ZHONG Chen, LIU Mei, GAO Yan, et al. Research Progress on Oral Nano-formulation to Deliver Astaxanthin[J]. Science and Technology of Food Industry, 2024, 45(10): 395−400. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070028.
Citation: ZHONG Chen, LIU Mei, GAO Yan, et al. Research Progress on Oral Nano-formulation to Deliver Astaxanthin[J]. Science and Technology of Food Industry, 2024, 45(10): 395−400. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070028.

Research Progress on Oral Nano-formulation to Deliver Astaxanthin

More Information
  • Received Date: July 04, 2023
  • Available Online: March 19, 2024
  • Astaxanthin is a fat-soluble lutein carotenoid with good antioxidant, anti-inflammatory and immunomodulatory activities. However, its poor oral bioavailability lead to limited clinical application. Recently, in order to improve the bioavailability of astaxanthin, various types of nano-formulations have been widely studied. Nano-emulsion, liposome, solid lipid nanoparticles, chitosan and PLGA nanoparticles have been shown to effectively improve the oral bioavailability of astaxanthin. In this review, based on in vitro and in vivo studies, the research progress of nano-formulations for improving the oral bioavailability of astaxanthin are summarized, providing reference for the development of oral delivery of astaxanthin, and achieving its clinical application value in the future.
  • [1]
    XU L, YU H X, SUN H B, et al. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina:in vivo and ex vivo evaluations[J]. Drug Deliv,2019,26(1):1222−1234. doi: 10.1080/10717544.2019.1682718
    [2]
    GUERIN M, HUNTLEY M E, OLAIZOLA M. Haematococcus astaxanthin:Applications for human health and nutrition[J]. Trends Biotechnol,2003,21(5):210−216. doi: 10.1016/S0167-7799(03)00078-7
    [3]
    FAKHRI S, ANEVA I Y, FARZAEI M H, et al. The neuroprotective effects of astaxanthin:Therapeutic targets and clinical perspective[J]. Molecules,2019,24(14):2640. doi: 10.3390/molecules24142640
    [4]
    PASHKOW F J, WATUMULL D G, CAMPBELL C L. Astaxanthin:A novel potential treatment for oxidative stress and inflammation in cardiovascular disease[J]. Am J Cardiol,2008,101(10A):58−68.
    [5]
    CHEN S Q, WANG J Y, FENG J T, et al. Research progress of astaxanthin nano-based drug delivery system:Applications, prospects and challenges?[J]. Front Pharmacol,2023,14:1102888. doi: 10.3389/fphar.2023.1102888
    [6]
    LAMSON N G, BERGER A, FEIN K C, et al. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability[J]. Nat Biomed Eng,2020,4(1):84−96.
    [7]
    ABDOL WAHAB N R, MEOR MOHD AFFANDI M M R, FAKURAZI S, et al. Nanocarrier system:State-of-the-art in oral delivery of astaxanthin[J]. Antioxidants (Basel),2022,11(9):1676. doi: 10.3390/antiox11091676
    [8]
    ABDELAZIM K, GHIT A, ASSAL D, et al. Production and therapeutic use of astaxanthin in the nanotechnology era[J]. Pharmacol Rep,2023,75(4):771−790. doi: 10.1007/s43440-023-00488-y
    [9]
    BASIONY M, OUYANG L M, WANG D N, et al. Optimization of microbial cell factories for astaxanthin production:Biosynthesis and regulations, engineering strategies and fermentation optimization strategies[J]. Synth Syst Biotechnol,2022,7(2):689−704. doi: 10.1016/j.synbio.2022.01.002
    [10]
    YAQOOB Z, ARSHAD M S, IMRAN M, et al. Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders[J]. Food Sci Nutr,2021,10(1):12−20.
    [11]
    STACHOWIAK B, SZULC P. Astaxanthin for the food industry[J]. Molecules,2021,26(9):2666. doi: 10.3390/molecules26092666
    [12]
    ZHANG C Q, CHEN X X, TOO H P. Microbial astaxanthin biosynthesis:Recent achievements, challenges, and commercialization outlook[J]. Appl Microbiol Biotechnol,2020,104(13):5725−5737. doi: 10.1007/s00253-020-10648-2
    [13]
    LI J J, GUO C Y, WU J Y. Astaxanthin in liver health and disease:A potential therapeutic agent[J]. Drug Des Devel Ther,2020,14:2275−2285. doi: 10.2147/DDDT.S230749
    [14]
    PEREZ-LOPEZ P, GONZALEZ-GARCIA S, JERYES C, et al. Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae:from lab to pilot scale[J]. J Clean Prod,2014,64:332−344. doi: 10.1016/j.jclepro.2013.07.011
    [15]
    YU W J, LIU J G. Astaxanthin isomers:Selective distribution and isomerization in aquatic animals[J]. Aquaculture,2020,520:734915. doi: 10.1016/j.aquaculture.2019.734915
    [16]
    AMBATI R R, PHANG S M, RAVI S, et al. Astaxanthin:sources, extraction, stability, biological activities and its commercial applications-a review[J]. Mar Drugs,2014,12(1):128−152. doi: 10.3390/md12010128
    [17]
    OSTERLIE M, BJERKENG B, LIAAEN-JENSEN S. Accumulation of astaxanthin all-E, 9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout (Oncorhynchus mykiss) is selective[J]. J Nutr,1999,129(2):391−398. doi: 10.1093/jn/129.2.391
    [18]
    CHEN Y N, TIE S S, ZHANG X D, et al. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery[J]. Food Funct,2021,12(17):7718−7727. doi: 10.1039/D1FO01751A
    [19]
    SATOH T. Nutraceuticals[M]. Boston:Academic Press, 2016:531-539.
    [20]
    RADICE R P, LIMONGI A R, VIVIANO E, et al. Effects of astaxanthin in animal models of obesity-associated diseases:A systematic review and meta-analysis[J]. Free Radic Biol Med,2021,171:156−168. doi: 10.1016/j.freeradbiomed.2021.05.008
    [21]
    MICHAELIS K, HOFFMANN M M, DREIS S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain[J]. J Pharmacol Exp Ther,2006,317(3):1246−1253. doi: 10.1124/jpet.105.097139
    [22]
    MARTINEZ-ÁLVAREZ Ó, CALVO M M, GOMEZ-ESTACA J. Recent advances in astaxanthin micro/nanoencapsulation to improve its stability and functionality as a food ingredient[J]. Mar Drugs,2020,18(8):406. doi: 10.3390/md18080406
    [23]
    AHMADI A R, AYAZI-NASRABADI R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19[J]. Iran J Microbiol,2021,13(4):434−441.
    [24]
    CHEN Y N, SU W T, TIE S S, et al. Advances of astaxanthin-based delivery systems for precision nutrition[J]. Trends Food Sci Technol,2022,127:63−73. doi: 10.1016/j.jpgs.2022.07.007
    [25]
    JIANG L, SUN Y, LU A, et al. Ionic liquids:Promising approach for oral drug delivery[J]. Pharm Res,2022,39(10):2353−2365. doi: 10.1007/s11095-022-03260-8
    [26]
    DATE A A, HANES J, ENSIGN L M. Nanoparticles for oral delivery:design, evaluation and state-of-the-art[J]. J Control Release,2016,240:504−526. doi: 10.1016/j.jconrel.2016.06.016
    [27]
    JAISWAL M, DUDHE R, SHARMA P K. Nanoemulsion:an advanced mode of drug delivery system[J]. 3 Biotech,2015,5(2):123−127. doi: 10.1007/s13205-014-0214-0
    [28]
    JEEVANANDAM J, CHAN Y S, DANQUAH M K. Nano-formulations of drugs:Recent developments, impact and challenges[J]. Biochimie,2016,128-129:99−112. doi: 10.1016/j.biochi.2016.07.008
    [29]
    SHEN X, FANG T Q, ZHENG J, et al. Physicochemical properties and cellular uptake of astaxanthin-loaded emulsions[J]. Molecules,2019,24(4):727. doi: 10.3390/molecules24040727
    [30]
    MEOR MOLD AFFANDI M M R, JULIANTO T, MAJEED A B A. Enhanced oral bioavailability of astaxanthin with droplet size reduction[J]. Food Sci Technol Res,2012,18:549−554.
    [31]
    CHEN Y N, SU W T, TIE S S, et al. Orally deliverable sequence-targeted astaxanthin nanoparticles for colitis alleviation[J]. Biomaterials,2023,293:121976. doi: 10.1016/j.biomaterials.2022.121976
    [32]
    GAO Q, QIAO X, YANG L, et al. Effects of microencapsulation in dairy matrix on the quality characteristics and bioavailability of docosahexaenoic acid astaxanthin[J]. J Sci Food Agric,2022,102(13):5711−5719.
    [33]
    LARGE D E, ABDELMESSIH R G, FINK E A, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application[J]. Adv Drug Deliv Rev,2021,176:113851. doi: 10.1016/j.addr.2021.113851
    [34]
    KUMAR M, BISHNOI R S, SHUKLA A K, et al. Techniques for formulation of nanoemulsion drug delivery system:A review[J]. Prev Nutr Food Sci,2019,24(3):225−234. doi: 10.3746/pnf.2019.24.3.225
    [35]
    JAFARI Z, BIGHAM A, SADEGHI S, et al. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications[J]. J Med Chem,2022,65(1):2−36. doi: 10.1021/acs.jmedchem.1c01144
    [36]
    PENG C H, CHANG C H, PENG R Y, et al. Improved membrane transport of astaxanthine by liposomal encapsulation[J]. Eur J Pharm Biopharm,2010,75(2):154−161. doi: 10.1016/j.ejpb.2010.03.004
    [37]
    SANGSURIYAWONG A, LIMPAWATTANA M, SIRIWAN D, et al. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes[J]. Food Sci Biotechnol,2018,28(2):529−537.
    [38]
    KAZI K M, MANDAL A S, BISWAS N, et al. Niosome:A future of targeted drug delivery systems[J]. J Adv Pharm Technol Res,2010,1(4):374−380. doi: 10.4103/0110-5558.76435
    [39]
    ROSTAMABADI H, FALSAFI S R, JAFARI S M. Nanoencapsulation of carotenoids within lipid-based nanocarriers[J]. J Control Release,2019,298:38−67. doi: 10.1016/j.jconrel.2019.02.005
    [40]
    SANTONOCITO D, RACITI G, CAMPISI A, et al. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer's disease:Formulation development and optimization[J]. Nanomaterials (Basel),2021,11(2):391. doi: 10.3390/nano11020391
    [41]
    MUCHOW M, MAINCENT P, MULLER R H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery[J]. Drug Dev Ind Pharm,2008,34(12):1394−1405. doi: 10.1080/03639040802130061
    [42]
    ISLAN G A, CACCICEDO M L, BOSIO V E, et al. Advances in smart nanopreparations for oral drug delivery[J]. Smart Pharmaceutical Nanocarriers, 2015:479-521.
    [43]
    WANG T, HU Q, LEE J Y, et al. Solid lipid-polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin[J]. J Agric Food Chem,2018,66(36):9473−9480. doi: 10.1021/acs.jafc.8b02827
    [44]
    LI M, ZAHI M R, YUAN Q, et al. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid[J]. Eur J Lipid Sci Technol,2016,118:592−602. doi: 10.1002/ejlt.201400650
    [45]
    JAIN P, RAHI P, PANDEY V, et al. Nanostructure lipid carriers:a modish contrivance to overcome the ultraviolet effects[J]. Egypt J Basic Appl Sci,2017,4:89−100.
    [46]
    HU Q B, HU S Q, FLEMING E, et al. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity[J]. Int J Biol Macromol,2020,151:747−756. doi: 10.1016/j.ijbiomac.2020.02.170
    [47]
    KIM E S, BAEK Y, YOO H J, et al. Chitosan-tripolyphosphate nanoparticles prepared by ionic gelation improve the antioxidant activities of astaxanthin in the in vitro and in vivo model[J]. Antioxidants (Basel),2022,11(3):479. doi: 10.3390/antiox11030479
    [48]
    ZHU Y, GU Z Q, LIAO Y W, et al. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles:Preparation, in vitro evaluation, and pharmacokinetics in rats[J]. J Sci Food Agric,2022,102(3):1002−1011. doi: 10.1002/jsfa.11435
    [49]
    GUAN L, LIU J L, YU H J Y, et al. Water-dispersible astaxanthin-rich nanopowder:Preparation, oral safety and antioxidant activity in vivo[J]. Food Funct,2019,10(3):1386−1397. doi: 10.1039/C8FO01593G
    [50]
    SADAT TABATABAEI MIRAKABAD F, NEJATI-KOSHKI K, AKBARZADEH A, et al. PLGA-based nanoparticles as cancer drug delivery systems[J]. Asian Pac J Cancer Prev,2014,15(2):517−535. doi: 10.7314/APJCP.2014.15.2.517
    [51]
    KU AIZUDDIN K A, NURLINA M A, KHURIAH A H, et al. Development of astaxanthin-loaded biodegradable nanoparticles by nanoprecipitation method[J]. Int J Pharm Technol,2014,5:5962−5972.
    [52]
    LIU C Z, ZHANG S Z, MCCLEMENTS D J, et al. Design of astaxanthin-loaded core-shell nanoparticles consisting of chitosan oligosaccharides and poly(lactic-co-glycolic acid):Enhancement of water solubility, stability, and bioavailability[J]. J Agric Food Chem,2019,67(18):5113−5121. doi: 10.1021/acs.jafc.8b06963
    [53]
    ZHANG D X, HE J, CUI J R, et al. Oral microalgae-nano integrated system against radiation-induced injury[J]. ACS Nano,2023,17(11):10560−10576. doi: 10.1021/acsnano.3c01502
    [54]
    MALAM Y, LOIZIDOU M, SEIFALIAN A M. Liposomes and nanoparticles:Nanosized vehicles for drug delivery in cancer[J]. Trends Pharmacol Sci,2009,30:592−599. doi: 10.1016/j.tips.2009.08.004
    [55]
    HANS M L, LOWMAN A M. Biodegradable nanoparticles for drug delivery and targeting[J]. Curr Opin Solid State Mater Sci,2002,6:319−327. doi: 10.1016/S1359-0286(02)00117-1
    [56]
    MULLER R H, MAASEN S, WEYHERS H, et al. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407[J]. J Drug Target,1996,4(3):161−170. doi: 10.3109/10611869609015973
    [57]
    GASPAR D P, FARIA V, QUINTAS J P, et al. Targeted delivery of lipid nanoparticles by means of surface chemical modification[J]. Curr Org Chem,2017,21:2360−2375.
    [58]
    贤凤, 程婉婷, 高静. 壳聚糖纳米粒子的制备方法及其作为药物递送载体的应用[J]. 化学试剂,2021,43(12):1615−1622. [XIAN F, CHENG W T, GAO J. A review on the preparation methods of chitosan nanoparticles and their applications as drug delivery carriers[J]. Chemical Reagents,2021,43(12):1615−1622.]

    XIAN F, CHENG W T, GAO J. A review on the preparation methods of chitosan nanoparticles and their applications as drug delivery carriers[J]. Chemical Reagents, 2021, 43(12): 1615−1622.
    [59]
    GASPAR R. Regulatory issues surrounding nanomedicines:Setting the scene for the next generation of nanopharmaceuticals[J]. Nanomedicine,2007,2:143−147. doi: 10.2217/17435889.2.2.143
  • Related Articles

    [1]CHANG Dawei, CAO Jiayi, REN Na, WANG Huxuan, SUN Yujiao, SHEN Wen, SARA Sendi. Zein-Gum Arabic Loaded with Dihydromyricetin: Preparation and Analysis of Nanoparticles[J]. Science and Technology of Food Industry, 2025, 46(12): 30-40. DOI: 10.13386/j.issn1002-0306.2024050400
    [2]LIU Jiachen, CHENG Yongqiang, TANG Ning. Progress on Bioavailability of Calcium and Calcium-Peptide Complexes[J]. Science and Technology of Food Industry, 2023, 44(23): 354-365. DOI: 10.13386/j.issn1002-0306.2023020067
    [3]SUN Xinyi, SUN Qingrui, LI Xiubo, JIN Limei. Research Progress of Carotenoid Isomerization and Its Effects on Biological Activity and Bioavailability[J]. Science and Technology of Food Industry, 2023, 44(21): 412-420. DOI: 10.13386/j.issn1002-0306.2022100031
    [4]YANG Jinyan, DUAN Xingke, WANG Hongdi, YANG Zhixuan, LIU Fengxia, PAN Siyi. Review on the Effect of Non-thermal Processing Technologies on the Bioavailability of Carotenoids in Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(7): 407-416. DOI: 10.13386/j.issn1002-0306.2021030218
    [5]HU Fuxia, CHU Qiao, BAI Ruoxi, YANG Xingwen, ZHENG Zhenjia, WANG Zhaosheng. Recent Advances in Bioactivities and Technologies for Bioavailability Improvement of Capsicum Alkaloids[J]. Science and Technology of Food Industry, 2021, 42(15): 412-419. DOI: 10.13386/j.issn1002-0306.2020070406
    [6]ZHENG Mengman, LI Wenyun, LIU Yuwei. Research Progress on Intestinal Absorption and Bioavailability of Carotenoids[J]. Science and Technology of Food Industry, 2021, 42(15): 403-411. DOI: 10.13386/j.issn1002-0306.2020070335
    [7]XU Feifei, LI Yueqi, LIN Jun, LAI Yuefei, CHI Huiqin, WU Weiliang, YANG Xingfen. Research Progress of in Vitro Models for Bioaccessibility and Bioavailability and Their Applications in Food Contaminants Exposure Assessment[J]. Science and Technology of Food Industry, 2021, 42(13): 395-403. DOI: 10.13386/j.issn1002-0306.2020070049
    [8]WU Meng-qi, QIN Fei, ZHANG Xuan, MA Si-yuan, ZHAO Yi-fei, LIU Yan-xia. Advances in Bioavailability of Catechins[J]. Science and Technology of Food Industry, 2019, 40(21): 326-330,336. DOI: 10.13386/j.issn1002-0306.2019.21.053
    [9]HUO Yan-jiao, WANG Bo, GUO Shan-shan, LI Bo, LUO Yong-kang. Antioxidant activity and bioavailability of the Pacific cod meat peptides during simulated gastrointestinal digestion and absorption[J]. Science and Technology of Food Industry, 2016, (06): 174-178. DOI: 10.13386/j.issn1002-0306.2016.06.027
    [10]ZHANG Yi- xin, HE Sheng- hua, TANG Hai-shan, MA Ying. Formation of β- CE / CN nanoparticle complex and bioavailability of β- CE[J]. Science and Technology of Food Industry, 2016, (05): 68-71. DOI: 10.13386/j.issn1002-0306.2016.05.005
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 胡潇漓,黄平,郑昆. Box-Behnken响应面法优化杠板归总酚酸的提取工艺. 中国民族民间医药. 2024(19): 36-39 .
    2. 刘元靖,洪亚楠,李涛,叶剑芝. 超高效液相色谱-串联质谱法测定菠萝中11种酚酸. 现代农业科技. 2023(21): 178-181+190 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (244) PDF downloads (33) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return