HUANG Qianqian, CHEN Lijun, LI Yunchang, et al. Effect of Chlorophylls on the Bioaccessibility of Lutein[J]. Science and Technology of Food Industry, 2024, 45(5): 108−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070007.
Citation: HUANG Qianqian, CHEN Lijun, LI Yunchang, et al. Effect of Chlorophylls on the Bioaccessibility of Lutein[J]. Science and Technology of Food Industry, 2024, 45(5): 108−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070007.

Effect of Chlorophylls on the Bioaccessibility of Lutein

More Information
  • Received Date: July 03, 2023
  • Available Online: December 27, 2023
  • Lutein has a variety of physiological activities, which can not be synthesized by human body and can only be obtained through diet. Dietary lutein shows low bioaccessibility due to its lipo-soluble nature and thus the efficient supplementation of lutein has become a research hotspot. Chlorophylls, another type of lipo-soluble phytochemicals, are always ingested along with lutein in human diet where interaction between chlorophylls and lutein may occur. Therefore, it is of great significance to study the effect of dietary chlorophylls compounds and their structural changes on the bioaccessibility of lutein. Based on this, in this paper, eight different structures of chlorophylls (chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, chlorophyllide a, chlorophyllide b, pheophorbide a and pheophorbide b) were prepared, and their effects on lutein bioaccessibility and related indexes were studied by in vitro static digestion model and micellization investigations. Changes of particle size and zeta-potential of mixed micelles formed by lutein and chlorophylls were also determined. The results showed that all the chlorophylls structures significantly improved the recovery rate and bioaccessibility (P<0.05) from in vitro digestion of lutein. Among them, pheophytin b exerted the most significant influence, with the corresponding recovery rate and bioaccessibility index of lutein being 90.48% and 80.44%, respectively. During digestion, no significant lutein degradation products were detected, while the structures of chlorophylls underwent significant changes. It could be found that the micellar fraction was more stable than the digesta fraction by the comparison of average particle size, fluorescence images and zeta potential value. Chlorophylls could protect lutein from degradation during in vitro digestion by forming some complex. This study provided important information on how to improve the bioaccessibility and digestion and utilization performance of dietary lutein.
  • [1]
    郑樱, 陈新彬, 马岩, 等. 叶黄素生物学功能与相关慢性疾病的研究进展[J]. 中国食物与营养,2023,29(3):51−55. [ZHENG Y, CHEN X B, MA Y, et al. Research progress on the biological function of lutein and related chronic diseases[J]. Food and Nutrition in China,2023,29(3):51−55.] doi: 10.3969/j.issn.1006-9577.2023.03.010

    ZHENG Y, CHEN X B, MA Y, et al. Research progress on the biological function of lutein and related chronic diseases[J]. Food and Nutrition in China, 2023, 293): 5155. doi: 10.3969/j.issn.1006-9577.2023.03.010
    [2]
    吴静, 张美霞, 严密. 叶黄素及玉米黄素与老年性黄斑变性的研究进展[J]. 眼科新进展,2009,29(10):791−795. [WU J, ZHANG M X, YAN M. Research advances on lutein and zeaxanthin for age-related macular degeneration[J]. Recent Advances in Ophthalmology,2009,29(10):791−795.]

    WU J, ZHANG M X, YAN M. Research advances on lutein and zeaxanthin for age-related macular degeneration[J]. Recent Advances in Ophthalmology, 2009, 2910): 791795.
    [3]
    DAI Z, SONG J, CHEN Y, et al. Study on the bioavailability of stevioside-encapsulized lutein and its mechanism[J]. Food Chemistry,2021,354(2):129528.
    [4]
    郭静, 胡坦, 潘思轶. 食品运载体系包埋叶黄素的研究进展[J]. 食品科学,2022,43(1):313−320. [GUO J, HU T, PAN S Y. Progress in research on food delivery systems for lutein encapsulation[J]. Food Science,2022,43(1):313−320.]

    GUO J, HU T, PAN S Y. Progress in research on food delivery systems for lutein encapsulation[J]. Food Science, 2022, 431): 313320.
    [5]
    焦岩, 李大婧, 刘春泉, 等. 纳米脂质体提高叶黄素的稳定性[J]. 食品工业,2019,40(4):24−27. [JIAO Y, LI D J, LIU C Q, et al. The improvement of stability of lutein by nanoliposomes[J]. The Food Industry,2019,40(4):24−27.]

    JIAO Y, LI D J, LIU C Q, et al. The improvement of stability of lutein by nanoliposomes[J]. The Food Industry, 2019, 404): 2427.
    [6]
    王晓. 高稳定性高生物利用度叶黄素初乳及其微胶囊制备优化研究[D]. 聊城:聊城大学, 2022. [WANG X. Study on optimized preparation of lutein-loaded emulsionsand microcapsules with high stability and bioavailability[D]. Liaocheng:Liaocheng University, 2022.]

    WANG X. Study on optimized preparation of lutein-loaded emulsionsand microcapsules with high stability and bioavailability[D]. Liaocheng: Liaocheng University, 2022.
    [7]
    石晓晴, 黄月英, 沈一唯, 等. 叶黄素的生物学作用及制剂研究进展[J]. 中国药房,2017,28(4):561−565. [SHI X Q, HUANG Y Y, SHEN Y W, et al. Research progress on biological effects and preparations of lutein[J]. China Pharmacy,2017,28(4):561−565.] doi: 10.6039/j.issn.1001-0408.2017.04.36

    SHI X Q, HUANG Y Y, SHEN Y W, et al. Research progress on biological effects and preparations of lutein[J]. China Pharmacy, 2017, 284): 561565. doi: 10.6039/j.issn.1001-0408.2017.04.36
    [8]
    MINH A T P, BUCKNALL M P, ARCOT J. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion[J]. Food Chemistry,2019,298:125040. doi: 10.1016/j.foodchem.2019.125040
    [9]
    MOJICA L, JUAN C M D, CASTILLO G. Lutein as a functional food ingredient:Stability and bioavailability[J]. Journal of Functional Foods,2020,66:103771. doi: 10.1016/j.jff.2019.103771
    [10]
    肖亚茹. 多酚在不同消化阶段对叶黄素肠道吸收的影响[D]. 镇江:江苏大学, 2022. [XIAO Y R. Effects of polyphenols on intestinal absorption of lutein in different digestive stages[D]. Zhenjiang:Jiangsu University, 2022.]

    XIAO Y R. Effects of polyphenols on intestinal absorption of lutein in different digestive stages[D]. Zhenjiang: Jiangsu University, 2022.
    [11]
    曲方. 环境对类胡萝卜素聚集体吸收及荧光光谱的影响[D]. 长春:吉林大学, 2020. [QU F. Effects of environment on absorption and fluorescence spectra of carotenoid aggregates[D]. Changchun:Jilin University, 2020.]

    QU F. Effects of environment on absorption and fluorescence spectra of carotenoid aggregates[D]. Changchun: Jilin University, 2020.
    [12]
    段智红, 袁圣亮, 吕应年, 等. 可食性大型海藻的叶绿素及其衍生物研究进展[J]. 食品工业科技,2018,39(20):337−342. [DUAN Z H, YUAN S L, LÜ Y N, et al. Research progress of chlorophyll and its derivatives from edible macroalga[J]. Science and Technology of Food Industry,2018,39(20):337−342.]

    DUAN Z H, YUAN S L, LÜ Y N, et al. Research progress of chlorophyll and its derivatives from edible macroalga[J]. Science and Technology of Food Industry, 2018, 3920): 337342.
    [13]
    CHEN K, RIOS J J, PEREZ G A, et al. Comprehensive chlorophyll composition in the main edible seaweeds[J]. Food Chemistry,2017,228:625−633. doi: 10.1016/j.foodchem.2017.02.036
    [14]
    董书琦, 陈达, 秦巧平, 等. 高等植物叶绿素和类胡萝卜素代谢研究进展[J]. 植物生理学报,2023,59(5):793−802. [DONG S Q, CHEN D, QIN Q P, et al. Advances in metabolism of chlorophylls and carotenoids in higher plants[J]. Plant Physiology Journal,2023,59(5):793−802.]

    DONG S Q, CHEN D, QIN Q P, et al. Advances in metabolism of chlorophylls and carotenoids in higher plants[J]. Plant Physiology Journal, 2023, 595): 793802.
    [15]
    LEE E, AHN H, CHOE E. Effects of light and lipids on chlorophyll degradation[J]. Food Science and Biotechnology,2014,23(4):1061−1065. doi: 10.1007/s10068-014-0145-x
    [16]
    李根, 张成, 王强, 等. 植物叶绿素代谢途径及其分子调控[J]. 四川农业科技,2021(4):41−45. [LI G, ZHANG C, WANG Q, et al. Plant chlorophyll metabolic pathway and its molecular regulation[J]. Sichuan Agricultural Science and Technology,2021(4):41−45.] doi: 10.3969/j.issn.1004-1028.2021.04.014

    LI G, ZHANG C, WANG Q, et al. Plant chlorophyll metabolic pathway and its molecular regulation[J]. Sichuan Agricultural Science and Technology, 20214): 4145. doi: 10.3969/j.issn.1004-1028.2021.04.014
    [17]
    CHEN K, ROCA M. In vitro bioavailability of chlorophyll pigments from edible seaweeds[J]. Journal of Functional Foods,2018,41:25−33. doi: 10.1016/j.jff.2017.12.029
    [18]
    LI Y, AGARRY I E, DING D, et al. Screening of dephytinization reaction of chlorophyll pigments with citrus acetone powder by UPLC-DAD-MS[J]. Journal of Food Science,2023,88(1):147−160. doi: 10.1111/1750-3841.16411
    [19]
    AGARRY I E, DING D S, LI Y C, et al. In vitro bioaccessibility evaluation of chlorophyll pigments in single and binary carriers[J]. Food Chemistry,2023,415:135757. doi: 10.1016/j.foodchem.2023.135757
    [20]
    CHEN K, ROCA M. Cooking effects on bioaccessibility of chlorophyll pigments of the main edible seaweeds[J]. Food Chemistry,2019,295:101−109. doi: 10.1016/j.foodchem.2019.05.092
    [21]
    JIN Z, AGARRY I E, LI Y, et al. In vitro bioaccessibility evaluation of pheophytins in gelatin/polysaccharides carrier[J]. Food Chemistry,2023,408:135252. doi: 10.1016/j.foodchem.2022.135252
    [22]
    VIERA I, HERRERA M, ROCA M. In vitro bioaccessibility protocol for chlorophylls[J]. Journal of Agricultural and Food Chemistry,2021,69(31):8777−8786. doi: 10.1021/acs.jafc.1c02815
    [23]
    CHEN K, ROCA M. In vitro digestion of chlorophyll pigments from edible seaweeds[J]. Journal of Functional Foods,2018,40:400−407. doi: 10.1016/j.jff.2017.11.030
    [24]
    BOEHM V, LIETZ G, OLMEDILLA A B, et al. From carotenoid intake to carotenoid blood and tissue concentrations-implications for dietary intake recommendations[J]. Nutrition Reviews,2021,79(5):544−573. doi: 10.1093/nutrit/nuaa008
    [25]
    VIERA I, CHEN K, RIOS J J, et al. First-pass metabolism of chlorophylls in mice[J]. Molecular Nutrition & Food Research,2018,62(17):1800562.
    [26]
    YANG X, TANG J, MUSTARD J F, et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[J]. Geophysical Research Letters,2015,42(8):2977−2987. doi: 10.1002/2015GL063201
    [27]
    EGEA I, BIAN W, BAESAN C, et al. Chloroplast to chromoplast transition in tomato fruit:Spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue[J]. Annals of Botany,2011,108(2):291−297. doi: 10.1093/aob/mcr140
    [28]
    李新甜, 徐亚元, 张钟元, 等. 基质结构对纳米结构脂质载体中叶黄素生物利用度的调控机制[J]. 食品科学,2022,43(12):130−138. [LI X T, XU Y Y, ZHANG Z Y, et al. Regulatory effect of matrix structures on bioaccessibility of lutein loaded into nanostructured lipid carriers[J]. Food Science,2022,43(12):130−138.] doi: 10.7506/spkx1002-6630-20210421-300

    LI X T, XU Y Y, ZHANG Z Y, et al. Regulatory effect of matrix structures on bioaccessibility of lutein loaded into nanostructured lipid carriers[J]. Food Science, 2022, 4312): 130138. doi: 10.7506/spkx1002-6630-20210421-300
    [29]
    李梦杰. 膳食结构对柑橘类胡萝卜素生物利用度和抗氧化活性的影响研究[D]. 武汉:华中农业大学, 2022. [LI M J. Effects of dietary structure on bioavailability and antioxidant activity of citrus carotenoids[D]. Wuhan:Huazhong Agricultural University, 2022.]

    LI M J. Effects of dietary structure on bioavailability and antioxidant activity of citrus carotenoids[D]. Wuhan: Huazhong Agricultural University, 2022.
    [30]
    葛俊珂, 孙丽娜, 赵涵, 等. 叶绿素的提取方法及药理作用进展[J]. 科技创新与应用,2016(24):14. [GE J K, SUN L N, ZHAO H, et al. Advances in extraction methods and pharmacological effects of chlorophyll[J]. Technology Innovation and Application,2016(24):14.]

    GE J K, SUN L N, ZHAO H, et al. Advances in extraction methods and pharmacological effects of chlorophyll[J]. Technology Innovation and Application, 201624): 14.
    [31]
    MARONEZE M M, ZEPKA L Q, LOPES E J, et al. Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of scenedesmus obliquus[J]. Antioxidants,2019,8(12):1−15.
    [32]
    NINOMIYA R, MATSUOKA K, MOROI Y. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:Comparison with other unconjugated bile salts[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2003,1634(3):116−125. doi: 10.1016/j.bbalip.2003.09.003
    [33]
    陈书博. 酶解桃胶多糖的结构表征、乳化性与乳液体外消化特性研究[D]. 杭州:浙江工商大学, 2022. [CHEN S B. Study on structure characterization emulsification and in vitro digestibility of enzymatic hydrolyzed prach gum polysaccharide[D]. Hangzhou:Zhejiang Gongshang University, 2022.]

    CHEN S B. Study on structure characterization emulsification and in vitro digestibility of enzymatic hydrolyzed prach gum polysaccharide[D]. Hangzhou: Zhejiang Gongshang University, 2022.
    [34]
    LAZZARO F, SAINT J A, VIOLLEAU F, et al. Gradual disaggregation of the casein micelle improves its emulsifying capacity and decreases the stability of dairy emulsions[J]. Food Hydrocolloids,2017,63:189−200. doi: 10.1016/j.foodhyd.2016.08.037
    [35]
    YUE M, HUANG M, ZHU Z, et al. Effect of ultrasound assisted emulsification in the production of pickering emulsion formulated with chitosan self-assembled particles:Stability, macro, and micro rheological properties[J]. LWT-Food Science and Technology,2022,154:112595. doi: 10.1016/j.lwt.2021.112595
  • Related Articles

    [1]CHEN Jiaqi, LI Jialin, ZHAO Jichun, LI Honghai, MING Jian. Effects of Different Drying Methods on the Volatile Substances of Dictyophora rubrovolvata Based on HS-SPME-GC-MS and HS-GC-IMS[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070074
    [2]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [3]LÜ Xiang, GAO Tiantian, LIU Wei, ZHANG Juhua. Analysis of Volatile Aroma Components of Navel Orange Wine Produced by Mixed Fermentation of Non Saccharomyces cerevisiae and Saccharomyces cerevisiae Based on GC-IMS[J]. Science and Technology of Food Industry, 2023, 44(17): 139-148. DOI: 10.13386/j.issn1002-0306.2022100310
    [4]LIANG Yi, FENG Tao, WANG Huatian, SONG Shiqing, SUN Min, YUE Heng, YAO Lingyun. Characterization of Aroma Volatiles in Three Sundried Ulva spp. by GC-MS and Sensory Evaluation[J]. Science and Technology of Food Industry, 2023, 44(15): 283-291. DOI: 10.13386/j.issn1002-0306.2022080353
    [5]GUO Yahong, TONG Litao, WANG Lili, FAN Bei, YANG Xijuan, ZHANG Shuo, SUN Jing, WANG Fengzhong, LIU Liya. GC-IMS-Based Analysis of the Effect of Frying Temperature on Volatile Flavor Substances in Highland Barley Tsampa Flour[J]. Science and Technology of Food Industry, 2023, 44(14): 326-335. DOI: 10.13386/j.issn1002-0306.2022100182
    [6]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [7]TAN Yan, WANG Guoqing, WU Jinzhu, CHEN GAN, ZHOU Aimei. Analysis of Volatile Flavour Components in Four Pomelo Peel Essential Oils Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(15): 256-268. DOI: 10.13386/j.issn1002-0306.2020090041
    [8]LIU Xueyan, WANG Juan, PENG Yun, LV Caiyou, LI Ruoyu. Volatile Component Analysis of Sun-dried Green Tea in Menghai County Based on GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(14): 233-240. DOI: 10.13386/j.issn1002-0306.2020080295
    [9]CHEN Xiaoai, CAI Huitian, LIU Jingyi, TANG Niang, CHEN Shuxi, ZHOU Aimei. Analysis of Volatile Components in Laoxianghuang During Fermentation by Electronic Nose, GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(12): 70-80. DOI: 10.13386/j.issn1002-0306.2020100170
    [10]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 周法婷,李迪,李开凤,蒋忠桂,魏蝶,丛之慧,陈井生,顾欣,肖国生. 基于网络药理学及分子对接探讨猪胶原血管紧张素转换酶抑制肽的降压机制. 食品与发酵工业. 2024(18): 217-224 .
    2. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    3. 陈姣,肖静,陈林,刘隆臻. 基于新型冠状病毒3CL~(pro)结构的小肽抑制剂虚拟筛选. 江苏海洋大学学报(自然科学版). 2021(03): 69-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (113) PDF downloads (15) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return