Citation: | WANG Jingwen, DU Jiahong, LIU Xin, et al. Preparation, Characterization and Thermoplastic Analysis of Acetylated Starch with Different Substitution Degree[J]. Science and Technology of Food Industry, 2024, 45(13): 230−238. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060141. |
[1] |
MARTINEZ M M, BOUKID F. Future-proofing dietary pea starch[J]. ACS Food Science & Technology,2021,1(8):1371−1372.
|
[2] |
YANG S X, MA H H, CHEN Y X, et al. Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology[J]. Iran Polym J,2023,32(3):251−261. doi: 10.1007/s13726-022-01113-0
|
[3] |
XU J T, ANDREWS T D, SHI Y C. Recent advances in the preparation and characterization of intermediately to highly esterified and etherified starches:A review[J]. Starch-Starke,2020,72(3−4):1900238. doi: 10.1002/star.201900238
|
[4] |
CYRAS V P, ZENKLUSEN M C T, VAZQUEZ A. Relationship between structure and properties of modified potato starch biodegradable films[J]. J Appl Polym Sci,2006,101(6):4313−1319. doi: 10.1002/app.23924
|
[5] |
SANTANDER-ORTEGA M J, STAUNER T, LORETZ B, et al. Nanoparticles made from novel starch derivatives for transdermal drug delivery[J]. J Control Release,2010,141(1):85−92. doi: 10.1016/j.jconrel.2009.08.012
|
[6] |
袁怀波, 谢武, 钱门生. 木薯酯化淀粉的干法快速制备及性质研究[J]. 中国粮油学报,2010,25(11):57−61. [YUAN H B, XIE W, QIAN M S. Rapid dry preparation and properties of esterified cassava starch[J]. Journal of the Chinese Cereals and Oils Association,2010,25(11):57−61.]
YUAN H B, XIE W, QIAN M S. Rapid dry preparation and properties of esterified cassava starch[J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(11): 57−61.
|
[7] |
SAGAR A D, MERRILL E W. Properties of fatty-acid esters of starch[J]. J Appl Polym Sci,1995,58(9):1647−1656. doi: 10.1002/app.1995.070580927
|
[8] |
IMRE B, VILAPLANA F. Organocatalytic esterification of corn starches towards enhanced thermal stability and moisture resistance[J]. Green Chem,2020,22(15):5017−5031. doi: 10.1039/D0GC00681E
|
[9] |
王占全. 醋酸乙烯酯法制备醋酸酯淀粉的乙醛残留研究[D]. 广州:华南理工大学, 2021. [WANG Z Q. Study on acetaldehyde residue of acetate starch prepared by vinyl acetate method[D]. Guangzhou:South China University of Technology, 2021.]
WANG Z Q. Study on acetaldehyde residue of acetate starch prepared by vinyl acetate method[D]. Guangzhou: South China University of Technology, 2021.
|
[10] |
周雪滢. 不同取代度乙酰化高直链玉米淀粉制备及功能特性研究[D]. 郑州:河南工业大学, 2022. [ZHOU X Y. Preparation and functional properties of acetylated high amylose corn starch with different substitution degrees[D]. Zhengzhou:Henan University of Technology, 2022.]
ZHOU X Y. Preparation and functional properties of acetylated high amylose corn starch with different substitution degrees[D]. Zhengzhou: Henan University of Technology, 2022.
|
[11] |
张建勇, 江和源, 崔宏春, 等. EGCG乙酰化分子修饰取代度影响因素分析[J]. 食品科学,2017,38(5):54−59. [ZHANG J Y, JIANG H Y, CUI H C, et al. Major factors affecting substitution degree of acetylated EGCG[J]. Food Science,2017,38(5):54−59.] doi: 10.7506/spkx1002-6630-201705009
ZHANG J Y, JIANG H Y, CUI H C, et al. Major factors affecting substitution degree of acetylated EGCG[J]. Food Science, 2017, 38(5): 54−59. doi: 10.7506/spkx1002-6630-201705009
|
[12] |
梁颖. 以改性淀粉为多元醇制备透明聚氨酯涂层[D]. 北京:北京化工大学, 2020. [LIANG Y. The transparent polyurethane coating was prepared by using modified starch as polyol[D]. Beijing:Beijing University of Chemical Technology, 2020.]
LIANG Y. The transparent polyurethane coating was prepared by using modified starch as polyol[D]. Beijing: Beijing University of Chemical Technology, 2020.
|
[13] |
陈渊. 机械活化强化淀粉乙酰化的研究[D]. 南宁:广西大学, 2007. [CHEN Y. Study on enhanced acetylation of starch by mechanical activation[D]. Nanning:Guangxi University, 2007.]
CHEN Y. Study on enhanced acetylation of starch by mechanical activation[D]. Nanning: Guangxi University, 2007.
|
[14] |
包浩, 刘忠义, 彭丽, 等. 超声波强化制备高取代度大米淀粉乙酸酯[J]. 化工进展,2015,34(3):810−814,824. [BAO H, LIU Z Y, PENG L, et al. Synthesis of acetylated rice starch with high degree of substitution by ultrasonic wave intensification[J]. Chemical Industry and Engineering Progress,2015,34(3):810−814,824.]
BAO H, LIU Z Y, PENG L, et al. Synthesis of acetylated rice starch with high degree of substitution by ultrasonic wave intensification[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 810−814,824.
|
[15] |
姚先超, 史永桂, 焦思宇, 等. 食用级淀粉纳米颗粒乙酰化疏水改性及其消化特性[J]. 食品科学,2022,43(12):25−28. [YAO X C, SHI Y G, JIAO S Y, et al. Hydrophobic modification of food-grade starch nanoparticles by acetylation and its digestion characteristics[J]. Food Science,2022,43(12):25−28.] doi: 10.7506/spkx1002-6630-20210731-375
YAO X C, SHI Y G, JIAO S Y, et al. Hydrophobic modification of food-grade starch nanoparticles by acetylation and its digestion characteristics[J]. Food Science, 2022, 43(12): 25−28. doi: 10.7506/spkx1002-6630-20210731-375
|
[16] |
郭春香, 吴修利, 姜雪, 等. 高取代度醋酸酯淀粉及膜的制备与表征[J]. 食品科技,2018,43(7):239−242. [GUO C X, WU X L, JIANG X, et al. Preparation and characterization of high degree of substitution acetate starch and film[J]. Food Science and Technology,2018,43(7):239−242.]
GUO C X, WU X L, JIANG X, et al. Preparation and characterization of high degree of substitution acetate starch and film[J]. Food Science and Technology, 2018, 43(7): 239−242.
|
[17] |
TUPA M V, RAMIREZ J A A, VAZQUEZ A, et al. Organocatalytic acetylation of starch:Effect of reaction conditions on DS and characterisation of esterified granules[J]. Food Chemistry,2015,170:295−302. doi: 10.1016/j.foodchem.2014.08.062
|
[18] |
NUTAN M T H, VAITHIYALINGAM S R, KHAN M A. Controlled release multiparticulate beads coated with starch acetate:Material characterization, and identification of critical formulation and process variables[J]. Pharm Dev Technol,2007,12(3):307−320. doi: 10.1080/10837450701247483
|
[19] |
刘燕. 山药粉及其交联淀粉的制备与表征[D]. 保定:河北农业大学, 2019. [LIU Y. Preparation and characterization of yam powder and its crosslinked starch[D]. Baoding:Hebei Agricultural University, 2019.]
LIU Y. Preparation and characterization of yam powder and its crosslinked starch[D]. Baoding: Hebei Agricultural University, 2019.
|
[20] |
ELOMAA M, ASPLUND T, SOININEN P, et al. Determination of the degree of substitution of acetylated starch by hydrolysis, H-1 NMR and TGA/IR[J]. Carbohyd Polym,2004,57(3):261−267. doi: 10.1016/j.carbpol.2004.05.003
|
[21] |
STEVENSON D G, JANE J L, INGLETT G E. Physicochemical properties of pin oak (Quercus palustris Muenchh. ) acorn starch[J]. Starch-Starke,2006,58(11):553−560. doi: 10.1002/star.200600533
|
[22] |
VEGA D, VILLAR M A, FAILLA M D, et al. Thermogravimetric analysis of starch-based biodegradable blends[J]. Polym Bull,1996,37(2):229−235. doi: 10.1007/BF00294126
|
[23] |
YUAN K, LI X F, YANG X D, et al. Effect of bacterial cellulose nanofibers incorporation on acid-induced casein gels:Microstructures and rheological properties[J]. Int J Food Eng,2022,18(1):41−51. doi: 10.1515/ijfe-2021-0293
|
[24] |
CHIN S F, SALIM A, PANG S C. Starch acetate nanoparticles as controlled release nanocarriers for piperine[J]. Starch-Starke,2021,73(11-12):2100054. doi: 10.1002/star.202100054
|
[25] |
HU N, LI L N. Optimization of chestnut starch acetate synthesis by response surface methodology and its effect on dough properties[J]. J Food Process Pres,2021,45(5):e15431.
|
[26] |
KATOPO H, SONG Y, JANE J L. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches[J]. Carbohyd Polym,2002,47(3):233−244. doi: 10.1016/S0144-8617(01)00168-0
|
[27] |
钟嘉杭, 辛勇. 聚乳酸/热塑性淀粉共混物研究进展[J]. 高分子材料科学与工程,2022,38(11):160−168. [ZHONG J H, XIN Y. Progress of polylactic acid/thermoplastic starch blends[J]. Polymer materials Science and Engineering,2022,38(11):160−168.]
ZHONG J H, XIN Y. Progress of polylactic acid/thermoplastic starch blends[J]. Polymer materials Science and Engineering, 2022, 38(11): 160−168.
|
[28] |
董琪. 高直链淀粉醋酸酯合成及其与聚已内酯共混纤维的结构与性能[D]. 上海:东华大学, 2004. [DONG Q. Synthesis of high amylose acetate and its structure and properties of blended fiber with polycaprolactone[D]. Shanghai:Donghua University, 2004.]
DONG Q. Synthesis of high amylose acetate and its structure and properties of blended fiber with polycaprolactone[D]. Shanghai: Donghua University, 2004.
|
[29] |
WANG X, GAO W Y, ZHANG L M, et al. Study on the morphology, crystalline structure and thermal properties of yam starch acetates with different degrees of substitution[J]. Sci China Ser B,2008,51(9):859−865. doi: 10.1007/s11426-008-0089-1
|
[30] |
TUPA M, MALDONADO L, VAZQUEZ A, et al. Simple organocatalytic route for the synthesis of starch esters[J]. Carbohyd Polym,2013,98(1):349−357. doi: 10.1016/j.carbpol.2013.05.094
|
[31] |
DI FILIPPO S, TUPA M V, VAZQUEZ A, et al. Organocatalytic route for the synthesis of propionylated starch[J]. Carbohyd Polym,2016,137:198−206. doi: 10.1016/j.carbpol.2015.10.039
|
[32] |
THIEBAUD S, ABURTO J, ALRIC I, et al. Properties of fatty-acid esters of starch and their blends with LDPE[J]. J Appl Polym Sci,1997,65(4):705−721. doi: 10.1002/(SICI)1097-4628(19970725)65:4<705::AID-APP9>3.0.CO;2-O
|
[33] |
RUDNIK E, MATUSCHEK G, MILANOV N. Thermal properties of starch succinates[J]. Thermochimica Acta,2005,427(1−2):163−166. doi: 10.1016/j.tca.2004.09.006
|
[1] | YUAN Xin, ZHU Huijuan, MA Lingjun, CHEN Fang, LIAO Xiaojun, HU Xiaosong, JI Junfu. Effects of Superfine Grinding and High-pressure Processing on Physicochemical Properties and Polyphenol Antioxidant Activity of Barley Leaves[J]. Science and Technology of Food Industry, 2025, 46(7): 78-86. DOI: 10.13386/j.issn1002-0306.2024040188 |
[2] | JIANG Lina, ZHANG Xiuqing, PEI Haisheng, LI Yuanyuan, LIANG Liang, HU Xuefang, ZHANG Zhimin, ZHAI Xiaona. Effect of Superfine Grinding Technology on the Quality Characteristics of Zanthoxylum bungeanum Seed Powder[J]. Science and Technology of Food Industry, 2024, 45(8): 67-74. DOI: 10.13386/j.issn1002-0306.2023040017 |
[3] | ZHAO Yuhan, QIN Chang, SUN Fei, HAN Cong, CHEN Qingmin, YUE Fengli, CUI Bo, DU Yamin, FU Maorun, LI Fangrui. Effects of Superfine Grinding Treatment on the Physicochemical and Functional Properties of Mixed Congee Powder[J]. Science and Technology of Food Industry, 2022, 43(18): 21-28. DOI: 10.13386/j.issn1002-0306.2021090335 |
[4] | REN Xiaochan, CHANG Jingyao, MA Xiaoli, KONG Baohua, XIN Ying, HU Gongshe, LIU Qian. Effects of Different Particle Sizes on the Quality of Barley Flour after Superfine Grinding[J]. Science and Technology of Food Industry, 2022, 43(10): 80-86. DOI: 10.13386/j.issn1002-0306.2021080063 |
[5] | SHI Zao, ZHANG Fusheng, YANG Jinlai, WU Liangru, ZHENG Jiong. Effect of Superfine Grinding on Physicochemical Properties and Microstructure of Chimonobambusa quadrangularis Shoot Powder[J]. Science and Technology of Food Industry, 2021, 42(24): 40-47. DOI: 10.13386/j.issn1002-0306.2021040079 |
[6] | CHEN Jie, TAN Lin, ZHANG Qing, ZHANG Li-hua. Research Progress of Superfine Grinding Technology in Tofu Processing[J]. Science and Technology of Food Industry, 2018, 39(20): 324-329. DOI: 10.13386/j.issn1002-0306.2018.20.055 |
[7] | XIA Wen, HU Yang, LI Ji-hua, WEI Xiao-yi, WANG Fei, LIN Yan-yun. Effects of superfine grinding on retrogradation properties of tapioca starch[J]. Science and Technology of Food Industry, 2017, (24): 44-47. DOI: 10.13386/j.issn1002-0306.2017.24.009 |
[8] | WANG Ping, CHEN Qin-qin, BI Jin-feng, LIU Xuan, YI Jian-yong, ZHOU Lin-yan, ZHONG Yao-guang. Influence of superfine grinding on quality characteristic of jackfruit powder[J]. Science and Technology of Food Industry, 2015, (01): 144-148. DOI: 10.13386/j.issn1002-0306.2015.01.022 |
[9] | CHEN Jun, LIANG Rui-hong, LIU Xin-yu, LIU Wei, WU Shuang-shuang. Effect of superfine grinding of Lotus nut on the release rates of active ingredients[J]. Science and Technology of Food Industry, 2014, (23): 123-126. DOI: 10.13386/j.issn1002-0306.2014.23.016 |
[10] | Effect of superfine pulverizing on properties of millet bran dietary fiber[J]. Science and Technology of Food Industry, 2013, (13): 128-131. DOI: 10.13386/j.issn1002-0306.2013.13.044 |
1. |
杨戬,刘伯扬,王丹慧,高永亮,赵三军,赵凯,李慧,仪虹伯. 基于中红外光谱的牛乳中A 2β-酪蛋白检测方法研究. 中国乳业. 2024(11): 144-148+156 .
![]() |