Citation: | ZHENG Mengman, LI Wenyun, LIU Yuwei. Research Progress on Intestinal Absorption and Bioavailability of Carotenoids[J]. Science and Technology of Food Industry, 2021, 42(15): 403−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070335. |
[1] |
Desmarchelier C, Borel P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations[J]. Trends in Food Science & Technology,2017,69:270−280.
|
[2] |
Marhuenda-Munoz M, Hurtado-Barroso S, Tresserra-Rimbau A, et al. A review of factors that affect carotenoid concentrations in human plasma: Differences between Mediterranean and Northern diets[J]. European Journal of Clinical Nutrition,2019,72(Suppl 1):18−25.
|
[3] |
Viera I, Pérez-Gálvez A, Roca M. Bioaccessibility of marine carotenoids[J]. Marine Drugs,2018,16(10):397. doi: 10.3390/md16100397
|
[4] |
Amengual J. Bioactive properties of carotenoids in human health[J]. Nutrients,2019,11(10):2388. doi: 10.3390/nu11102388
|
[5] |
Von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal[J]. Journal of Biological Chemistry,2000,275(16):11915−11920. doi: 10.1074/jbc.275.16.11915
|
[6] |
Send R, Sundholm D. The role of the beta-ionone ring in the photochemical reaction of rhodopsin[J]. The Journal of Physical Chemistry A,2007,111(1):27−33. doi: 10.1021/jp065510f
|
[7] |
El-Akabawy G, El-Sherif N M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress[J]. Biomed Pharmacother,2019,111:841−851. doi: 10.1016/j.biopha.2019.01.001
|
[8] |
Rowles J L, III, Erdman J W, Jr. Carotenoids and their role in cancer prevention[J]. BBA-Molecular and Cell Biology of Lipids,2020:158613.
|
[9] |
Johnson E J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan[J]. Nutrition Reviews,2014,72(9):605−612. doi: 10.1111/nure.12133
|
[10] |
Kulczyński B, Gramza-Michałowska A, Kobus-Cisowska J, et al. The role of carotenoids in the prevention and treatment of cardiovascular disease-Current state of knowledge[J]. Journal of Functional Foods,2017,38:45−65. doi: 10.1016/j.jff.2017.09.001
|
[11] |
Stephensen C B. Vitamin A, infection, and immune function[J]. Annual Review of Nutrition,2001,21:167−192. doi: 10.1146/annurev.nutr.21.1.167
|
[12] |
Parada J, Aguilera J M. Food microstructure affects the bioavailability of several nutrients[J]. Journal of Food Science,2007,72(2):R21−32. doi: 10.1111/j.1750-3841.2007.00274.x
|
[13] |
Honda M, Kodama T, Kageyama H, et al. Enhanced solubility and reduced crystallinity of carotenoids, β-carotene and astaxanthin, by Z-isomerization[J]. European Journal of Lipid Science and Technology,2018,120(11):1800191.
|
[14] |
Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids[J]. Critical Reviews in Food Science and Nutrition,2018,58(1):1−36. doi: 10.1080/10408398.2014.971353
|
[15] |
Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins[J]. Nutrients,2013,5(9):3563−3581. doi: 10.3390/nu5093563
|
[16] |
Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids[J]. Molecular Nutrition & Food Research,2007,51(1):107−15.
|
[17] |
Bajka B H, Rigby N M, Cross K L, et al. The influence of small intestinal mucus structure on particle transportex vivo[J]. Colloids and Surfaces B: Biointerfaces,2015,135:73−80. doi: 10.1016/j.colsurfb.2015.07.038
|
[18] |
Kopec R E, Failla M L. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles[J]. Journal of Food Composition and Analysis,2018,68:16−30. doi: 10.1016/j.jfca.2017.06.008
|
[19] |
During A, Harrison E H. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells[J]. Journal of Lipid Research,2007,48(10):2283−2294. doi: 10.1194/jlr.M700263-JLR200
|
[20] |
During A, Hussain M M, Morel D W, et al. Carotenoid uptake and secretion by CaCo-2 cells: Beta-carotene isomer selectivity and carotenoid interactions[J]. Journal of Lipid Research,2002,43(7):1086−1095. doi: 10.1194/jlr.M200068-JLR200
|
[21] |
Tyssandier V, Cardinault N, Caris-Veyrat C, et al. Vegetable-borne lutein, lycopene, and beta-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans[J]. American Journal of Clinical Nutrition,2002,75(3):526−534. doi: 10.1093/ajcn/75.3.526
|
[22] |
Lobo M V T, Huerta L, Ruiz-Velasco N, et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: Towards the identification of receptors mediating the intestinal absorption of dietary lipids[J]. Journal of Histochemistry & Cytochemistry,2001,49(10):1253−1260.
|
[23] |
Bietrix F, Yan D, Nauze M, et al. Accelerated lipid absorption in mice overexpressing intestinal SR-BI[J]. Journal of Biological Chemistry,2006,281(11):7214−9. doi: 10.1074/jbc.M508868200
|
[24] |
During A, Dawson H D, Harrison E H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe[J]. Journal of Nutrition,2005,135(10):2305−2312. doi: 10.1093/jn/135.10.2305
|
[25] |
Reboul E, Abou L, Mikail C, et al. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI)[J]. Biochemical Journal,2005,387(Pt 2):455−461.
|
[26] |
van Bennekum A, Werder M, Thuahnai S T, et al. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol[J]. Biochemistry,2005,44(11):4517−4525. doi: 10.1021/bi0484320
|
[27] |
During A, Doraiswamy S, Harrison E H. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism[J]. Journal of Lipid Research,2008,49(8):1715−1724. doi: 10.1194/jlr.M700580-JLR200
|
[28] |
Moussa M, Landrier J F, Reboul E, et al. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1[J]. The Journal of Nutrition,2008,138(8):1432−1436. doi: 10.1093/jn/138.8.1432
|
[29] |
Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes[J]. Progress in Lipid Research,2011,50(4):388−402. doi: 10.1016/j.plipres.2011.07.001
|
[30] |
Moussa M, Gouranton E, Gleize B, et al. CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures[J]. Molecular Nutrition & Food Research,2011,55(4):578−584.
|
[31] |
Borel P, Lietz G, Goncalves A, et al. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans[J]. The Journal of Nutrition,2013,143(4):448−456. doi: 10.3945/jn.112.172734
|
[32] |
Borel P, Moussa M, Reboul E, et al. Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein[J]. British Journal of Nutrition,2008,101(5):680−687. doi: 10.1017/S0007114508030754
|
[33] |
Focsan A L, Polyakov N E, Kispert L D. Supramolecular carotenoid complexes of enhanced solubility and stability-the way of bioavailability improvement[J]. Molecules,2019,24(21):3947. doi: 10.3390/molecules24213947
|
[34] |
Reboul E. Mechanisms of carotenoid intestinal absorption: Where do we stand?[J]. Nutrients,2019,11(4):838. doi: 10.3390/nu11040838
|
[35] |
Bohn T. Bioavailability of non-provitamin A carotenoids[J]. Current Nutrition & Food Science,2008,4(4):240.
|
[36] |
Cho H T, Salvia-Trujillo L, Kim J, et al. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10[J]. Food Chemistry,2014,156:117−122. doi: 10.1016/j.foodchem.2014.01.084
|
[37] |
O'Sullivan L, Ryan L, Aherne S A, et al. Cellular transport of lutein is greater from uncooked rather than cooked spinach irrespective of whether it is fresh, frozen, or canned[J]. Nutrition Research,2008,28(8):532−538. doi: 10.1016/j.nutres.2008.05.011
|
[38] |
叶陈, 戴竹青, 宋江峰, 等. 胶束化对 Caco-2上皮细胞叶黄素吸收和转运的影响[J]. 食品工业科技,2019,40(20):304−309.
|
[39] |
Sy C, Gleize B, Dangles O, et al. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations[J]. Molecular Nutrition & Food Research,2012,56(9):1385−1397.
|
[40] |
易建勇, 侯春辉, 毕金峰, 等. 果蔬食品中类胡萝卜素生物利用度研究进展[J]. 中国食品学报,2019,19(9):286−296.
|
[41] |
Shi J, Le Maguer M. Lycopene in tomatoes: Chemical and physical properties affected by food processing[J]. Critical Reviews in Biotechnology,2000,20(4):293−334. doi: 10.1080/07388550091144212
|
[42] |
Tyssandier V, Reboul E, Dumas J F, et al. Processing of vegetable-borne carotenoids in the human stomach and duodenum[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2003,284(6):G913−G923. doi: 10.1152/ajpgi.00410.2002
|
[43] |
Cooperstone J L, Ralston R A, Riedl K M, et al. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial[J]. Molecular Nutrition & Food Research,2015,59(4):658−669.
|
[44] |
Bowen P E, Herbst-Espinosa S M, Hussain E A, et al. Esterification does not impair lutein bioavailability in humans[J]. Journal of Nutrition,2002,132(12):3668−3673. doi: 10.1093/jn/132.12.3668
|
[45] |
Breithaupt D E, Weller P, Wolters M, et al. Comparison of plasma responses in human subjects after the ingestion of 3R, 3R'-zeaxanthin dipalmitate from wolfberry (Lycium barbarum) and non-esterified 3R, 3R'-zeaxanthin using chiral high-performance liquid chromatography[J]. British Journal of Nutrition,2004,91(5):707−713. doi: 10.1079/BJN20041105
|
[46] |
Chacón-Ordóñez T, Carle R, Schweiggert R. Bioaccessibility of carotenoids from plant and animal foods[J]. Journal of the Science of Food and Agriculture,2019,99(7):3220−3239. doi: 10.1002/jsfa.9525
|
[47] |
候春辉, 易建勇, 毕金峰, 等. 再造型胡萝卜复合脆片中类胡萝卜素生物利用度[J]. 食品科学,2019,40(3):16−23. doi: 10.7506/spkx1002-6630-20171220-234
|
[48] |
Schweiggert R M, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability[J]. Critical Reviews in Food Science and Nutrition,2017,57(9):1807−1830.
|
[49] |
Schweiggert R M, Mezger D, Schimpf F, et al. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato[J]. Food Chemistry,2012,135(4):2736−2742. doi: 10.1016/j.foodchem.2012.07.035
|
[50] |
Schweiggert R M, Kopec R E, Villalobos-Gutierrez M G, et al. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: A randomised cross-over study[J]. The British Journal of Nutrition,2014,111(3):490−498. doi: 10.1017/S0007114513002596
|
[51] |
Jeffery J L, Turner N D, King S R. Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using anin vitro model[J]. Journal of the Science of Food and Agriculture,2012,92(13):2603−2610. doi: 10.1002/jsfa.5768
|
[52] |
Chung H Y, Rasmussen H M, Johnson E J. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men[J]. Journal of Nutrition,2004,134(8):1887−1893. doi: 10.1093/jn/134.8.1887
|
[53] |
Wexler P. Encyclopedia of toxicology[M]. 3th ed. Oxford: Academic Press, 2014: 96-106.
|
[54] |
Hammer J, Hammer K, Kletter K. Lipids infused into the jejunum accelerate small intestinal transit but delay ileocolonic transit of solids and liquids[J]. Gut,1998,43(1):111−116. doi: 10.1136/gut.43.1.111
|
[55] |
Mutsokoti L, Panozzo A, Musabe E T, et al. Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices[J]. Journal of Functional Foods,2015,19:775−785. doi: 10.1016/j.jff.2015.10.017
|
[56] |
McClements J, McClements D J. Standardization of nanoparticle characterization: Methods for testing properties, stability, and functionality of edible nanoparticles[J]. Critical Reviews in Food Science and Nutrition,2016,56(8):1334−1362. doi: 10.1080/10408398.2014.970267
|
[57] |
Salvia-Trujillo L, Qian C, Martín-Belloso O, et al. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions[J]. Food Chemistry,2013,141(2):1472−1480. doi: 10.1016/j.foodchem.2013.03.050
|
[58] |
Salvia-Trujillo L, Verkempinck S H, Sun L, et al. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size[J]. Food Chemistry,2017,229:653−662. doi: 10.1016/j.foodchem.2017.02.146
|
[59] |
Wooster T J, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and ostwald ripening stability[J]. Langmuir,2008,24(22):12758−12765. doi: 10.1021/la801685v
|
[60] |
McClements D J, Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity[J]. Critical Reviews in Food Science and Nutrition,2011,51(4):285−330. doi: 10.1080/10408398.2011.559558
|
[61] |
Qian C, Decker E A, Xiao H, et al. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility[J]. Food Chemistry,2012,135(3):1440−1447. doi: 10.1016/j.foodchem.2012.06.047
|
[62] |
Failla M L, Chitchumronchokchai C, Ferruzzi M G, et al. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and alpha-tocopherol by Caco-2 cells[J]. Food & Function,2014,5(6):1101−1112.
|
[63] |
Goltz S R, Campbell W W, Chitchumroonchokchai C, et al. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans[J]. Molecular Nutrition & Food Research,2012,56(6):866−877.
|
[64] |
Priyadarshani A M. A review on factors influencing bioaccessibility and bioefficacy of carotenoids[J]. Critical Reviews in Food Science and Nutrition,2017,57(8):1710−1717. doi: 10.1080/10408398.2015.1023431
|
[65] |
Verrijssen T A J, Balduyck L G, Christiaens S, et al. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions[J]. Food Research International,2014,57:71−78. doi: 10.1016/j.foodres.2014.01.031
|
[66] |
Leroux J, Langendorff V, Schick G, et al. Emulsion stabilizing properties of pectin[J]. Food Hydrocolloids,2003,17(4):455−462. doi: 10.1016/S0268-005X(03)00027-4
|
[67] |
Cervantes-Paz B, Ornelas-Paz J J, Ruiz-Cruz S, et al. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review[J]. Food Research International,2017,99(Pt 2):917−927.
|
[68] |
Rehman A, Ahmad T, Aadil R M, et al. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds[J]. Trends in Food Science & Technology,2019,90:35−46.
|
[69] |
Xu D, Yuan F, Gao Y, et al. Influence of whey protein-beet pectin conjugate on the properties and digestibility of β-carotene emulsion duringin vitro digestion[J]. Food Chemistry,2014,156:374−379. doi: 10.1016/j.foodchem.2014.02.019
|
[70] |
Polyakov N, Leshina T. Glycyrrhizic acid as a novel drug delivery vector: Synergy of drug transport and efficacy[J]. The Open Conference Proceedings Journal,2011,211:64−72.
|
[71] |
Polyakov N E, Kispert L D. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery[J]. Carbohydrate Polymers,2015,128:207−219. doi: 10.1016/j.carbpol.2015.04.016
|
[72] |
Apanasenko I E, Selyutina O Y, Polyakov N E, et al. Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides[J]. Archives of Biochemistry and Biophysics,2015,572:58−65. doi: 10.1016/j.abb.2014.12.010
|
[73] |
Wang D, Mao L, Dai L, et al. Characterization of chitosan-ferulic acid conjugates and their application in the design of β-carotene bilayer emulsions with propylene glycol alginate[J]. Food Hydrocolloids,2018,80:281−291. doi: 10.1016/j.foodhyd.2017.11.031
|
[74] |
Huang J, Bai F, Wu Y, et al. Development and evaluation of lutein-loaded alginate microspheres with improved stability and antioxidant[J]. Journal of the Science of Food and Agriculture,2019,99(11):5195−5201. doi: 10.1002/jsfa.9766
|
[75] |
Wang Y, Roger Illingworth D, Connor S L, et al. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene[J]. European Journal of Nutrition,2010,49(6):327−336. doi: 10.1007/s00394-009-0089-8
|
[76] |
Tyssandier V, Lyan B, Borel P. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles[J]. Biochimica et Biophysica Acta,2001,1533(3):285−292. doi: 10.1016/S1388-1981(01)00163-9
|
[77] |
Poulaert M, Borel P, Caporiccio B, et al. Grapefruit juices impair the bioaccessibility of beta-carotene from orange-fleshed sweet potato but not its intestinal uptake by Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2012,60(2):685−691. doi: 10.1021/jf204004c
|
[78] |
Graham D Y, Sackman J W. Solubility of calcium soaps of long-chain fatty acids in simulated intestinal environment[J]. Digestive Diseases and Sciences,1983,28(8):733−736. doi: 10.1007/BF01312564
|
[79] |
Biehler E, Hoffmann L, Krause E, et al. Divalent minerals decrease micellarization and uptake of carotenoids and digestion products into Caco-2 cells[J]. The Journal of Nutrition,2011,141(10):1769−76. doi: 10.3945/jn.111.143388
|
[80] |
许朵霞, 曹雁平, 袁芳, 等. β-胡萝卜素乳状液体外模拟消化吸收研究[J]. 中国食品学报,2014,14(6):36−40.
|
[81] |
Corte-Real J, Guignard C, Gantenbein M, et al. No influence of supplemental dietary calcium intake on the bioavailability of spinach carotenoids in humans[J]. British Journal of Nutrition,2017,117(11):1560−1569. doi: 10.1017/S0007114517001532
|
[82] |
van het Hof K H, Tijburg L B M, Pietrzik K, et al. Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix[J]. British Journal of Nutrition,1999,82(3):203−212. doi: 10.1017/S0007114599001385
|
[83] |
Gärtner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes[J]. American Journal of Clinical Nutrition,1997,66(1):116−122. doi: 10.1093/ajcn/66.1.116
|
[84] |
McEligot A J, Rock C L, Shanks T G, et al. Comparison of serum carotenoid responses between women consuming vegetable juice and women consuming raw or cooked vegetables[J]. Cancer Epidemiology Biomarkers & Prevention,1999,8(3):227−231.
|
[85] |
Zhang R, Zhang Z, Zou L, et al. Enhancing nutraceutical bioavailability from raw and cooked vegetables using excipient emulsions: Influence of lipid type on carotenoid bioaccessibility from carrots[J]. Journal of Agricultural and Food Chemistry,2015,63(48):10508−10517. doi: 10.1021/acs.jafc.5b04691
|
[86] |
Liu X, Bi J, Xiao H, et al. Increasing carotenoid bioaccessibility from yellow peppers using excipient emulsions: Impact of lipid type and thermal processing[J]. Journal of Agricultural and Food Chemistry,2015,63(38):8534−8543. doi: 10.1021/acs.jafc.5b04217
|
[87] |
Aschoff J K, Rolke C L, Breusing N, et al. Bioavailability of beta-cryptoxanthin is greater from pasteurized orange juice than from fresh oranges-a randomized cross-over study[J]. Molecular Nutrition & Food Research,2015,59(10):1896−1904.
|
[88] |
Nimalaratne C, Savard P, Gauthier S F, et al. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model[J]. Journal of Agricultural and Food Chemistry,2015,63(11):2956−2962. doi: 10.1021/jf505615w
|
[89] |
Palmero P, Lemmens L, Hendrickx M, et al. Role of carotenoid type on the effect of thermal processing on bioaccessibility[J]. Food Chemistry,2014,157:275−282. doi: 10.1016/j.foodchem.2014.02.055
|
[90] |
Palmero P, Colle I, Lemmens L, et al. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility[J]. Journal of the Science of Food and Agriculture,2016,96(1):254−261. doi: 10.1002/jsfa.7088
|
[91] |
Espinal-Ruiz M, Parada-Alfonso F, Restrepo-Sánchez L P, et al. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): A calorimetry, electrophoresis, and turbidity study[J]. Journal of Agricultural and Food Chemistry,2014,62(52):12620−12630. doi: 10.1021/jf504829h
|
[92] |
Brady W E, Mares-Perlman J A, Bowen P, et al. Human serum carotenoid concentrations are related to physiologic and lifestyle factors[J]. Journal of Nutrition,1996,126(1):129−137. doi: 10.1093/jn/126.1.129
|
[93] |
Cardinault N, Tyssandier V, Grolier P, et al. Comparison of the postprandial chylomicron carotenoid responses in young and older subjects[J]. European Journal of Nutrition,2003,42(6):315−323. doi: 10.1007/s00394-003-0426-2
|
[94] |
Schupp C, Olano-Martin E, Gerth C, et al. Lutein, zeaxanthin, macular pigment, and visual function in adult cystic fibrosis patients[J]. American Journal of Clinical Nutrition,2004,79(6):1045−1052. doi: 10.1093/ajcn/79.6.1045
|
[95] |
Widjaja-Adhi M A, Lobo G P, Golczak M, et al. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption[J]. Human Molecular Genetics,2015,24(11):3206−3219. doi: 10.1093/hmg/ddv072
|
[96] |
Nie M, Zhang Z, Liu C, et al. Hesperetin and hesperidin improved β-carotene incorporation efficiency, intestinal cell uptake, and retinoid concentrations in tissues[J]. Journal of Agricultural and Food Chemistry,2019,67(12):3363−3371. doi: 10.1021/acs.jafc.9b00551
|
[97] |
Malhotra P, Boddy C S, Soni V, et al. D-Glucose modulates intestinal Niemann-Pick C1-like 1 (NPC1L1) gene expression via transcriptional regulation[J]. American Journal of Physiology. Gastrointestinal and Liver Physiology,2013,304(2):G203−G210. doi: 10.1152/ajpgi.00288.2012
|
1. |
孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 .
![]() | |
2. |
许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
![]() | |
3. |
郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
![]() | |
4. |
范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
![]() | |
5. |
莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
![]() | |
6. |
龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
![]() | |
7. |
董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
![]() | |
8. |
刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
![]() | |
9. |
王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 .
![]() | |
10. |
王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
![]() | |
11. |
王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .
![]() |