Citation: | YUN Ziguang, WEI Yong, ZHANG Jian, et al. Advances in the Rapid Detection of Foodborne Pathogens by Nucleic Acid Amplification Lateral Flow Assays[J]. Science and Technology of Food Industry, 2024, 45(5): 412−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050216. |
[1] |
张偲偲, 刘兴泉, 杨媚婷, 等. 食源性致病菌现场即时检测技术研究进展[J]. 分析化学,2021,49(10):1631−1639. [ZHANG S S, LIU X Q, YANG M T, et al. Recent advances in point-of-care diagnosis for foodborne pathogens[J]. Analytical Chemistry,2021,49(10):1631−1639.]
|
[2] |
凌超. 食源性致病菌检测分析技术的研究进展[J]. 食品安全导刊, 2019(26):22−23. [LING C. Research progress on detection and analysis technology of foodborne pathogens [J]. China Food Safety Magazine 2019(26):22−23.]
LING C. Research progress on detection and analysis technology of foodborne pathogens [J]. China Food Safety Magazine 2019(26): 22−23.
|
[3] |
李其美, 周邦荫, 颜李秀. PCR技术在食品检测中的应用[J]. 食品科技,2021(27):128−129. [LI Q M, ZHOU B M, YAN L X. Application of PCR in food detection[J]. Food Science and Technology,2021(27):128−129.]
|
[4] |
贾方芳, 张自强, 张倩文, 等. 兔源性沙门氏菌PCR检测方法的建立[J]. 中国养兔杂志,2023,253(1):10−13. [JIA F F, ZHANG Z Q, ZHANG Q W, et al. Establishment of PCR detection method for rabbit Salmonella[J]. Chinese Journal of Rabbit Farming,2023,253(1):10−13.]
|
[5] |
王仕成. 奶牛乳房炎四种主要致病菌多重PCR检测方法的建立与应用[D]. 呼和浩特:内蒙古农业大学, 2020. [WANG S C. Multiplex PCR assay for detecting four major mastitis-causing pathogens in milk[D]. Hohhot:Inner Mongolia Agricultural University, 2020.]
WANG S C. Multiplex PCR assay for detecting four major mastitis-causing pathogens in milk[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[6] |
陈秀琴, 林甦, 郑敏, 等. 生鲜肉中3种食源性致病菌Taqman多重荧光定量PCR检测方法的建立[J]. 福建畜牧兽医,2021,43(3):22−26. [CHEN X Q, LIN S, ZHENG M, et al. Establishment of a multiplex Taqman real-time PCR assay for the simultaneous detection of three foodborne pathogens in fresh meat[J]. Journal of Animal Husbandry and Veterinary Medicine Fujian,2021,43(3):22−26.] doi: 10.3969/j.issn.1003-4331.2021.03.008
|
[7] |
SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.1-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 1:Salmonella[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.1-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 1: Salmonella[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[8] |
SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.2-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 2:Staphylococcus aureus[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.2-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 2: Staphylococcus aureus[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[9] |
SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第3部分:副溶血性弧菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.3-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 3:Vibrio parahaemolyticus[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.3-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 3: Vibrio parahaemolyticus[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[10] |
SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.4-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 4:Clostridium spp[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.4-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 4: Clostridium spp[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[11] |
SN/T 5439.5-2022出口食品中食源性致病菌快速检测方法 PCR试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.5-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 5:Shiga toxin-producing Escherichia coli and Escherichia coli[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.5-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 5: Shiga toxin-producing Escherichia coli and Escherichia coli[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[12] |
SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.6-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 6:Campylobacter jejuni[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.6-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 6: Campylobacter jejuni[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[13] |
SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌[S]. 北京:中华人民共和国海关总署, 2022. [SN/T 5439.7-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 7:Listeria monocytogenes[S]. Beijing:General Administration of Customs of the People’s Republic of China, 2022.]
SN/T 5439.7-2022 Method for rapid detection of foodborne pathogens in export food-PCR-test strip method Part 7: Listeria monocytogenes[S]. Beijing: General Administration of Customs of the People’s Republic of China, 2022.
|
[14] |
RAY M, ACHARY K G, NAYAK S, et al. Development of a colloidal gold strip-based immol/lunochromatographic assay for rapid detection of Fusarium oxysporum in ginger[J]. Journal of the Science of Food and Agriculture,2019,99(14):6155−6166. doi: 10.1002/jsfa.9859
|
[15] |
孙萌, 郜晶, 秦雪怡, 等. 核酸试纸条检测方法研究进展[J]. 中国生物工程杂志,2022,42(12):69−78. [SUN M, GAO J, QIN X Y, et al. Research progress of nucleic acid test strip detection methods[J]. China Biotechnology,2022,42(12):69−78.]
|
[16] |
刘志科, 杨宁宁, 徐明国, 等. 鸡白痢沙门氏菌胶体金免疫层析快速检测试纸条的研制及初步应用[J]. 河南科技学院学报(自然科学版),2018,46(1):39−48. [LIU Z K, YANG N N, XU M G, et al. Development and primary application of colloidal gold immol/lunochromatography test strip for rapid detection of Salmonella pullorum[J]. Journal of Henan Institute of Science and Technology (Natural Science Edition),2018,46(1):39−48.] doi: 10.3969/j.issn.1008-7516.2018.01.008
|
[17] |
陈峥嵘. 犬瘟热病毒AS-PCR核酸试纸条的研究[D]. 武汉:华中农业大学, 2019. [CHEN Z R. Studiy on AS-PCR nucleic acid strip of canine distemper virus[D]. Wuhan:Huazhong Agricultural University, 2019.]
CHEN Z R. Studiy on AS-PCR nucleic acid strip of canine distemper virus[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[18] |
SINGH R, PAL V, KUMAR M, TRIPATHI N K, et al. Development of a PCR-lateral flow assay for rapid detection of Yersinia pestis, the causative agent of plague[J]. Acta Tropica,2021,220:105958−105964. doi: 10.1016/j.actatropica.2021.105958
|
[19] |
陈诗胜, 张正荣, 任建鸾, 等. 奶牛乳房炎四种致病菌PCR核酸免疫层析试纸条快速检测方法的建立及应用[J]. 中国兽医科学,2020,50(3):283−293. [CHEN S S, ZHANG Z R, REN J L, et al. Establishment and application of PCR nucleic acid immol/lunochromatographic strip for rapid detection of four pathogenic bacteria in dairy cow mastitis[J]. Chinese Veterinary Science,2020,50(3):283−293.]
|
[20] |
NOR A Z, SALWANI H, NORAIN HASLINIE H, et al. The evaluation of a multiplex PCR-DNA dipstick assay with culture method and EZ Typhi carrier DNA assay to detect Salmonella typhi in well water samples[J]. Asian Pacific Journal of Cancer Prevention,2014,4(3):243−252.
|
[21] |
侯巧华. 基于LCR、PCR核酸试纸条检测食源性致病菌方法的研究[D]. 长春:吉林农业大学, 2016. [HOU Q H. The research on detection of food-borne pathogenic bacteria by nucleic acid dipstick assay based on LCR and PCR[D]. Changchun:Jilin Agricultural University, 2016.]
HOU Q H. The research on detection of food-borne pathogenic bacteria by nucleic acid dipstick assay based on LCR and PCR[D]. Changchun: Jilin Agricultural University, 2016.
|
[22] |
KIM J H, OH S W. A colorimetric lateral flow assay based on multiplex PCR for the rapid detection of viable Escherichia coli O157:H7 and Salmonella typhimurium without enrichment[J]. LWT-Food Science and Technology,2021,152:112242−112247. doi: 10.1016/j.lwt.2021.112242
|
[23] |
LEIGH S A, BRANTON S L, EVANS J D, et al. Fluorescent microspheres as a positive indicator in an intratracheal infection model[J]. Journal of Microbiol Methods,2020,172:105886−105892. doi: 10.1016/j.mimet.2020.105886
|
[24] |
滕军. 食品中大肠杆菌O157:H7和空肠弯曲菌快速检测新方法研究[D]. 合肥:合肥工业大学, 2019. [TENG J. Study of novel rapid detection methods of Escherichia coli O157:H7 and Campylobacter jejuni in food[D]. Hefei:Hefei University of Technology, 2019.]
TENG J. Study of novel rapid detection methods of Escherichia coli O157: H7 and Campylobacter jejuni in food[D]. Hefei: Hefei University of Technology, 2019.
|
[25] |
冯遥. B族链球菌新型免疫层析检测试纸条研发及性能评价[D]. 广州:广州医科大学, 2019. [FENG Y. Development and performance evaluation of a new immol/Lunochromatographic test strip for group B. streptococcus[D]. Guangzhou:Guangzhou Medical University, 2019.]
FENG Y. Development and performance evaluation of a new immol/Lunochromatographic test strip for group B. streptococcus[D]. Guangzhou: Guangzhou Medical University, 2019.
|
[26] |
WANG Q, LONG M, LÜ C, et al. Lanthanide-labeled fluorescent-nanoparticle immol/lunochromatographic strips enable rapid and quantitative detection of Escherichia coli O157:H7 in food samples[J]. Food Control,2020,109:106894−106903. doi: 10.1016/j.foodcont.2019.106894
|
[27] |
JUNG Y, HEO Y, LEE J J, et al. Smartphone-based lateral flow imaging system for detection of food-borne bacteria E. coli O157:H7[J]. Journal of Microbiological Methods,2019,168:105800−105825.
|
[28] |
王月. 基于PCR核酸修饰技术结合核酸试纸条的鼠伤寒沙门氏菌检测方法研究[D]. 大庆:黑龙江八一农垦大学, 2018. [WANG Y. Detection method of Salmonella typhimurium based on PCR nucleic acid modification technology combined with nucleic acid test strips[D]. Daqing:Heilongjiang Bayi Agricultural University, 2018.]
WANG Y. Detection method of Salmonella typhimurium based on PCR nucleic acid modification technology combined with nucleic acid test strips[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018.
|
[29] |
董晶, 卢鑫, 郭威, 等. 等温扩增技术在食源性致病菌检测中的研究进展[J]. 食品与发酵工业,2021,47(8):256−260. [DONG J, LU X, GUO W, et al. Research progress on isothermal amplification technology in the detection of foodborne pathogens[J]. Food and Fermentation Industries,2021,47(8):256−260.]
|
[30] |
钟海霞, 周寒嫣, 罗欢, 等. 等温扩增技术在食源性致病菌检测中的研究进展[J]. 食品工业科技,2019,40(7):362−367. [ZHONG H X, ZHOU H Y, LUO H, et al. Research progress of isothermal amplification in the detection of pathogenic bacteria in food[J]. Science and Technology of Food Industry,2019,40(7):362−367.]
|
[31] |
刘巨, 梁涛波, 许恒毅. 滚环扩增介导的核酸信号放大策略在生物传感器中的应用研究进展[J]. 分析测试学报,2020,39(12):1556−1566. [LIU J, LIANG T B, XU H Y. Advance on application of rolling circle amplification-mediated nucleic acid signal amplification strategy in biosensors[J]. Journal of Instrumental Analysis,2020,39(12):1556−1566.] doi: 10.3969/j.issn.1004-4957.2020.12.019
|
[32] |
黄梦琦, 李婧姝, 邱孺, 等. 交叉引物恒温扩增技术(CPA)研究进展[J]. 民营科技,2018(9):78−79. [HUANG M Q, LI J S, QIU R, et al. Advances in cross primer isothermal amplification (CPA)[J]. Private technology,2018(9):78−79.]
|
[33] |
姜志勇, 文华康, 渠洋, 等. RPA检测方法研究进展[J]. 海洋与渔业,2022(1):114−115. [JIANG Z Y, WEN H K, QU Y, et al. Research progress of RPA detection methods[J]. Marine Fisheries,2022(1):114−115.]
|
[34] |
高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报,2020,36(5):22−31. [GAO W F, ZHANG L P, ZHU P. Advances of isothermal amplification technology and its combined CRISPR in rapid microbial detection[J]. Biotechnology Bulletin,2020,36(5):22−31.]
|
[35] |
ZHANG Y, FARWIN A, YING J Y. Directly interface microreaction tube and test strip for the detection of Salmonella in food with combined isothermal amplification and lateral flow assay[J]. Food Microbiology,2022,107:104062−104068. doi: 10.1016/j.fm.2022.104062
|
[36] |
JIANG Y, CHEN S, ZHAO Y, et al. Multiplex loop-mediated isothermal amplification-based lateral flow dipstick for simultaneous detection of 3 food-borne pathogens in powdered infant formula[J]. Journal of Dairy Science,2020,103(5):4002−4012. doi: 10.3168/jds.2019-17538
|
[37] |
WEN Y Y, TAN Y J, ZHAO L C, et al, Rapid on-site detection of viable Escherichia coli O157:H7 in lettuce using immol/lunomagnetic separation combined with PMAxx-LAMP and nucleic acid lateral flow strip [J]. Microchemical Journal, 2022, 178:107348−107357.
|
[38] |
周梦婕, 李小盼, 代荣阳, 等. 免疫层析试纸条检测技术的研究进展[J]. 检验医学与临床,2019,16(22):3382−3386. [ZHOU M J, LI X P, DAI R Y, et al. Research progress of immol/Lunochromatographic test strip detection technology[J]. Laboratory Medicine Clinical,2019,16(22):3382−3386.] doi: 10.3969/j.issn.1672-9455.2019.22.048
|
[39] |
袁琳, 陆冬筱, 李金华. 基于纳米酶的比色生物传感器在生物医学检测中的应用[J]. 生物化学与生物物理进展,2023,50(7):1638−1650. [YUAN L, LU D X, LI J H. Application of colorimetric biosensor based on nanozyme in biomedical detection[J]. Progress in Biochemistry and Biophysics,2023,50(7):1638−1650.]
|
[40] |
ZHANG L, CHEN Y, CHENG N, et al. Ultrasensitive detection of viable Enterobacter sakazakii by a continual cascade nanozyme biosensor[J]. Analytical Chemistry,2017,89(19):10194−10200. doi: 10.1021/acs.analchem.7b01266
|
[41] |
SHI D L, SHI H. Combining loop-mediated isothermal amplification and nanozyme-strip for ultrasensitive and rapid detection of viable Listeria monocytogenes cells and biofilms[J]. LWT-Food Science and Technology,2022,154:112641−112649. doi: 10.1016/j.lwt.2021.112641
|
[42] |
唐豪, 赵子惠, 张登基, 等. 重组酶聚合酶扩增技术结合胶体金试纸条检测新城疫病毒方法的建立及应用[J]. 中国兽医科学,2023,53(3):298−303. [TANG H, ZHAO Z H, ZHANG D J, et al. Establishment and application of recombinant enzyme polymerase amplification combined with colloidal gold test strip for detection of Newcastle disease virus[J]. Chinese Veterinary Science,2023,53(3):298−303.]
|
[43] |
葛志毅, 周建华, 尚佑军, 等. 一种侧流试纸结合FAM重组酶聚合酶扩增(RPA)诊断布鲁氏菌感染的方法[J]. 中国人兽共患病学报,2019,35(10):905−908. [GE Z Y, ZHOU J H, SHANG Y J, et al. Lateral flow test strips combined with FAM recombinase polymerase amplification (RPA) for the diagnosis of Brucella in fection[J]. Chinese Journal of Veterinary Science,2019,35(10):905−908.]
|
[44] |
FU Q, YUAN L, CAO F, et al. Lateral flow strip biosensor based on streptavidin-coated gold nanoparticles with recombinase polymerase amplification for the quantitative point-of-care testing of Salmonella[J]. Microchemical Journal,2021,171:106859−106867. doi: 10.1016/j.microc.2021.106859
|
[45] |
厉佳丽. 食源性致病菌多重重组酶聚合酶扩增快速检测技术研究[D]. 杭州:中国计量大学, 2020. [LI J L. Study on multiplex recombinase polymerase amplification method for rapid detection of foodborne pathogens[D]. Hangzhou:China Jiliang University, 2020.]
LI J L. Study on multiplex recombinase polymerase amplification method for rapid detection of foodborne pathogens[D]. Hangzhou: China Jiliang University, 2020.
|
[46] |
丛秋实, 师东方. 鸡肠炎沙门氏菌可视化交叉引物等温扩增检测技术的建立及初步应用[J]. 中国预防兽医学报,2021,43(11):1171−1177. [CONG Q S, SHI D F. Establishment and preliminary application of visual cross-primer isothermal amplification detection technology for Salmonella enteritidis in chickens[J]. Chinese Journal of Preventive Veterinary Medicine,2021,43(11):1171−1177.] doi: 10.3969/j.issn.1008-0589.202105023
|
[47] |
白志军, 胡林, 李魁彪, 等. 交叉引物恒温扩增法检测甲型H1N1流感病毒及临床应用[J]. 中国人兽共患病学报,2015,31(3):208−211,215. [BAI Z J, HU L, LI K B, et al. Establishment of cross priming amplification for influenza a virus (H1N1) and its clinical application[J]. Chinese Journal of Veterinary Science,2015,31(3):208−211,215.] doi: 10.3969/cjz.j.issn.1002-2694.2015.03.004
|
[48] |
王伟. 基于交叉引物等温扩增结合胶体金免疫层析试纸卡快速鉴别鸽子雌雄的方法建立[D]. 新乡:河南科技学院, 2022. [WANG W. Novel approach to rapidly identify the gender of the pigeon by using cross-priming amplification with immunochromatographic strip[D]. Xinxiang:Henan University of Science and Technology, 2022.]
WANG W. Novel approach to rapidly identify the gender of the pigeon by using cross-priming amplification with immunochromatographic strip[D]. Xinxiang: Henan University of Science and Technology, 2022.
|
[49] |
向勇. 种禽场铜绿假单胞菌的流行特点及其CPA检测方法的建立[D]. 广州:华南农业大学, 2019. [XIANG Y. Epidemiological investigation of Peudomonas aeruginosa in breeding poultry field and rapid detection of PA by cross priming amplification[D]. Guangzhou:South China Agricultural University, 2019.]
XIANG Y. Epidemiological investigation of Peudomonas aeruginosa in breeding poultry field and rapid detection of PA by cross priming amplification[D]. Guangzhou: South China Agricultural University, 2019.
|
[50] |
WANG Y X, ZHANG A Y, YANG Y Q, et al. Sensitive and rapid detection of Salmonella enterica serovar Indiana by cross priming amplification[J]. Journal of Microbiological Methods,2018(153):24−30.
|
[51] |
刘敏. 交叉引物等温扩增-核酸试纸条技术检测蜡样芽孢杆菌[J]. 食品安全导刊,2018(33):185−186. [LIU M. Detection of Bacillus cereus by cross-primer isothermal amplification-nucleic acid test strip technology[J]. Chinese Food Safety Magazine,2018(33):185−186.]
|
[52] |
王冲, 宋亚宁, 梁煜, 等. 滚环扩增技术在食品安全检测中的研究进展[J]. 食品安全质量检测学报,2021,12(2):423−429. [WANG C, SONG Y N, LIANG Y, et al. Progress of rolling amplification amplification in food safety detection[J]. Journal of Food Safety and Food Quality,2021,12(2):423−429.]
|
[53] |
QIN Y, ZHANG C, LIU F, et al. Establishment of double probes rolling circle amplification combined with lateral flow dipstick for rapid detection of Chattonella marina[J]. Harmful Algae,2020,97:101857−101867. doi: 10.1016/j.hal.2020.101857
|
[54] |
LIU F, ZHANG C, ZHENG H, et al. Rapid and sensitive detection of Karlodinium veneficum by a novel double-nick rolling circle amplification[J]. Environmental Science and Pollution Research,2021,28(31):42570−42582. doi: 10.1007/s11356-021-13673-4
|
[55] |
黄梦琪, 刘芳, 周小明. 基于滚环扩增技术的纸基显色传感器用于致病菌快速检测[J]. 激光生物学报,2017,26(6):527−533. [HUNG M Q, LIU F, ZHOU X M. Rapid and isothermal paper-based gene-sensing of viable pathogens with rolling circle amplification[J]. Acta Laser Biology Sinica,2017,26(6):527−533.] doi: 10.3969/j.issn.1007-7146.2017.06.009
|
[56] |
刘迪, 滕新栋, 闫吉辉. 解旋酶依赖性扩增技术研究进展[J]. 口岸卫生控制,2022,27(1):44−47. [LIU D, TENG X D, YAN J H. Research progress of helicase-dependent amplification technology[J]. Port Health Control,2022,27(1):44−47.] doi: 10.3969/j.issn.1008-5777.2022.01.011
|
[57] |
张培培, 吴洋, 王玲, 等. 设计特定序列的引物提高依赖解旋酶恒温扩增效率[J]. 中国生物化学与分子生物学报,2018,34(7):747−753. [ZHANG P P, WU Y, WANG L, et al. Primers with designed terminal sequence improved efficiency of helicase-dependent DNA amplification[J]. Chinese Journal of Biochemistry Molecular Biology,2018,34(7):747−753.]
|
[58] |
MOON Y J, LEE S Y, OH S W. A review of isothermal amplification methods and food-origin inhibitors against detecting food-borne pathogens[J]. Foods,2022,11(3):322−337. doi: 10.3390/foods11030322
|
[59] |
王赞, 李献, 王慧, 等. 发酵乳中沙门氏菌依赖解旋酶恒温基因扩增快速检测方法的建立[J]. 乳业科学与技术,2021,44(4):6−10. [WANG Z, LI X, WANG H, et al. Helicase-dependent isothermal DNA amplification for rapid detection of Salmonella in fermented milk[J]. Journal of Dairy Science Technology,2021,44(4):6−10.]
|
[60] |
DU X J, ZHOU T J, LI P, et al. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay[J]. Molecular and Cellular Probes,2017(5):4−36.
|
[61] |
黄璐琦, 孙旭飞, 苑宁, 等. CRISPR/Cas生物传感器检测食源性病原体的研究进展[J]. 中国食品学报,2022,22(10):378−390. [HUANG L Q, SUN X F, YUAN N, et al. Research progress of CRISPR/Cas biosensor for detection of foodborne pathogens[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(10):378−390.]
|
[62] |
卜祥逢, 蒋静, 薛俊欣, 等. CRISPR-Cas12a在食源性致病菌检测中的应用[J]. 食品安全质量检测学报,2022,13(14):4479−4486. [BU X F, JIANG J, XUE J X, et al. Application of CRISPR-Cas12a in detection of foodborne pathogens[J]. Journal of Food Safety and Quality,2022,13(14):4479−4486.] doi: 10.3969/j.issn.2095-0381.2022.14.spaqzljcjs202214009
|
[63] |
寇秀颖, 周宝青, 陈玲, 等. CRISPR/Cas系统在食源性致病菌快速检测新技术的研究进展[J]. 食品科学,2023,44(7):313−323. [KOU X Y, ZHOU B Q, CHEN L, et al. Research progress of CRISPR/Cas system in rapid detection of foodborne pathogens[J]. Food Science,2023,44(7):313−323.] doi: 10.7506/spkx1002-6630-20220316-195
|
[64] |
MUKAMA O, WU J H, LI Z Y, et al. An ultra-sensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J]. Biosensors and Bioelectronics,2020,159:112143. doi: 10.1016/j.bios.2020.112143
|
[65] |
ZHOU B Q, YE Q H, LI F, et al. CRISPR/Cas12a based fluorescence enhanced lateral flow biosensor for detection of Staphylococcus aureus[J]. Sensors and Actuators B-chemical,2022,351:130906−130916. doi: 10.1016/j.snb.2021.130906
|
[66] |
余咏诗, 刘辉. CRISPR-Cas9技术修饰乳酸杆菌的研究进展[J]. 食品工业科技,2022,43(21):461−470. [YU Y H, LIU H. Research progress on CRISPR-Cas9 technology to modify lactobacillus[J]. Science and Technology of Food Industry,2022,43(21):461−470.]
|
[67] |
WANG X, XIONG E, TIAN T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano,2020,14(2):2497−2508. doi: 10.1021/acsnano.0c00022
|