ZHENG Mengman, LI Wenyun, LIU Yuwei. Research Progress on Intestinal Absorption and Bioavailability of Carotenoids[J]. Science and Technology of Food Industry, 2021, 42(15): 403−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070335.
Citation: ZHENG Mengman, LI Wenyun, LIU Yuwei. Research Progress on Intestinal Absorption and Bioavailability of Carotenoids[J]. Science and Technology of Food Industry, 2021, 42(15): 403−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070335.

Research Progress on Intestinal Absorption and Bioavailability of Carotenoids

More Information
  • Received Date: July 27, 2020
  • Available Online: May 26, 2021
  • Carotenoids are a group of fat-soluble pigments widely distributed in fruits and vegetables, which play an important role in protecting public health. Humans cannot synthesize carotenoids and must ingest them in food. Due to the poor solubility and instability of carotenoids, their bioavailability is usually very low. In this paper, the digestion process of carotenoids is briefly introduced and focuses on intestinal transporters such as SR-B1, CD36, NPC1L1, the absorption of carotenoids in small intestinal epithelial cells is described. The bioavailability of carotenoids is reviewed from the aspects of lipophilicity and chemical forms of carotenoids, food matrix, gastrointestinal digestive factors, host factors and the expression or activity of intestinal transporters.
  • [1]
    Desmarchelier C, Borel P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations[J]. Trends in Food Science & Technology,2017,69:270−280.
    [2]
    Marhuenda-Munoz M, Hurtado-Barroso S, Tresserra-Rimbau A, et al. A review of factors that affect carotenoid concentrations in human plasma: Differences between Mediterranean and Northern diets[J]. European Journal of Clinical Nutrition,2019,72(Suppl 1):18−25.
    [3]
    Viera I, Pérez-Gálvez A, Roca M. Bioaccessibility of marine carotenoids[J]. Marine Drugs,2018,16(10):397. doi: 10.3390/md16100397
    [4]
    Amengual J. Bioactive properties of carotenoids in human health[J]. Nutrients,2019,11(10):2388. doi: 10.3390/nu11102388
    [5]
    Von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal[J]. Journal of Biological Chemistry,2000,275(16):11915−11920. doi: 10.1074/jbc.275.16.11915
    [6]
    Send R, Sundholm D. The role of the beta-ionone ring in the photochemical reaction of rhodopsin[J]. The Journal of Physical Chemistry A,2007,111(1):27−33. doi: 10.1021/jp065510f
    [7]
    El-Akabawy G, El-Sherif N M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress[J]. Biomed Pharmacother,2019,111:841−851. doi: 10.1016/j.biopha.2019.01.001
    [8]
    Rowles J L, III, Erdman J W, Jr. Carotenoids and their role in cancer prevention[J]. BBA-Molecular and Cell Biology of Lipids,2020:158613.
    [9]
    Johnson E J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan[J]. Nutrition Reviews,2014,72(9):605−612. doi: 10.1111/nure.12133
    [10]
    Kulczyński B, Gramza-Michałowska A, Kobus-Cisowska J, et al. The role of carotenoids in the prevention and treatment of cardiovascular disease-Current state of knowledge[J]. Journal of Functional Foods,2017,38:45−65. doi: 10.1016/j.jff.2017.09.001
    [11]
    Stephensen C B. Vitamin A, infection, and immune function[J]. Annual Review of Nutrition,2001,21:167−192. doi: 10.1146/annurev.nutr.21.1.167
    [12]
    Parada J, Aguilera J M. Food microstructure affects the bioavailability of several nutrients[J]. Journal of Food Science,2007,72(2):R21−32. doi: 10.1111/j.1750-3841.2007.00274.x
    [13]
    Honda M, Kodama T, Kageyama H, et al. Enhanced solubility and reduced crystallinity of carotenoids, β-carotene and astaxanthin, by Z-isomerization[J]. European Journal of Lipid Science and Technology,2018,120(11):1800191.
    [14]
    Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids[J]. Critical Reviews in Food Science and Nutrition,2018,58(1):1−36. doi: 10.1080/10408398.2014.971353
    [15]
    Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins[J]. Nutrients,2013,5(9):3563−3581. doi: 10.3390/nu5093563
    [16]
    Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids[J]. Molecular Nutrition & Food Research,2007,51(1):107−15.
    [17]
    Bajka B H, Rigby N M, Cross K L, et al. The influence of small intestinal mucus structure on particle transportex vivo[J]. Colloids and Surfaces B: Biointerfaces,2015,135:73−80. doi: 10.1016/j.colsurfb.2015.07.038
    [18]
    Kopec R E, Failla M L. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles[J]. Journal of Food Composition and Analysis,2018,68:16−30. doi: 10.1016/j.jfca.2017.06.008
    [19]
    During A, Harrison E H. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells[J]. Journal of Lipid Research,2007,48(10):2283−2294. doi: 10.1194/jlr.M700263-JLR200
    [20]
    During A, Hussain M M, Morel D W, et al. Carotenoid uptake and secretion by CaCo-2 cells: Beta-carotene isomer selectivity and carotenoid interactions[J]. Journal of Lipid Research,2002,43(7):1086−1095. doi: 10.1194/jlr.M200068-JLR200
    [21]
    Tyssandier V, Cardinault N, Caris-Veyrat C, et al. Vegetable-borne lutein, lycopene, and beta-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans[J]. American Journal of Clinical Nutrition,2002,75(3):526−534. doi: 10.1093/ajcn/75.3.526
    [22]
    Lobo M V T, Huerta L, Ruiz-Velasco N, et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: Towards the identification of receptors mediating the intestinal absorption of dietary lipids[J]. Journal of Histochemistry & Cytochemistry,2001,49(10):1253−1260.
    [23]
    Bietrix F, Yan D, Nauze M, et al. Accelerated lipid absorption in mice overexpressing intestinal SR-BI[J]. Journal of Biological Chemistry,2006,281(11):7214−9. doi: 10.1074/jbc.M508868200
    [24]
    During A, Dawson H D, Harrison E H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe[J]. Journal of Nutrition,2005,135(10):2305−2312. doi: 10.1093/jn/135.10.2305
    [25]
    Reboul E, Abou L, Mikail C, et al. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI)[J]. Biochemical Journal,2005,387(Pt 2):455−461.
    [26]
    van Bennekum A, Werder M, Thuahnai S T, et al. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol[J]. Biochemistry,2005,44(11):4517−4525. doi: 10.1021/bi0484320
    [27]
    During A, Doraiswamy S, Harrison E H. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism[J]. Journal of Lipid Research,2008,49(8):1715−1724. doi: 10.1194/jlr.M700580-JLR200
    [28]
    Moussa M, Landrier J F, Reboul E, et al. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1[J]. The Journal of Nutrition,2008,138(8):1432−1436. doi: 10.1093/jn/138.8.1432
    [29]
    Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes[J]. Progress in Lipid Research,2011,50(4):388−402. doi: 10.1016/j.plipres.2011.07.001
    [30]
    Moussa M, Gouranton E, Gleize B, et al. CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures[J]. Molecular Nutrition & Food Research,2011,55(4):578−584.
    [31]
    Borel P, Lietz G, Goncalves A, et al. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans[J]. The Journal of Nutrition,2013,143(4):448−456. doi: 10.3945/jn.112.172734
    [32]
    Borel P, Moussa M, Reboul E, et al. Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein[J]. British Journal of Nutrition,2008,101(5):680−687. doi: 10.1017/S0007114508030754
    [33]
    Focsan A L, Polyakov N E, Kispert L D. Supramolecular carotenoid complexes of enhanced solubility and stability-the way of bioavailability improvement[J]. Molecules,2019,24(21):3947. doi: 10.3390/molecules24213947
    [34]
    Reboul E. Mechanisms of carotenoid intestinal absorption: Where do we stand?[J]. Nutrients,2019,11(4):838. doi: 10.3390/nu11040838
    [35]
    Bohn T. Bioavailability of non-provitamin A carotenoids[J]. Current Nutrition & Food Science,2008,4(4):240.
    [36]
    Cho H T, Salvia-Trujillo L, Kim J, et al. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10[J]. Food Chemistry,2014,156:117−122. doi: 10.1016/j.foodchem.2014.01.084
    [37]
    O'Sullivan L, Ryan L, Aherne S A, et al. Cellular transport of lutein is greater from uncooked rather than cooked spinach irrespective of whether it is fresh, frozen, or canned[J]. Nutrition Research,2008,28(8):532−538. doi: 10.1016/j.nutres.2008.05.011
    [38]
    叶陈, 戴竹青, 宋江峰, 等. 胶束化对 Caco-2上皮细胞叶黄素吸收和转运的影响[J]. 食品工业科技,2019,40(20):304−309.
    [39]
    Sy C, Gleize B, Dangles O, et al. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations[J]. Molecular Nutrition & Food Research,2012,56(9):1385−1397.
    [40]
    易建勇, 侯春辉, 毕金峰, 等. 果蔬食品中类胡萝卜素生物利用度研究进展[J]. 中国食品学报,2019,19(9):286−296.
    [41]
    Shi J, Le Maguer M. Lycopene in tomatoes: Chemical and physical properties affected by food processing[J]. Critical Reviews in Biotechnology,2000,20(4):293−334. doi: 10.1080/07388550091144212
    [42]
    Tyssandier V, Reboul E, Dumas J F, et al. Processing of vegetable-borne carotenoids in the human stomach and duodenum[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2003,284(6):G913−G923. doi: 10.1152/ajpgi.00410.2002
    [43]
    Cooperstone J L, Ralston R A, Riedl K M, et al. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial[J]. Molecular Nutrition & Food Research,2015,59(4):658−669.
    [44]
    Bowen P E, Herbst-Espinosa S M, Hussain E A, et al. Esterification does not impair lutein bioavailability in humans[J]. Journal of Nutrition,2002,132(12):3668−3673. doi: 10.1093/jn/132.12.3668
    [45]
    Breithaupt D E, Weller P, Wolters M, et al. Comparison of plasma responses in human subjects after the ingestion of 3R, 3R'-zeaxanthin dipalmitate from wolfberry (Lycium barbarum) and non-esterified 3R, 3R'-zeaxanthin using chiral high-performance liquid chromatography[J]. British Journal of Nutrition,2004,91(5):707−713. doi: 10.1079/BJN20041105
    [46]
    Chacón-Ordóñez T, Carle R, Schweiggert R. Bioaccessibility of carotenoids from plant and animal foods[J]. Journal of the Science of Food and Agriculture,2019,99(7):3220−3239. doi: 10.1002/jsfa.9525
    [47]
    候春辉, 易建勇, 毕金峰, 等. 再造型胡萝卜复合脆片中类胡萝卜素生物利用度[J]. 食品科学,2019,40(3):16−23. doi: 10.7506/spkx1002-6630-20171220-234
    [48]
    Schweiggert R M, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability[J]. Critical Reviews in Food Science and Nutrition,2017,57(9):1807−1830.
    [49]
    Schweiggert R M, Mezger D, Schimpf F, et al. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato[J]. Food Chemistry,2012,135(4):2736−2742. doi: 10.1016/j.foodchem.2012.07.035
    [50]
    Schweiggert R M, Kopec R E, Villalobos-Gutierrez M G, et al. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: A randomised cross-over study[J]. The British Journal of Nutrition,2014,111(3):490−498. doi: 10.1017/S0007114513002596
    [51]
    Jeffery J L, Turner N D, King S R. Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using anin vitro model[J]. Journal of the Science of Food and Agriculture,2012,92(13):2603−2610. doi: 10.1002/jsfa.5768
    [52]
    Chung H Y, Rasmussen H M, Johnson E J. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men[J]. Journal of Nutrition,2004,134(8):1887−1893. doi: 10.1093/jn/134.8.1887
    [53]
    Wexler P. Encyclopedia of toxicology[M]. 3th ed. Oxford: Academic Press, 2014: 96-106.
    [54]
    Hammer J, Hammer K, Kletter K. Lipids infused into the jejunum accelerate small intestinal transit but delay ileocolonic transit of solids and liquids[J]. Gut,1998,43(1):111−116. doi: 10.1136/gut.43.1.111
    [55]
    Mutsokoti L, Panozzo A, Musabe E T, et al. Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices[J]. Journal of Functional Foods,2015,19:775−785. doi: 10.1016/j.jff.2015.10.017
    [56]
    McClements J, McClements D J. Standardization of nanoparticle characterization: Methods for testing properties, stability, and functionality of edible nanoparticles[J]. Critical Reviews in Food Science and Nutrition,2016,56(8):1334−1362. doi: 10.1080/10408398.2014.970267
    [57]
    Salvia-Trujillo L, Qian C, Martín-Belloso O, et al. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions[J]. Food Chemistry,2013,141(2):1472−1480. doi: 10.1016/j.foodchem.2013.03.050
    [58]
    Salvia-Trujillo L, Verkempinck S H, Sun L, et al. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size[J]. Food Chemistry,2017,229:653−662. doi: 10.1016/j.foodchem.2017.02.146
    [59]
    Wooster T J, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and ostwald ripening stability[J]. Langmuir,2008,24(22):12758−12765. doi: 10.1021/la801685v
    [60]
    McClements D J, Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity[J]. Critical Reviews in Food Science and Nutrition,2011,51(4):285−330. doi: 10.1080/10408398.2011.559558
    [61]
    Qian C, Decker E A, Xiao H, et al. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility[J]. Food Chemistry,2012,135(3):1440−1447. doi: 10.1016/j.foodchem.2012.06.047
    [62]
    Failla M L, Chitchumronchokchai C, Ferruzzi M G, et al. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and alpha-tocopherol by Caco-2 cells[J]. Food & Function,2014,5(6):1101−1112.
    [63]
    Goltz S R, Campbell W W, Chitchumroonchokchai C, et al. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans[J]. Molecular Nutrition & Food Research,2012,56(6):866−877.
    [64]
    Priyadarshani A M. A review on factors influencing bioaccessibility and bioefficacy of carotenoids[J]. Critical Reviews in Food Science and Nutrition,2017,57(8):1710−1717. doi: 10.1080/10408398.2015.1023431
    [65]
    Verrijssen T A J, Balduyck L G, Christiaens S, et al. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions[J]. Food Research International,2014,57:71−78. doi: 10.1016/j.foodres.2014.01.031
    [66]
    Leroux J, Langendorff V, Schick G, et al. Emulsion stabilizing properties of pectin[J]. Food Hydrocolloids,2003,17(4):455−462. doi: 10.1016/S0268-005X(03)00027-4
    [67]
    Cervantes-Paz B, Ornelas-Paz J J, Ruiz-Cruz S, et al. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review[J]. Food Research International,2017,99(Pt 2):917−927.
    [68]
    Rehman A, Ahmad T, Aadil R M, et al. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds[J]. Trends in Food Science & Technology,2019,90:35−46.
    [69]
    Xu D, Yuan F, Gao Y, et al. Influence of whey protein-beet pectin conjugate on the properties and digestibility of β-carotene emulsion duringin vitro digestion[J]. Food Chemistry,2014,156:374−379. doi: 10.1016/j.foodchem.2014.02.019
    [70]
    Polyakov N, Leshina T. Glycyrrhizic acid as a novel drug delivery vector: Synergy of drug transport and efficacy[J]. The Open Conference Proceedings Journal,2011,211:64−72.
    [71]
    Polyakov N E, Kispert L D. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery[J]. Carbohydrate Polymers,2015,128:207−219. doi: 10.1016/j.carbpol.2015.04.016
    [72]
    Apanasenko I E, Selyutina O Y, Polyakov N E, et al. Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides[J]. Archives of Biochemistry and Biophysics,2015,572:58−65. doi: 10.1016/j.abb.2014.12.010
    [73]
    Wang D, Mao L, Dai L, et al. Characterization of chitosan-ferulic acid conjugates and their application in the design of β-carotene bilayer emulsions with propylene glycol alginate[J]. Food Hydrocolloids,2018,80:281−291. doi: 10.1016/j.foodhyd.2017.11.031
    [74]
    Huang J, Bai F, Wu Y, et al. Development and evaluation of lutein-loaded alginate microspheres with improved stability and antioxidant[J]. Journal of the Science of Food and Agriculture,2019,99(11):5195−5201. doi: 10.1002/jsfa.9766
    [75]
    Wang Y, Roger Illingworth D, Connor S L, et al. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene[J]. European Journal of Nutrition,2010,49(6):327−336. doi: 10.1007/s00394-009-0089-8
    [76]
    Tyssandier V, Lyan B, Borel P. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles[J]. Biochimica et Biophysica Acta,2001,1533(3):285−292. doi: 10.1016/S1388-1981(01)00163-9
    [77]
    Poulaert M, Borel P, Caporiccio B, et al. Grapefruit juices impair the bioaccessibility of beta-carotene from orange-fleshed sweet potato but not its intestinal uptake by Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2012,60(2):685−691. doi: 10.1021/jf204004c
    [78]
    Graham D Y, Sackman J W. Solubility of calcium soaps of long-chain fatty acids in simulated intestinal environment[J]. Digestive Diseases and Sciences,1983,28(8):733−736. doi: 10.1007/BF01312564
    [79]
    Biehler E, Hoffmann L, Krause E, et al. Divalent minerals decrease micellarization and uptake of carotenoids and digestion products into Caco-2 cells[J]. The Journal of Nutrition,2011,141(10):1769−76. doi: 10.3945/jn.111.143388
    [80]
    许朵霞, 曹雁平, 袁芳, 等. β-胡萝卜素乳状液体外模拟消化吸收研究[J]. 中国食品学报,2014,14(6):36−40.
    [81]
    Corte-Real J, Guignard C, Gantenbein M, et al. No influence of supplemental dietary calcium intake on the bioavailability of spinach carotenoids in humans[J]. British Journal of Nutrition,2017,117(11):1560−1569. doi: 10.1017/S0007114517001532
    [82]
    van het Hof K H, Tijburg L B M, Pietrzik K, et al. Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix[J]. British Journal of Nutrition,1999,82(3):203−212. doi: 10.1017/S0007114599001385
    [83]
    Gärtner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes[J]. American Journal of Clinical Nutrition,1997,66(1):116−122. doi: 10.1093/ajcn/66.1.116
    [84]
    McEligot A J, Rock C L, Shanks T G, et al. Comparison of serum carotenoid responses between women consuming vegetable juice and women consuming raw or cooked vegetables[J]. Cancer Epidemiology Biomarkers & Prevention,1999,8(3):227−231.
    [85]
    Zhang R, Zhang Z, Zou L, et al. Enhancing nutraceutical bioavailability from raw and cooked vegetables using excipient emulsions: Influence of lipid type on carotenoid bioaccessibility from carrots[J]. Journal of Agricultural and Food Chemistry,2015,63(48):10508−10517. doi: 10.1021/acs.jafc.5b04691
    [86]
    Liu X, Bi J, Xiao H, et al. Increasing carotenoid bioaccessibility from yellow peppers using excipient emulsions: Impact of lipid type and thermal processing[J]. Journal of Agricultural and Food Chemistry,2015,63(38):8534−8543. doi: 10.1021/acs.jafc.5b04217
    [87]
    Aschoff J K, Rolke C L, Breusing N, et al. Bioavailability of beta-cryptoxanthin is greater from pasteurized orange juice than from fresh oranges-a randomized cross-over study[J]. Molecular Nutrition & Food Research,2015,59(10):1896−1904.
    [88]
    Nimalaratne C, Savard P, Gauthier S F, et al. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model[J]. Journal of Agricultural and Food Chemistry,2015,63(11):2956−2962. doi: 10.1021/jf505615w
    [89]
    Palmero P, Lemmens L, Hendrickx M, et al. Role of carotenoid type on the effect of thermal processing on bioaccessibility[J]. Food Chemistry,2014,157:275−282. doi: 10.1016/j.foodchem.2014.02.055
    [90]
    Palmero P, Colle I, Lemmens L, et al. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility[J]. Journal of the Science of Food and Agriculture,2016,96(1):254−261. doi: 10.1002/jsfa.7088
    [91]
    Espinal-Ruiz M, Parada-Alfonso F, Restrepo-Sánchez L P, et al. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): A calorimetry, electrophoresis, and turbidity study[J]. Journal of Agricultural and Food Chemistry,2014,62(52):12620−12630. doi: 10.1021/jf504829h
    [92]
    Brady W E, Mares-Perlman J A, Bowen P, et al. Human serum carotenoid concentrations are related to physiologic and lifestyle factors[J]. Journal of Nutrition,1996,126(1):129−137. doi: 10.1093/jn/126.1.129
    [93]
    Cardinault N, Tyssandier V, Grolier P, et al. Comparison of the postprandial chylomicron carotenoid responses in young and older subjects[J]. European Journal of Nutrition,2003,42(6):315−323. doi: 10.1007/s00394-003-0426-2
    [94]
    Schupp C, Olano-Martin E, Gerth C, et al. Lutein, zeaxanthin, macular pigment, and visual function in adult cystic fibrosis patients[J]. American Journal of Clinical Nutrition,2004,79(6):1045−1052. doi: 10.1093/ajcn/79.6.1045
    [95]
    Widjaja-Adhi M A, Lobo G P, Golczak M, et al. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption[J]. Human Molecular Genetics,2015,24(11):3206−3219. doi: 10.1093/hmg/ddv072
    [96]
    Nie M, Zhang Z, Liu C, et al. Hesperetin and hesperidin improved β-carotene incorporation efficiency, intestinal cell uptake, and retinoid concentrations in tissues[J]. Journal of Agricultural and Food Chemistry,2019,67(12):3363−3371. doi: 10.1021/acs.jafc.9b00551
    [97]
    Malhotra P, Boddy C S, Soni V, et al. D-Glucose modulates intestinal Niemann-Pick C1-like 1 (NPC1L1) gene expression via transcriptional regulation[J]. American Journal of Physiology. Gastrointestinal and Liver Physiology,2013,304(2):G203−G210. doi: 10.1152/ajpgi.00288.2012
  • Cited by

    Periodical cited type(11)

    1. 孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 . 本站查看
    2. 许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
    3. 郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
    4. 范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
    5. 莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
    6. 龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
    7. 董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
    8. 刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
    9. 王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 . 本站查看
    10. 王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
    11. 王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (740) PDF downloads (68) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return