[J]. 食品研究与开发,2023,44(14):147−154. [LUO Chaodan, REN Erfang, HUANG Yanting, et al. Extraction process and cultivar differences of flavonoids in guava leaves with deep eutectic solvents[J]. Food Research and Development,2023,44(14):147−154. doi: 10.12161/j.issn.1005-6521.2023.14.022

    LUO Chaodan, REN Erfang, HUANG Yanting, et al. Extraction process and cultivar differences of flavonoids in guava leaves with deep eutectic solvents[J]. Food Research and Development, 2023, 4414): 147154. doi: 10.12161/j.issn.1005-6521.2023.14.022
    [19]
    谢茜, 刘合智, 王开银. 低共熔溶剂提取龙眼参黄酮的工艺优化及其抗运动疲劳研究[J]. 中国食品添加剂,2023(9):210−217. [XIE Qian, LIU Hezhi, WANG Kaiyin. Optimization of extraction of flavonoid from longan ginseng by deep eutectic solvents and its anti-fatigue property[J]. China Food Additives,2023(9):210−217. doi: 10.19804/j.issn1006-2513.2023.09.028

    XIE Qian, LIU Hezhi, WANG Kaiyin. Optimization of extraction of flavonoid from longan ginseng by deep eutectic solvents and its anti-fatigue property[J]. China Food Additives, 20239): 210217. doi: 10.19804/j.issn1006-2513.2023.09.028
    [20]
    KILANI S, BEN AMMAR R, BOUHLEL I, et al. Investigation of extracts from (Tunisian) Cyperus rotundus as antimutagens and radical scavengers[J]. Environmental Toxicology and Pharmacology,2005,20(3):478−484. doi: 10.1016/j.etap.2005.05.012
    [21]
    RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine,1999,26(9-10):1231−1237. doi: 10.1016/S0891-5849(98)00315-3
    [22]
    王娟, 马春梅, 王丹. 低共熔溶剂协同超声波提取麦冬总黄酮的工艺优化及其抗氧化活性研究[J]. 中国食品添加剂,2023(3):125−134. [WANG Juan, MA Chunmei, WANG Dan. Optimization of total flavonoids extraction from Ophiopogon japonicus by ultrasound-assistant deep eutectic solvent extraction and flavonoids antioxidative ability[J]. China Food Additives,2023(3):125−134. doi: 10.19804/j.issn1006-2513.2023.03.015

    WANG Juan, MA Chunmei, WANG Dan. Optimization of total flavonoids extraction from Ophiopogon japonicus by ultrasound-assistant deep eutectic solvent extraction and flavonoids antioxidative ability[J]. China Food Additives, 20233): 125134. doi: 10.19804/j.issn1006-2513.2023.03.015
    [23]
    都宏霞, 缪领珍, 胡梓恒, 等. 低共熔溶剂提取桂花黄酮的工艺优化[J]. 现代食品科技,2021,37(5):203−211. [DU Hongxia, MIAO Lingzhen, HU Ziheng, et al. Optimizing the extraction of flavonoids from Osmanthus fragrans using deep eutectic solvents[J]. Modern Food Science and Technology,2021,37(5):203−211. doi: 10.13982/j.mfst.1673-9078.2021.5.1003

    DU Hongxia, MIAO Lingzhen, HU Ziheng, et al. Optimizing the extraction of flavonoids from Osmanthus fragrans using deep eutectic solvents[J]. Modern Food Science and Technology, 2021, 375): 203211. doi: 10.13982/j.mfst.1673-9078.2021.5.1003
    [24]
    于秋菊, 耿凤英, 张磊磊. 微波辅助低共熔溶剂提取覆盆子总黄酮的工艺优化及活性研究[J]. 中国食品添加剂,2023(2):43−51. [YU Qiuju, GENG Fengying, ZHANG Leilei. Optimization of microwave assisted extraction of flavonoids from raspberry with deep eutectic solvents and its activity[J]. China Food Additives,2023(2):43−51. doi: 10.19804/j.issn1006-2513.2023.02.006

    YU Qiuju, GENG Fengying, ZHANG Leilei. Optimization of microwave assisted extraction of flavonoids from raspberry with deep eutectic solvents and its activity[J]. China Food Additives, 20232): 4351. doi: 10.19804/j.issn1006-2513.2023.02.006
    [25]
    都宏霞, 刘宴秀, 严忠杰. 超声波辅助-绿色低共熔溶剂提取茉莉花黄酮的工艺优化[J]. 现代食品科技,2021,37(1):199−206. [DU Hongxia, LIU Yanxiu, YAN Zhongjie, et al. Optimization of ultrasonic assisted-green deep eutectic solvent extraction of flavonoids from jasmine[J]. Modern Food Science and Technology,2021,37(1):199−206. doi: 10.13982/j.mfst.1673-9078.2021.01.0737

    DU Hongxia, LIU Yanxiu, YAN Zhongjie, et al. Optimization of ultrasonic assisted-green deep eutectic solvent extraction of flavonoids from jasmine[J]. Modern Food Science and Technology, 2021, 371): 199206. doi: 10.13982/j.mfst.1673-9078.2021.01.0737
    [26]
    刘超, 黎维维, 雷杰, 等. 低共熔溶剂提取江南卷柏穗花杉双黄酮的工艺优化[J]. 食品工业科技,2022,43(16):176−184. [LIU Chao, LI Weiwei, LEI Jie, et al. Deep eutectic solvents extraction and optimization of amentoflavone from Selaginella moellendorffii[J]. Science and Technology of Food Industry,2022,43(16):176−184. doi: 10.13386/j.issn1002-0306.2021100160

    LIU Chao, LI Weiwei, LEI Jie, et al. Deep eutectic solvents extraction and optimization of amentoflavone from Selaginella moellendorffii[J]. Science and Technology of Food Industry, 2022, 4316): 176184. doi: 10.13386/j.issn1002-0306.2021100160
    [27]
    刘琴, 周游, 陈轩, 等. 超声辅助低共熔溶剂提取芹菜叶中的芹菜素及其抗氧化性分析[J]. 现代食品科技,2021,37(3):202−211, 266. [LIU Qin, ZHOU You, CHEN Xuan, et al. Optimization of ultrasonic assisted deep eutectic solvents extraction process and antioxidant activity of apigenin from celery leaves[J]. Modern Food Science and Technology,2021,37(3):202−211. doi: 10.13982/j.mfst.1673-9078.2021.3.0821

    LIU Qin, ZHOU You, CHEN Xuan, et al. Optimization of ultrasonic assisted deep eutectic solvents extraction process and antioxidant activity of apigenin from celery leaves[J]. Modern Food Science and Technology, 2021, 373): 202211. doi: 10.13982/j.mfst.1673-9078.2021.3.0821
    [28]
    李刚, 雷杰, 张凤, 等. 天然低共熔溶剂提取翠云草中穗花杉双黄酮工艺的优化[J]. 食品工业科技,2022,43(8):180−187. [LI Gang, LEI Jie, ZHANG Feng, et al. Natural deep eutectic solvent extraction of amentoflavone from Selaginella uncinata[J]. Science and Technology of Food Industry,2022,43(8):180−187. doi: 10.13386/j.issn1002-0306.2021070197

    LI Gang, LEI Jie, ZHANG Feng, et al. Natural deep eutectic solvent extraction of amentoflavone from Selaginella uncinata[J]. Science and Technology of Food Industry, 2022, 438): 180187. doi: 10.13386/j.issn1002-0306.2021070197
    [29]
    黎莉, 杨景淇, 于德涵, 等. 超声辅助低共熔溶剂法提取玉米芯总黄酮工艺优化研究[J]. 食品工业科技,2022,43(10):223−230. [LI Li, YANG Jingqi, YU Dehan, et al. Optimization of ultrasonic-assisted deep eutectic solvent extraction of total flavonoids from corncob[J]. Science and Technology of Food Industry,2022,43(10):223−230. doi: 10.13386/j.issn1002-0306.2021080197

    LI Li, YANG Jingqi, YU Dehan, et al. Optimization of ultrasonic-assisted deep eutectic solvent extraction of total flavonoids from corncob[J]. Science and Technology of Food Industry, 2022, 4310): 223230. doi: 10.13386/j.issn1002-0306.2021080197
    [30]
    REDHA A A J J O A, CHEMISTRY F. Review on extraction of phenolic compounds from natural sources using green deep eutectic solvents[J]. Journal of Agricultural and Food Chemistry,2021,69(3):878−912. doi: 10.1021/acs.jafc.0c06641
    [31]
    ZENG Jia, DOU Yuqing, NING Yan, et al. Optimizing ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from Chinese wild rice[J]. Molecules,2019,24(15):2718. doi: 10.3390/molecules24152718
    [32]
    董嘉琪, 张晓松, 彭晓婷, 等. 响应面法优化红芪多糖的提取工艺[J]. 动物医学进展,2021,42(4):64−71. [DONG Jiaqi, ZHANG Xiaosong, PENG Xiaoting, et al. Optimization of extraction process of Radix Hedysari polysaccharide by response surface methodology[J]. Progress in Veterinary Medicine,2021,42(4):64−71.

    DONG Jiaqi, ZHANG Xiaosong, PENG Xiaoting, et al. Optimization of extraction process of Radix Hedysari polysaccharide by response surface methodology[J]. Progress in Veterinary Medicine, 2021, 424): 6471.
  • Related Articles

    [1]HUANG Leilei, LIU Jiayi, WANG Tianyi, ZHANG Qingfen, YANG Fengjian. Optimization of Cellulase-Assisted Ultrasound Extraction and Antioxidant Analysis of Flavonoids from Syringa oblata Leaves[J]. Science and Technology of Food Industry, 2024, 45(4): 161-170. DOI: 10.13386/j.issn1002-0306.2023040124
    [2]MA Jiajie, ZHAO Duanduan, QUAN Shihang, HUAN Qitong, HAO Shuai, LI Kun, PIAO Chunxiang, LI Guanhao, LI Hongmei, MU Baide. Optimization of Extraction Process of Flavonoids and Polyphenols from Perilla frutescens (L.) Britt Leaves and Comparison of Antioxidant Activities of Different Varieties[J]. Science and Technology of Food Industry, 2023, 44(12): 344-352. DOI: 10.13386/j.issn1002-0306.2022080165
    [3]HE Xuhua, SHI Zhijiao, WANG Anna, ZHAO Chunfang, LIU Yun, KAN Huan. Optimization of Extraction Process of Flavonoids from Aronia melanocarpas' Leaves and Analysis of Their Antioxidant and Bile Salt Binding Capacity[J]. Science and Technology of Food Industry, 2023, 44(2): 253-260. DOI: 10.13386/j.issn1002-0306.2022040316
    [4]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [5]TAN Chunyuan, YAN Jie, HUANG Huimin, ZHOU Zhijian, WU Zijun. Optimization of Ultrasonic-assisted Extraction Process of Flavonoids from Damiana by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(16): 191-198. DOI: 10.13386/j.issn1002-0306.2020120047
    [6]DUAN Zhou-wei, CHEN Ting, HE Ai, FANG Zong-zhuang, WANG Shi-ping, XIE Hui. Optimization of Purification of Flavonoids from Aloes Leaves with Macroporous Resin and Comparison of Antioxidant Capacity of Crude and Purified Flavonoids[J]. Science and Technology of Food Industry, 2020, 41(17): 161-166. DOI: 10.13386/j.issn1002-0306.2020.17.027
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SU Long, LV Feng-dan, WANG Xue-ru, FENG Lu, YAN Su-ping. Optimization of fermentation parameters by response surface methodology and the antioxidant capacity of Myrica rubra wine[J]. Science and Technology of Food Industry, 2017, (20): 146-151. DOI: 10.13386/j.issn1002-0306.2017.20.027
    [9]YANG Zhe, WAN Shan, ZHANG Qiao-hui, DONG Shi-bin, NING Ya-ping, WANG Jian-zhong. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (06): 279-284. DOI: 10.13386/j.issn1002-0306.2015.06.053
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 周春仲,郑伟清,袁晓怡,欧志坚,姜一平. 高良姜二苯庚烷化合物对3T3-L1前脂肪细胞分化的影响和机制研究. 系统医学. 2024(01): 6-9+13 .
    2. 陈少影,李晶晶,兰卫. 常用中药有效成分降脂作用研究进展. 中国实验方剂学杂志. 2023(13): 241-253 .
    3. 倪伟锋,赵大庆,倪以宇,白竹林,王思明. 人参-丁香醇提物抑制高山被孢霉脂质合成的活性评价. 食品工业科技. 2022(21): 388-395 . 本站查看
    4. 周心悦,周逸辰,陈晋,王文骏,刘东红. 胡柚及其苦味黄烷酮对糖脂代谢相关疾病的调节功能研究进展. 中国食品添加剂. 2022(12): 41-49 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (159) PDF downloads (35) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return