Citation: | LIU Wei, WANG Xiaoyu, ZHOU Yuxi, et al. Research Progress on the Application of Low Eutectic Solvents in Extraction of Plant Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(24): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060084. |
[1] |
TANG W, LIU D, YIN J Y, et al. Consecutive and progressive purification of food-derived natural polysaccharide:Based on material, extraction process and crude polysaccharide[J]. Trends in Food Science & Technology,2020,99:76−87.
|
[2] |
XUE H K, WANG W L, BIAN J Y, et al. Recent advances in medicinal and edible homologous polysaccharides:Extraction, purification, structure, modification, and biological activities[J]. International Journal of Biological Macromolecules,2022,222:1110−1126. doi: 10.1016/j.ijbiomac.2022.09.227
|
[3] |
ZENG P J, LI J, CHEN Y L, et al. The structures and biological functions of polysaccharides from traditional Chinese herbs[J]. Progress in Molecular Biology and Translational Science,2019,163:423−444.
|
[4] |
WANG W L, TAN J Q, NIMA L M, et al. Polysaccharides from fungi:A review on their extraction, purification, structural features, and biological activities[J]. Food Chemistry: X,2022,15:100414. doi: 10.1016/j.fochx.2022.100414
|
[5] |
HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents:A review of fundamentals and applications[J]. Chemical Reviews,2020,121(3):1232−1285.
|
[6] |
CHOI Y H, SPRONSEN J V, DAI Y, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?[J]. Plant Physiology,2011,156(4):1701−1705. doi: 10.1104/pp.111.178426
|
[7] |
ZHANG W, CHENG S, ZHAI X, et al. Green and efficient extraction of polysaccharides from Poria cocos F. A. Wolf by deep eutectic solvent[J]. Natural Product Communications, 2020, 15(2):54−56.
|
[8] |
OMAR K A, SADEGHI R. Physicochemical properties of deep eutectic solvents:A review[J]. Journal of Molecular Liquids,2022,360:119524. doi: 10.1016/j.molliq.2022.119524
|
[9] |
DUAN L, DOU L L, GUO L, et al. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2405−2411.
|
[10] |
DAI Y, VAN SPRONSEN J, WITKAMP G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta,2013,766:61−68. doi: 10.1016/j.aca.2012.12.019
|
[11] |
KURTULBAS E, PEKEL A G, BILGIN M, et al. Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction[J]. Biomass Conversion and Biorefinery, 2020:1−10.
|
[12] |
FLORINDO C, OLIVERIRA F S, REBELO L P N, et al. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2416−2425.
|
[13] |
PISANO P L, ESPINO M, ÁNGELES FERNANDEZ M, et al. Structural analysis of natural deep eutectic solvents, theoretical and experimental study[J]. Microchemical Journal,2018,143:252−258. doi: 10.1016/j.microc.2018.08.016
|
[14] |
NAM M W, ZHAO J, LEE M S, et al. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents:Application to flavonoid extraction from Flos sophorae[J]. Green Chemistry,2015,17(3):1718−1727. doi: 10.1039/C4GC01556H
|
[15] |
WANG X S, WU Y F, LI J, et al. Ultrasound-assisted deep eutectic solvent extraction of echinacoside and oleuropein from Syringa pubescens Turcz.[J]. Industrial Crops and Products,2020,151:112442. doi: 10.1016/j.indcrop.2020.112442
|
[16] |
GOMEZ F J V, ESPINO M, FERNANDEZ M A, et al. A greener approach to prepare natural deep eutectic solvents[J]. Chemistry Select,2018,3(22):6122−6125.
|
[17] |
ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids:Versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society,2004,126(29):9142−9147. doi: 10.1021/ja048266j
|
[18] |
ABBOTT A P, CAPPER G, DAVIERS D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications,2003(1):70−71. doi: 10.1039/b210714g
|
[19] |
QIN H, HU X T, WANG J W, et al. Overview of acidic deep eutectic solvents on synthesis, properties and applications[J]. Green Energy & Environment,2019,5(1):14−27.
|
[20] |
ABBOTT A P, HARRIS R C, RYDER K S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry,2011,13(1):82−90. doi: 10.1039/C0GC00395F
|
[21] |
ABBOTT A P, ALABDULLAH S, AL-MURSHEDI A, et al. Bronsted acidity in deep eutectic solvents and ionic liquids[J]. Faraday Discussions,2018(206):365−377.
|
[22] |
JABLONSKY M, ANDREA S, RUSS A, et al. The pH behavior of seventeen deep eutectic solvents[J]. Bioresources,2018,13(3):5042−5051. doi: 10.15376/biores.13.3.5042-5051
|
[23] |
HAYYAN M, HASHIM M A, HAYYAN A, et al. Are deep eutectic solvents benign or toxic?[J]. Chemosphere,2013,90(7):2193−2195. doi: 10.1016/j.chemosphere.2012.11.004
|
[24] |
JUNEIDI I, HAYYAN M, HASHIM M A. Evaluation of toxicity and biodegradability for choline-based deep eutectic solvents[J]. RSC Advances,2015,5:83636. doi: 10.1039/C5RA12425E
|
[25] |
WU K R, REN J, WANG Q, et al. Research progress on the preparation and action mechanism of natural deep eutectic solvents and their application in food[J]. Foods,2022,11(21):3528. doi: 10.3390/foods11213528
|
[26] |
ZHAO B Y, XU P, YANG F X, et al. Biocompatible deep eutectic solvents based on choline chloride:Characterization and application to the extraction of rutin from Sophora japonica[J]. ACS Sustainable Chemistry & Engineering,2015,3(11):2746−2755.
|
[27] |
RADOSEVIC K, BUBALO M C, SRCEK V G, et al. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents[J]. Ecotoxicology and Environmental Safety,2015,112:46−53. doi: 10.1016/j.ecoenv.2014.09.034
|
[28] |
ABBOTT A P, EDIER K J, PAGE A J. Deep eutectic solvents-the vital link between ionic liquids and ionic solutions[J]. The Journal of Chemical Physics,2021(15):155.
|
[29] |
HAMMOND O S, BOWRON D T, EDLER K J. The effect of water upon deep eutectic solvent nanostructure:An unusual transition from ionic mixture to aqueous solution[J]. Angewandte Chemie,2017,129(33):9914−9917. doi: 10.1002/ange.201702486
|
[30] |
GABRIELE F, CHIARNI M, GERMANI R, et al. Effect of water addition on choline chloride/glycol deep eutectic solvents:Characterization of their structural and physicochemical properties[J]. Journal of Molecular Liquids,2019,291:111301. doi: 10.1016/j.molliq.2019.111301
|
[31] |
DAI Y, WITKAMP G J, VERPOORTE R, et al. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L[J]. Analytical Chemistry,2013,85(13):6272−6278. doi: 10.1021/ac400432p
|
[32] |
SHAH D, MJALLI F S. Effect of water on the thermo-physical properties of reline:an experimental and molecular simulation based approach[J]. Physical Chemistry Chemical Physics,2014,16(42):23900−23907.
|
[33] |
MENG X, BALLERAT-BUSSEROLLES K, HUSSON P, et al. Impact of water on the melting temperature of urea+choline chloride deep eutectic solvent[J]. New Journal of Chemistry,2016,40(55):4492−4499.
|
[34] |
YAN Y C, RASHMI W, KHALID M, et al. Potential application of deep eutectic solvents in heat transfer application[J]. Journal of Engineering and Technological Science,2017,12:1−14.
|
[35] |
AROSO I M, PAIVA A, REIS R L, et al. Natural deep eutectic solvents from choline chloride and betaine–physicochemical properties[J]. Journal of Molecular Liquids,2017,241:654−661. doi: 10.1016/j.molliq.2017.06.051
|
[36] |
WANG Q, YANG X Y, ZHU C W, et al. Advances in the utilization of tea polysaccharides:Preparation, physicochemical properties, and health benefits[J]. Polymers,2022,14(14):2775. doi: 10.3390/polym14142775
|
[37] |
XIA B, LIU Q, SUN D, et al. Ultrasound-assisted deep eutectic solvent extraction of polysaccharides from Anji white tea:Characterization and comparison with the conventional method[J]. Foods,2023,12(3):588. doi: 10.3390/foods12030588
|
[38] |
DU B, JEEPIPALLI S P K, XU B. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication[J]. Ultrasonics Sonochemistry,2022,90:106170. doi: 10.1016/j.ultsonch.2022.106170
|
[39] |
黄秀红, 刘丽辰, 阮怿航, 等. 响应面优化低共熔溶剂提取乌龙茶多糖的研究[J]. 食品研究与开发,2020,41(11):96−103. [HUANG X H, LIU L C, RUAN Y H, et al. Optimization of deep eutectic solvents extraction of polysaccharides from Oolong Tea by response surface methodology[J]. Food Research and Development,2020,41(11):96−103.] doi: 10.12161/j.issn.1005-6521.2020.11.016
HUANG X H, LIU L C, RUAN Y H, et al. Optimization of deep eutectic solvents extraction of polysaccharides from Oolong Tea by response surface methodology[J]. Food Research and Development, 2020, 41(11): 96−103. doi: 10.12161/j.issn.1005-6521.2020.11.016
|
[40] |
王治丹, 代云飞, 罗尚娟, 等. 铁皮石斛化学成分及药理作用的研究进展[J]. 华西药学杂志,2022,37(4):472−476. [WANG Z D, DAI Y F, LUO S J, et al. Research progress on chemical constituents and pharmacological effects of Dendrobium officinale[J]. West China Journal of Pharmaceutical Sciences,2022,37(4):472−476.]
WANG Z D, DAI Y F, LUO S J, et al. Research progress on chemical constituents and pharmacological effects of Dendrobium officinale[J]. West China Journal of Pharmaceutical Sciences, 2022, 37(4): 472−476.
|
[41] |
梁静. 基于深度共熔溶剂提取铁皮石斛多糖及其生物活性的评价[D]. 广州:华南理工大学, 2018. [LIANG J. Extraction and bioactivity of polysaccharides from Dendrobium officinale by deep eutectic solvents[D]. Guangzhou:South China University of Technology, 2018.]
LIANG J. Extraction and bioactivity of polysaccharides from Dendrobium officinale by deep eutectic solvents[D]. Guangzhou: South China University of Technology, 2018.
|
[42] |
YANG M L, REN W J, LI G Y, et al. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi[J]. Food & Function,2022,13(22):12541−12560.
|
[43] |
LIU M, WANG S, BI W, et al. Plant polysaccharide itself as hydrogen bond donor in a deep eutectic system-based mechanochemical extraction method[J]. Food Chemistry,2023,399:133941. doi: 10.1016/j.foodchem.2022.133941
|
[44] |
LIU M, CAO D, BI W, et al. Extraction of natural products by direct formation of eutectic systems[J]. ACS Sustainable Chemistry & Engineering,2021,9(36):12049−12057.
|
[45] |
唐兰芳. 黄精多糖低共熔溶剂提取工艺和特性研究及应用[D]. 长沙:湖南农业大学, 2021. [TANG L F. Study on extraction technology, characteristic of polysaccharides from Polygonatum sibiricum extracted by deep eutectic solvents and application[D]. Changsha:Hunan Agricultural University, 2021.]
TANG L F. Study on extraction technology, characteristic of polysaccharides from Polygonatum sibiricum extracted by deep eutectic solvents and application[D]. Changsha: Hunan Agricultural University, 2021.
|
[46] |
汪涛, 周新群, 孙君社, 等. 低共熔溶剂提取黄精多糖工艺优化及抗氧化活性研究[J]. 食品科学技术学报,2020,38(6):111−120. [WANG T, ZHOU X Q, SUN J S, et al. Study on optimal process and antioxidant activity of Polygonatum sibiricum polysaccharides extracted by deep eutectic solvents[J]. Journal of Food Science and Technology,2020,38(6):111−120.] doi: 10.3969/j.issn.2095-6002.2020.06.014
WANG T, ZHOU X Q, SUN J S, et al. Study on optimal process and antioxidant activity of Polygonatum sibiricum polysaccharides extracted by deep eutectic solvents[J]. Journal of Food Science and Technology, 2020, 38(6): 111−120. doi: 10.3969/j.issn.2095-6002.2020.06.014
|
[47] |
WANG N, LI Q. Study on extraction and antioxidant activity of polysaccharides from Radix Bupleuri by natural deep eutectic solvents combined with ultrasound-assisted enzymolysis[J]. Sustainable Chemistry and Pharmacy,2022,30:100877. doi: 10.1016/j.scp.2022.100877
|
[48] |
HUI H P, GAO W J. Physicochemical features and antioxidant activity of polysaccharides from Herba patriniae by gradient ethanol precipitation[J]. Arabian Journal of Chemistry,2022,15(5):103770. doi: 10.1016/j.arabjc.2022.103770
|
[49] |
刘旭, 孟继坤, 葛鑫会, 等. 低共熔溶剂提取的黄精多糖性质分析[J]. 食品工业科技,2022,43(11):52−57. [LIU X, MENG J K, GE X H, et al. Properties of polysaccharides from Polygonatum sibiricum extracted with deep eutectic solvents[J]. Science and Technology of Food Industry,2022,43(11):52−57.]
LIU X, MENG J K, GE X H, et al. Properties of polysaccharides from Polygonatum sibiricum extracted with deep eutectic solvents[J]. Science and Technology of Food Industry, 2022, 43(11): 52−57.
|
[50] |
何瑞阳, 王锋, 苏小军, 等. 玉竹多糖低共熔溶剂提取工艺优化及其抗氧化和抗糖基化活性研究[J]. 食品与发酵工业,2022,48(8):190−198. [HE R Y, WANG F, SU X J, et al. Optimization of extraction process of Polygonatum odoratum polysaccharide by deep eutectic solvent and its antioxidant and anti glycosylation activities[J]. Food and Fermentation Industries,2022,48(8):190−198.]
HE R Y, WANG F, SU X J, et al. Optimization of extraction process of Polygonatum odoratum polysaccharide by deep eutectic solvent and its antioxidant and anti glycosylation activities[J]. Food and Fermentation Industries, 2022, 48(8): 190−198.
|
[51] |
STEENBEKE M, DE DECKER I, MARCHAND S, et al. Dietary advanced glycation end products in an elderly population with diabetic nephropathy:An exploratory investigation[J]. Nutrients,2022,14(9):1818. doi: 10.3390/nu14091818
|
[52] |
CHEN L, YANG Y Y, ZHOU R, et al. The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. using a deep eutectic solvent[J]. Analytical Methods,2021,13(10):1226−1231. doi: 10.1039/D0AY02352C
|
[53] |
熊苏慧, 夏伯候, 雷思敏, 等. 基于低共熔溶剂提取千斤拔多糖[J]. 湖南中医药大学学报,2018,38(9):1003−1008. [XIONG S H, XIA B H, LEI S M, et al. Extraction of polysaccharides from Moghania macrophylla based on deep eutectic solvents[J]. Journal of Hunan University of Traditional Chinese Medicine,2018,38(9):1003−1008.]
XIONG S H, XIA B H, LEI S M, et al. Extraction of polysaccharides from Moghania macrophylla based on deep eutectic solvents[J]. Journal of Hunan University of Traditional Chinese Medicine, 2018, 38(9): 1003−1008.
|
[54] |
SONG Q Q, WANG Y K, HUANG L X, et al. Review of the relationships among polysaccharides, gut microbiota, and human health[J]. Food Research International,2021,140:109858. doi: 10.1016/j.foodres.2020.109858
|
[55] |
冯康琳. 荷叶多糖的提取条件优化、结构表征、体外活性评价及其消化酵解特性的研究[D]. 雅安:四川农业大学, 2022. [FENG K L. Extraction conditions optimization, structural characterization, biological functions of polysaccharides from lotus leaves and its in vitro digestive and microbial fermentation characteristics [D]. Yaan:Sichuan Agricultural University, 2022.]
FENG K L. Extraction conditions optimization, structural characterization, biological functions of polysaccharides from lotus leaves and its in vitro digestive and microbial fermentation characteristics [D]. Yaan: Sichuan Agricultural University, 2022.
|
[56] |
KE Y, LIN L Z, ZHAO M M. Lotus leaf polysaccharides prepared by alkaline water, deep eutectic solvent and high pressure homogenization-assisted dual enzyme extraction:A comparative study of structural features, prebiotic activities and functionalities[J]. Food Hydrocolloids,2023,143:108870. doi: 10.1016/j.foodhyd.2023.108870
|
[57] |
于秋菊, 王晓丽. 复合酶辅助低共熔溶剂提取枸杞子多糖的工艺优化及活性研究[J]. 食品科技,2022,47(12):171−179. [YU Q J, WANG X L. Optimization and activity of complex enzyme assisted deep eutectic solvents of polysaccharide extraction from Lycium barbarum[J]. Food Science and Technology,2022,47(12):171−179.]
YU Q J, WANG X L. Optimization and activity of complex enzyme assisted deep eutectic solvents of polysaccharide extraction from Lycium barbarum[J]. Food Science and Technology, 2022, 47(12): 171−179.
|
[58] |
张锦钰. 低共熔溶剂提取淮山多糖及其结构、生物活性研究[D]. 长沙:湖南农业大学, 2020. [ZHANG J Y. Study on structure and bioactivity of polysaccharides extracted from Chinese Yam using deep eutectic solvents[D]. Changsha:Hunan Agricultural University, 2020.]
ZHANG J Y. Study on structure and bioactivity of polysaccharides extracted from Chinese Yam using deep eutectic solvents[D]. Changsha: Hunan Agricultural University, 2020.
|
[59] |
白冰瑶, 李泉岑, 马欣悦, 等. 响应面法优化超声辅助低共熔溶剂提取红枣多糖工艺[J]. 食品研究与开发,2022,47(18):122−129. [BAI B Y, LI Q C, MA X Y, et al. Optimization of ultrasound-assisted deep eutectic solvent extraction of polysaccharides from jujube[J]. Food Research and Development,2022,47(18):122−129.]
BAI B Y, LI Q C, MA X Y, et al. Optimization of ultrasound-assisted deep eutectic solvent extraction of polysaccharides from jujube[J]. Food Research and Development, 2022, 47(18): 122−129.
|
[60] |
白冰瑶, 付超, 张春兰, 等. 不同提取方法对恰玛古多糖生物活性的比较[J]. 食品科技,2022,47(3):214−223. [BAI B Y, FU C, ZHANG C L, et al. Comparison on bioactivity of Brassica rapa L. polysaccharides by different extraction methods[J]. Food Science and Technology,2022,47(3):214−223.]
BAI B Y, FU C, ZHANG C L, et al. Comparison on bioactivity of Brassica rapa L. polysaccharides by different extraction methods[J]. Food Science and Technology, 2022, 47(3): 214−223.
|
[61] |
孙悦, 何莲芝, 苏卓文, 等. 超声辅助低共熔溶剂提取甘草多糖的研究[J]. 食品研究与开发,2021,42(2):84−91. [SUN Y, HE L Z, SU Z W, et al. Ultrasonic-assisted deep eutectic solvent extraction of Glycyrrhiza polysaccharides[J]. Food Research and Development,2021,42(2):84−91.]
SUN Y, HE L Z, SU Z W, et al. Ultrasonic-assisted deep eutectic solvent extraction of Glycyrrhiza polysaccharides[J]. Food Research and Development, 2021, 42(2): 84−91.
|
[62] |
孙悦. 微波辅助低共熔溶剂提取鹰嘴豆中生物活性成分研究[D]. 石河子:石河子大学, 2020. [SUN Y. Microwave-assisted deep eutectic solvent extraction of bioactive components from chickpeas[D]. Shihezi:Shihezi University, 2020.]
SUN Y. Microwave-assisted deep eutectic solvent extraction of bioactive components from chickpeas[D]. Shihezi: Shihezi University, 2020.
|
[63] |
LI J H, LI W, LUO S, et al. Alternate ultrasound/microwave digestion for deep eutectic hydro-distillation extraction of essential oil and polysaccharide from Schisandra chinensis (Turcz.) Baill[J]. Molecules,2019,24(7):1288. doi: 10.3390/molecules24071288
|
[64] |
LONGERAS O, GAUTIER A, BALLERAT-BUSSEROLLES K, et al. Deep eutectic solvent with thermo-switchable hydrophobicity[J]. ACS Sustainable Chemistry & Engineering,2020,8(33):12516−12520.
|
[65] |
LIU F J, XUE Z M, LAN X, et al. CO2 switchable deep eutectic solvents for reversible emulsion phase separation[J]. Chemical Communications,2021,57(5):627−630. doi: 10.1039/D0CC06963A
|
[66] |
TANG Z H, XU Y, CAI C Y, et al. Extraction of Lycium barbarum polysaccharides using temperature-switchable deep eutectic solvents:A sustainable methodology for recycling and reuse of the extractant[J]. Journal of Molecular Liquids,2023,383:122063. doi: 10.1016/j.molliq.2023.122063
|
[67] |
MORALES-MDEINA R, DRUSCH S, ACEVEDO F, et al. Structure, controlled release mechanisms and health benefits of pectins as an encapsulation material for bioactive food components[J]. Food & Function,2022,13(21):10870−10881.
|
[68] |
CHEN S J, XIAO L Y, LI S J, et al. The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels[J]. Ultrasonics Sonochemistry,2022,86:106045. doi: 10.1016/j.ultsonch.2022.106045
|
[69] |
SENGAR A S, RAWSON A, MUTHIAH M, et al. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste[J]. Ultrasonics Sonochemistry,2020,61:104812. doi: 10.1016/j.ultsonch.2019.104812
|
[70] |
EL-GHARBAWY A A M, HAYYAN A, HAYYAN M, et al. Natural deep eutectic solvent-assisted pectin extraction from pomelo peel using sonoreactor:experimental optimization approach[J]. Processes,2019,7(7):416. doi: 10.3390/pr7070416
|
[71] |
ADBUAL HADI N, CHOO Y M, et al. Performance of choline-based deep eutectic solvents in the extraction of tocols from crude palm oil[J]. Journal of the American Oil Chemists’Society,2015,92(22):1709−1716.
|
[72] |
BENVENUTTI L, DEL PILAR SANCHEZ-CAMARGO A, ZIELINSKI A A F, et al. NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product:In silico and experimental approaches for solvent selection[J]. Journal of Molecular Liquids,2020,315:113761. doi: 10.1016/j.molliq.2020.113761
|
[73] |
LIEW S Q, NGOH G C, YUSOFF R, et al. Acid and deep eutectic solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels[J]. Biocatalysis and Agricultural Botechnology,2018,13:1−11. doi: 10.1016/j.bcab.2017.11.001
|
[74] |
ZIOGA M, TSOUKO E, MAINA S, et al. Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies[J]. Food Hydrocolloids,2022,132:107887. doi: 10.1016/j.foodhyd.2022.107887
|
[75] |
RAJI Z, KHODAIYAN F, REZAEI K, et al. Extraction optimization and physicochemical properties of pectin from melon peel[J]. International Journal of Biological Macromolecules,2017,98:709−716. doi: 10.1016/j.ijbiomac.2017.01.146
|
[76] |
BENVENUTTI L, ZIELINSKI A A F, FERREIRA S R S. Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product[J]. The Journal of Supercritical Fluids,2022,189:105729. doi: 10.1016/j.supflu.2022.105729
|
[77] |
SHAFIE M H, YUSOF R, GAN C Y. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi:Optimization and characterization studies[J]. Carbohydrate Polymers,2019,216:303−311. doi: 10.1016/j.carbpol.2019.04.007
|
[78] |
SHAFIE M H, GAN C Y. Could choline chloride-citric acid monohydrate molar ratio in deep eutectic solvent affect structural, functional and antioxidant properties of pectin?[J]. International Journal of Biological Macromolecules,2020,149:835−843. doi: 10.1016/j.ijbiomac.2020.02.013
|
[79] |
MR M B S, MR V S K, CHAUDHARY M, et al. A mini review on synthesis, properties and applications of deep eutectic solvents[J]. Journal of the Indian Chemical Society,2021,98(11):100210. doi: 10.1016/j.jics.2021.100210
|
[80] |
CUI Q, LIU J Z, WANG L T, et al. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves[J]. Journal of Cleaner Production,2018,184:826−835. doi: 10.1016/j.jclepro.2018.02.295
|
[81] |
CAO J, CHEN L Y, LI M H, et al. Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities[J]. Green Chemistry,2018,20(8):1879−1886. doi: 10.1039/C7GC03820H
|
[82] |
HUANG Z L, WU B P, WEN Q, et al. Deep eutectic solvents can be viable enzyme activators and stabilizers[J]. Journal of Chemical Technology & Biotechnology,2014,89(12):1975−1981.
|
[1] | YUAN Xin, ZHU Huijuan, MA Lingjun, CHEN Fang, LIAO Xiaojun, HU Xiaosong, JI Junfu. Effects of Superfine Grinding and High-pressure Processing on Physicochemical Properties and Polyphenol Antioxidant Activity of Barley Leaves[J]. Science and Technology of Food Industry, 2025, 46(7): 78-86. DOI: 10.13386/j.issn1002-0306.2024040188 |
[2] | JIANG Lina, ZHANG Xiuqing, PEI Haisheng, LI Yuanyuan, LIANG Liang, HU Xuefang, ZHANG Zhimin, ZHAI Xiaona. Effect of Superfine Grinding Technology on the Quality Characteristics of Zanthoxylum bungeanum Seed Powder[J]. Science and Technology of Food Industry, 2024, 45(8): 67-74. DOI: 10.13386/j.issn1002-0306.2023040017 |
[3] | ZHAO Yuhan, QIN Chang, SUN Fei, HAN Cong, CHEN Qingmin, YUE Fengli, CUI Bo, DU Yamin, FU Maorun, LI Fangrui. Effects of Superfine Grinding Treatment on the Physicochemical and Functional Properties of Mixed Congee Powder[J]. Science and Technology of Food Industry, 2022, 43(18): 21-28. DOI: 10.13386/j.issn1002-0306.2021090335 |
[4] | REN Xiaochan, CHANG Jingyao, MA Xiaoli, KONG Baohua, XIN Ying, HU Gongshe, LIU Qian. Effects of Different Particle Sizes on the Quality of Barley Flour after Superfine Grinding[J]. Science and Technology of Food Industry, 2022, 43(10): 80-86. DOI: 10.13386/j.issn1002-0306.2021080063 |
[5] | SHI Zao, ZHANG Fusheng, YANG Jinlai, WU Liangru, ZHENG Jiong. Effect of Superfine Grinding on Physicochemical Properties and Microstructure of Chimonobambusa quadrangularis Shoot Powder[J]. Science and Technology of Food Industry, 2021, 42(24): 40-47. DOI: 10.13386/j.issn1002-0306.2021040079 |
[6] | CHEN Jie, TAN Lin, ZHANG Qing, ZHANG Li-hua. Research Progress of Superfine Grinding Technology in Tofu Processing[J]. Science and Technology of Food Industry, 2018, 39(20): 324-329. DOI: 10.13386/j.issn1002-0306.2018.20.055 |
[7] | XIA Wen, HU Yang, LI Ji-hua, WEI Xiao-yi, WANG Fei, LIN Yan-yun. Effects of superfine grinding on retrogradation properties of tapioca starch[J]. Science and Technology of Food Industry, 2017, (24): 44-47. DOI: 10.13386/j.issn1002-0306.2017.24.009 |
[8] | WANG Ping, CHEN Qin-qin, BI Jin-feng, LIU Xuan, YI Jian-yong, ZHOU Lin-yan, ZHONG Yao-guang. Influence of superfine grinding on quality characteristic of jackfruit powder[J]. Science and Technology of Food Industry, 2015, (01): 144-148. DOI: 10.13386/j.issn1002-0306.2015.01.022 |
[9] | CHEN Jun, LIANG Rui-hong, LIU Xin-yu, LIU Wei, WU Shuang-shuang. Effect of superfine grinding of Lotus nut on the release rates of active ingredients[J]. Science and Technology of Food Industry, 2014, (23): 123-126. DOI: 10.13386/j.issn1002-0306.2014.23.016 |
[10] | Effect of superfine pulverizing on properties of millet bran dietary fiber[J]. Science and Technology of Food Industry, 2013, (13): 128-131. DOI: 10.13386/j.issn1002-0306.2013.13.044 |
1. |
杨戬,刘伯扬,王丹慧,高永亮,赵三军,赵凯,李慧,仪虹伯. 基于中红外光谱的牛乳中A 2β-酪蛋白检测方法研究. 中国乳业. 2024(11): 144-148+156 .
![]() |