LI Guoping, LI Jiafeng, ZHU Haiyan. Analysis of Aroma Differences between Yingjiang Camellia taliensis and Fengqing Large-leaved Species Bud Tea[J]. Science and Technology of Food Industry, 2024, 45(5): 281−291. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050077.
Citation: LI Guoping, LI Jiafeng, ZHU Haiyan. Analysis of Aroma Differences between Yingjiang Camellia taliensis and Fengqing Large-leaved Species Bud Tea[J]. Science and Technology of Food Industry, 2024, 45(5): 281−291. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050077.

Analysis of Aroma Differences between Yingjiang Camellia taliensis and Fengqing Large-leaved Species Bud Tea

More Information
  • Received Date: May 09, 2023
  • Available Online: January 03, 2024
  • In this study, sensory evaluation and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to identify and analyze the volatile components of Yingjiang Camellia taliensis bud tea (usually called spore tea, marked as spore black tea YBH, spore white tea YBB) and Fengqing large-leaved species bud tea (marked as Fengqing black tea FQH, Fengqing white tea FQB) in order to investigate the aroma composition and differences between Yunnan Yingjiang Camellia taliensis bud tea and Fengqing large-leaved species bud tea. The results of HS-SPME-GC-MS showed that a total of 616 volatile metabolites from 16 categories were detected in the four tea samples. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) showed that in the comparison of two varieties of black tea, 8 unique differential metabolites were detected in YBH, and 7 unique differential metabolites in FQH, while in the comparison of two varieties of white tea, 3 unique differential metabolites were detected in YBB and 4 unique differential metabolites in FQB. The odor activity value (OAV) evaluation of the main characteristic differential volatile metabolites showed that (Z)-2-decenal and geraniol were the potential characteristic aromas to distinguish Yingjiang Camellia taliensis and Fengqing large-leaved species, (Z)-2-decenal (OAV>100) was an important aroma component of Yingjiang Camellia taliensis. It was speculated that damascenone (OAV>1) was the key substances for YBH to produce strong flower and fruit aroma. Caproic acid and linalyl acetate might be the main substances of YBB with natural flower fragrance. β-Ionone (OAV>10) was an important aroma component of Fengqing large-leaved species. It was speculated that benzaldehyde (OAV>1) was the main substance of FQH with flower aroma, and (Z)-2-decenal and caproic acid were the main substances of FQB with floral and fragrance. In summary, the aroma components of Yingjiang Camellia taliensis spore tea are richer than the control variety and the aroma of YBH is more fragrant.
  • [1]
    宁功伟, 杨盛美, 宋维希, 等. 云南茶树种质资源研究60年[J]. 植物遗传资源学报,2023,24(3):587−598. [NING G W, YANG S M, SONG W X, et al. Sixty years of research on tea tree germplasm resources in Yunnan[J]. Journal of Plant Genetic Resources,2023,24(3):587−598.]

    NING G W, YANG S M, SONG W X, et al. Sixty years of research on tea tree germplasm resources in Yunnan[J]. Journal of Plant Genetic Resources, 2023, 243): 587598.
    [2]
    董建萍, 王东, 郑吉文. 德宏州古茶树资源保护现状及开发利用对策[J]. 现代农业科技,2017(6):44−45,49. [DONG J P, WANG D, ZHENG J W. The current situation and development and utilization countermeasures of ancient tea tree resources in Dehong Prefecture[J]. Modern Agricultural Technology,2017(6):44−45,49.] doi: 10.3969/j.issn.1007-5739.2017.06.032

    DONG J P, WANG D, ZHENG J W. The current situation and development and utilization countermeasures of ancient tea tree resources in Dehong Prefecture[J]. Modern Agricultural Technology, 20176): 4445,49. doi: 10.3969/j.issn.1007-5739.2017.06.032
    [3]
    杨霁虹, 周汉琛, 刘亚芹, 等. 基于HS-SPME-GC-MS和OAV分析黄山地区不同茶树品种红茶香气的差异[J]. 食品科学,2022,43(16):235−241. [YANG J H, ZHOU H C, LIU Y Q, et al. Differences in aroma components of black tea processed from different tea cultivars in Huangshan by using headspace solid-phase microextraction-gas chromatography-mass spectrometry and odor activity value[J]. Food Science,2022,43(16):235−241.]

    YANG J H, ZHOU H C, LIU Y Q, et al. Differences in aroma components of black tea processed from different tea cultivars in Huangshan by using headspace solid-phase microextraction-gas chromatography-mass spectrometry and odor activity value[J]. Food Science, 2022, 4316): 235241.
    [4]
    艾安涛, 陈曦, 李燕丽, 等. 不同品种“遵义红”红茶香气成分分析[J]. 食品与生物技术学报,2023,42(4):103−111. [AI A T, CHEN X, LI Y L, et al. Analysis of aroma components in different varieties of "Zunyi Red" black tea[J]. Journal of Food Science and Biotechnology,2023,42(4):103−111.]

    AI A T, CHEN X, LI Y L, et al. Analysis of aroma components in different varieties of "Zunyi Red" black tea[J]. Journal of Food Science and Biotechnology, 2023, 424): 103111.
    [5]
    汤海昆, 杨方慧, 张艳梅, 等. 基于HS-SPME-GC-MS分析不同茶树品种晒红茶的香气成分[J]. 食品工业科技,2023,44(7):260−268. [TANG H K, YANG F H, ZHANG Y M, et al. Based on HS-SPME-GC-MS analysis of aroma components in sun dried black tea of different tea tree varieties[J]. Science and Technology of Food Industry,2023,44(7):260−268.]

    TANG H K, YANG F H, ZHANG Y M, et al. Based on HS-SPME-GC-MS analysis of aroma components in sun dried black tea of different tea tree varieties[J]. Science and Technology of Food Industry, 2023, 447): 260268.
    [6]
    徐梦婷, 邵淑贤, 陈静, 等. 不同茶树品种工夫红茶挥发性成分及其关键香气成分分析[J]. 现代食品科技,2023,39(1):281−290. [XU M T, SHAO S X, CHEN J, et al. Analysis of volatile and key aroma components in Congou black tea varieties[J]. Modern Food Science and Technology,2023,39(1):281−290.]

    XU M T, SHAO S X, CHEN J, et al. Analysis of volatile and key aroma components in Congou black tea varieties[J]. Modern Food Science and Technology, 2023, 391): 281290.
    [7]
    李金龙, 杨盛美, 李友勇, 等. 斯里兰卡红碎茶与滇红碎茶主要香气成分比较分析[J]. 食品安全质量检测学报,2021,12(21):8536−8542. [LI J L, YANG S M, LI Y Y, et al. Comparative analysis of the main aroma components between Sri Lankan red broken tea and Yunnan red broken tea[J]. Journal of Food Safety and Quality,2021,12(21):8536−8542.] doi: 10.3969/j.issn.2095-0381.2021.21.spaqzljcjs202121034

    LI J L, YANG S M, LI Y Y, et al. Comparative analysis of the main aroma components between Sri Lankan red broken tea and Yunnan red broken tea[J]. Journal of Food Safety and Quality, 2021, 1221): 85368542. doi: 10.3969/j.issn.2095-0381.2021.21.spaqzljcjs202121034
    [8]
    林燕萍, 黄毅彪, 张渤, 等. 梅占红茶、白茶品质差异分析[J]. 食品工业科技,2022,43(3):260−267. [LIN Y P, HUANG Y B, ZHANG B, et al. Quality difference analysis of Meizhan black tea and Meizhan white tea[J]. Science and Technology of Food Industry,2022,43(3):260−267.]

    LIN Y P, HUANG Y B, ZHANG B, et al. Quality difference analysis of Meizhan black tea and Meizhan white tea[J]. Science and Technology of Food Industry, 2022, 433): 260267.
    [9]
    ZHENG X Q, LI Q S, XIANG L P, et al. Recent advances in volatiles of teas[J]. Molecules,2016,21(3):338. doi: 10.3390/molecules21030338
    [10]
    ZHANG C, ZHOU C, XU K, et al. A comprehensive investigation of macro-composition and volatile compounds in spring-picked and autumn-picked white tea[J]. Foods,2022,11(22):11223628.
    [11]
    李沅达, 吴婷, 黄刚骅, 等. SPME-GC-MS技术结合rOAV分析不同加工工艺紫娟白茶的关键香气物质[J]. 食品工业科技,2023,44(9):324−332. [LI Y D, WU T, HUANG G H, et al. SPME-GC-MS technique combined with rOAV for the analysis of key aroma substances of Zijuan white tea with different processing processes[J]. Science and Technology of Food Industry,2023,44(9):324−332.]

    LI Y D, WU T, HUANG G H, et al. SPME-GC-MS technique combined with rOAV for the analysis of key aroma substances of Zijuan white tea with different processing processes[J]. Science and Technology of Food Industry, 2023, 449): 324332.
    [12]
    WANG B, CHEN H, QU F, et al. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis[J]. European Food Research and Technology,2022,248(3):647−657. doi: 10.1007/s00217-021-03911-x
    [13]
    YUAN H, CAO G, HOU X, et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants[J]. Molecular Plant,2022,15(1):189−202. doi: 10.1016/j.molp.2021.09.003
    [14]
    DENG X, HUANG G, TU Q, et al. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea[J]. Food Chemistry,2021,357:129783. doi: 10.1016/j.foodchem.2021.129783
    [15]
    NIE C N, ZHONG X X, HE L, et al. Comparison of different aroma-active compounds of Sichuan dark brick tea ( Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography-mass spectrometry (GC-MS) and aroma descriptive profile tests[J]. European Food Research and Technology,2019,245(9):1963−1979. doi: 10.1007/s00217-019-03304-1
    [16]
    ZHU J, CHEN F, WANG L, et al. Comparison of aroma-active volatiles in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS[J]. Journal of Agricultural and Food Chemistry ,2015,63(34):7499−7510. doi: 10.1021/acs.jafc.5b02358
    [17]
    王梦琪. 基于SBSE-GC-MS的“清香”绿茶挥发性成分及其关键呈香成分研究[D]. 北京:中国农业科学院, 2020. [WANG M Q. Study on the volatile components and key aroma components of "Qingxiang" green tea based on SBSE-GC-MS[D]. Beijing:Chinese Academy of Agricultural Sciences, 2020.]

    WANG M Q. Study on the volatile components and key aroma components of "Qingxiang" green tea based on SBSE-GC-MS[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [18]
    GUO X, SCHWAB W, HO C T, et al. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS[J]. Food Chemistry,2022,376:131933. doi: 10.1016/j.foodchem.2021.131933
    [19]
    LIU H, XU Y, WU J, et al. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons[J]. Food Research International,2021,150:110784. doi: 10.1016/j.foodres.2021.110784
    [20]
    XIAO Z, CAO X, ZHU J, et al. Characterization of the key aroma compounds in three world-famous black teas[J]. European Food Research and Technology,2022,248(9):2237−2252. doi: 10.1007/s00217-022-04039-2
    [21]
    YANG Y, ZHU H, CHEN J, et al. Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis[J]. LWT,2022,163:113492. doi: 10.1016/j.lwt.2022.113492
    [22]
    刘青青, 曹晓念, 兰余, 等. 滇红和川红秋茶香气特征分析及成分比较[J]. 食品与发酵科技,2022,58(4):117−122. [LIU Q Q, CAO X N, LAN Y, et al. Analysis of aroma characteristics and component comparison of Yunnan red and Sichuan red autumn tea[J]. Food and Fermentation Science & Technology,2022,58(4):117−122.] doi: 10.3969/j.issn.1674-506X.2022.04.020

    LIU Q Q, CAO X N, LAN Y, et al. Analysis of aroma characteristics and component comparison of Yunnan red and Sichuan red autumn tea[J]. Food and Fermentation Science & Technology, 2022, 584): 117122. doi: 10.3969/j.issn.1674-506X.2022.04.020
    [23]
    FENG Z, LI M, LI Y, et al. Characterization of the key aroma compounds in infusions of four white teas by the sensomics approach[J]. European Food Research and Technology,2022,248(5):1299−1309. doi: 10.1007/s00217-022-03967-3
    [24]
    NI H, JIANG Q, LIN Q, et al. Enzymatic hydrolysis and auto-isomerization during β-glucosidase treatment improve the aroma of instant white tea infusion[J]. Food Chemistry,2021,342:128565. doi: 10.1016/j.foodchem.2020.128565
    [25]
    WU H, CHEN Y, FENG W, et al. Effects of three different withering treatments on the aroma of white tea[J]. Foods,2022,11(16):2502. doi: 10.3390/foods11162502
    [26]
    刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法:“ROAV”法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHOU G H, XU X L. “ROAV” method:A new method for determining key odor compounds of Rugao ham[J]. Food Science,2008(7):370−374.]

    LIU D Y, ZHOU G H, XU X L. “ROAV” method: A new method for determining key odor compounds of Rugao ham[J]. Food Science, 20087): 370374.
    [27]
    ZHANG B, IVANOVA-PETROPULOS V, DUAN C, et al. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non- Saccharomyces strains[J]. Food Bioscience,2021,41:100925. doi: 10.1016/j.fbio.2021.100925
    [28]
    岳翠男, 秦丹丹, 李文金, 等. 基于HS-SPME-GC-MS和OAV鉴定浮梁红茶关键呈香物质[J]. 食品工业科技,2022,43(9):251−258. [YUE C N, QIN D D, LI W J, et al. Identification of key aroma forming substances in Fuliang black tea based on HS-SPME-GC-MS and OAV[J]. Food Industry Technology,2022,43(9):251−258.]

    YUE C N, QIN D D, LI W J, et al. Identification of key aroma forming substances in Fuliang black tea based on HS-SPME-GC-MS and OAV[J]. Food Industry Technology, 2022, 439): 251258.
    [29]
    肖凌, 毛世红, 童华荣. 3种香型凤凰单丛茶挥发性成分分析[J]. 食品科学,2018,39(20):233−239. [XIAO L, MAO S H, TONG H R. Analysis of volatile components in three aroma types of Phoenix single cluster tea[J]. Food Science,2018,39(20):233−239.] doi: 10.7506/spkx1002-6630-201820034

    XIAO L, MAO S H, TONG H R. Analysis of volatile components in three aroma types of Phoenix single cluster tea[J]. Food Science, 2018, 3920): 233239. doi: 10.7506/spkx1002-6630-201820034
    [30]
    魏昊, 蓝天梦, 缪伊雯, 等. 基于感官组学分析不同足火方式对金牡丹工夫红茶香气的影响[J]. 茶叶科学,2023,43(1):109−123. [WEI H, LAN T M, MIAO Y W, et al. Analysis of the effect of different full firing methods on the Jinmudan congou black tea based on sensomics characterization[J]. Tea Science,2023,43(1):109−123.] doi: 10.3969/j.issn.1000-369X.2023.01.009

    WEI H, LAN T M, MIAO Y W, et al. Analysis of the effect of different full firing methods on the Jinmudan congou black tea based on sensomics characterization[J]. Tea Science, 2023, 431): 109123. doi: 10.3969/j.issn.1000-369X.2023.01.009
    [31]
    张晓珊, 吕世懂, 刘伦, 等. 顶空固相微萃取与气相色谱-质谱法分析月光白茶香气成分[J]. 云南大学学报(自然科学版),2014,36(5):740−749. [ZHANG X S, LÜ S D, LIU L, et al. Analysis of aroma components in moonlight white tea by headspace solid phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Yunnan University (Natural Science Edition),2014,36(5):740−749.]

    ZHANG X S, LÜ S D, LIU L, et al. Analysis of aroma components in moonlight white tea by headspace solid phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Yunnan University (Natural Science Edition), 2014, 365): 740749.
    [32]
    HO C T, ZHENG X, LI S. Tea aroma formation[J]. Food Science and Human Wellness,2015,4(1):9−27. doi: 10.1016/j.fshw.2015.04.001
    [33]
    HUANG W, FANG S, WANG J, et al. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea[J]. Food Chemistry,2022,395:133549. doi: 10.1016/j.foodchem.2022.133549
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (103) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return