Citation: | ZHANG Xinyue, ZHAO Siyi, WU Mingyang, et al. Optimization of Extraction Process of Anthocyanins from Purple-fleshed Potatoes and Its Stability and Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(5): 187−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050067. |
[1] |
AHMED S, ZHOU X, PANG Y, et al. Genetic diversity of potato genotypes estimated by starch physicochemical properties and microsatellite markers[J]. Food Chemistry,2018,257:368−375. doi: 10.1016/j.foodchem.2018.03.029
|
[2] |
赵晶, 郝金伟, 李萌, 等. 紫马铃薯与百香果复合果蔬汁饮料[J]. 食品工业,2019,40(9):56−61. [ZHAO J, HAO J W, LI M, et al. Purple potato and passion fruit composite fruit and vegetable juice[J]. Food Industry,2019,40(9):56−61.]
|
[3] |
李安, 刘小雨, 张惟广. 发酵及贮藏条件对蓝莓果酒花色苷稳定性的影响及其抗氧化性研究[J]. 中国酿造,2020,39(2):146−151. [LI A, LIU X Y, ZHANG W G. Study on the stability and antioxidant capacity of blueberry wine anthocyanins under fermentation and storage conditions[J]. China Brewing,2020,39(2):146−151.] doi: 10.11882/j.issn.0254-5071.2020.02.027
|
[4] |
朱玉洁. 葡聚糖凝胶柱层析富集黑果枸杞总花色苷工艺及其抗氧化性研究[J]. 食品研究与开发,2020,41(7):12−18. [ZHU Y J. Study on the enrichment of total anthocyanins from black goji berry by glucan gel column chromatography and its antioxidant capacity[J]. Food Research and Development,2020,41(7):12−18.] doi: 10.12161/j.issn.1005-6521.2020.07.003
|
[5] |
STEVENS L J, KUCZEK T, BURGESS J R, et al. Mechanisms of behavioral, atopic, and other reactions to artificial food colors in children[J]. Nutrition Reviews,2013,71(5):268−281. doi: 10.1111/nure.12023
|
[6] |
YOUSUF B, GUL K, WANI A A, et al. Health benefits of anthocyanins and their encapsulation for potential use in food systems:A review[J]. Critical Reviews in Food Science and Nutrition,2016,56(13):2223−2230. doi: 10.1080/10408398.2013.805316
|
[7] |
DENEV P, CÍ M, KRATCHANOVA M, et al. Black chokeberry ( Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities[J]. Food Chemistry,2019,284:108−117. doi: 10.1016/j.foodchem.2019.01.108
|
[8] |
WEBER F, BOCH K, SCHIEBER A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry[J]. LWT - Food Science and Technology,2017,75:72−77. doi: 10.1016/j.lwt.2016.08.042
|
[9] |
HEINONEN J, FARAHMANDAZAD H, VUORINEN A, et al. Extraction and purification of anthocyanins from purple-fleshed potato[J]. Food and Bioproducts Processing,2016,99:136−146. doi: 10.1016/j.fbp.2016.05.004
|
[10] |
CAI Z, QU Z, LAN Y, et al. Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes[J]. Food Chemistry,2016,197:266−272. doi: 10.1016/j.foodchem.2015.10.110
|
[11] |
XU Z, GAO Y, SHI S, LIU X. Study on the extraction of pigment from purple sweet potato powder by microwave-assisted technique[J]. Food Science,2005,26:234−239.
|
[12] |
ZHU Z, GUAN Q, KOUBAA M, et al. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction[J]. Food Chemistry,2017,215:391−400. doi: 10.1016/j.foodchem.2016.07.157
|
[13] |
JOKIOJA J, LINDERBORG K M, KORTESNIEMI M, et al. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men[J]. Food Chemistry,2020,310:125797. doi: 10.1016/j.foodchem.2019.125797
|
[14] |
ZANNOU O, KOCA I, ALDAWOUD T M S, et al. Recovery and stabilization of anthocyanins and phenolic antioxidants of roselle ( Hibiscus sabdariffa L.) with hydrophilic deep eutectic solvents[J]. Molecules,2020,25(16):3715. doi: 10.3390/molecules25163715
|
[15] |
POPOVIC B M, MICIC N, POTKONJAK A, et al. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents-ultrafast microwave-assisted NADES preparation and extraction[J]. Food Chemistry,2022,366:130562−130562. doi: 10.1016/j.foodchem.2021.130562
|
[16] |
YAN X Y, CAI Z H, ZHAO P Q, et al. Application of a novel and green temperature-responsive deep eutectic solvent system to simultaneously extract and separate different polar active phytochemicals from Schisandra chinensis (Turcz.) Baill[J]. Food Research International,2023,165:112541−112541. doi: 10.1016/j.foodres.2023.112541
|
[17] |
OLAWUYI I F, PARK J J, LEE W Y. Preparation and film properties of carboxymethyl cellulose from leafstalk waste of okra:Comparative study of conventional and deep eutectic solvent pulping methods[J]. Food Hydrocolloids,2023,138:108464−108464. doi: 10.1016/j.foodhyd.2023.108464
|
[18] |
DA SILVA D T, SMANIOTTO F A, COSTA I F, et al. Natural deep eutectic solvent (NADES):A strategy to improve the bioavailability of blueberry phenolic compounds in a ready-to-use extract[J]. Food Chemistry,2021,364:130370−130370. doi: 10.1016/j.foodchem.2021.130370
|
[19] |
仇干, 李雨杰, 王丹凤, 等. 紫马铃薯片真空微波干燥动力学及工艺优化[J]. 上海交通大学学报(农业科学版),2018,36(2):70−75,82. [QIU G, LI Y J, WANG D F, et al. Vacuum microwave drying kinetics and process optimization of purple sweet potato slices[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2018,36(2):70−75,82.] doi: 10.3969/J.ISSN.1671-9964.2018.02.012
|
[20] |
崔倩. 紫马铃薯花色苷的提取纯化和结构鉴定[D]. 杭州:浙江大学, 2011. [CUI Q. Study on purple potato anthocyanins extraction, isolation and identification[D]. Hangzhou:Zhejiang University, 2011.]
CUI Q. Study on purple potato anthocyanins extraction, isolation and identification[D]. Hangzhou: Zhejiang University, 2011.
|
[21] |
于雅静, 单虹宇, 孔露, 等. 响应面法优化玫瑰花色苷超声辅助提取工艺[J]. 食品工业科技,2018,39(13):173−179. [YU Y J, SHAN H Y, KONG L, et al. Optimization of ultrasound-assisted extraction of rose anthocyanins by response surface methodology[J]. Science and Technology of Food Industry,2018,39(13):173−179.] doi: 10.13386/j.issn1002-0306.2018.13.031
|
[22] |
韩东, 李建颖, 孙怡, 等. 黑果腺肋花楸花色苷微波辅助提取工艺优化[J]. 食品研究与开发,2022,43(13):59−65. [HAN D, LI J Y, SUN Y, et al. Optimization of microwave-assisted extraction of anthocyanins from black fruited gland ribbed Sorbus[J]. Food Research and Development,2022,43(13):59−65.]
|
[23] |
XIA N, XIONG L, BI S, et al. Development of biocompatible DES/NADES as co-solvents for efficient biosynthesis of chiral alcohols[J]. Bioprocess and Biosystems Engineering,2020,43:1987−1997. doi: 10.1007/s00449-020-02387-5
|
[24] |
OOMEN W W, BEGINES P, MUSTAFA N R, et al. Natural deep eutectic solvent extraction of flavonoids of Scutellaria baicalensis as a replacement for conventional organic solvents[J]. Molecules (Basel, Switzerland),2020,25(3):617−617. doi: 10.3390/molecules25030617
|
[25] |
于世莹, 王文秀, 马倩云, 等. 紫马铃薯花色苷的提取、纯化及其稳定性研究[J]. 食品工业科技,2020,41(21):156−163. [YU S Y, WANG W X, MA Q Y, et al. Extraction, purification and stability study of anthocyanins from purple sweet potato[J]. Science and Technology of Food Industry,2020,41(21):156−163.] doi: 10.13386/j.issn1002-0306.2020030003
|
[26] |
WANG Y, JIA J, REN X, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules,2018,120:1760−1769. doi: 10.1016/j.ijbiomac.2018.09.209
|
[27] |
MENG L, ZHU J, MA Y, et al. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China[J]. Food Bioscience,2019,30(C):106102−106102.
|
[28] |
SAMSONOWICZ M, REGULSKA E, KARPOWICZ D, et al. Antioxidant properties of coffee substitutes rich in polyphenols and minerals[J]. Food Chemistry,2019,278:101−109. doi: 10.1016/j.foodchem.2018.11.057
|
[29] |
MARTYNENKO A, CHEN Y. Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing[J]. Journal of Food Engineering,2016,171(4):44−51.
|
[30] |
NAVAS M J, JIMÉNEZ-MORENO A M, BUENO J M, et al. Analysis and antioxidant capacity of anthocyanin pigments. Part IV:Extraction of anthocyanins[J]. Critical Reviews in Analytical Chemistry,2012,42(4):313−342. doi: 10.1080/10408347.2012.680343
|
[31] |
ALI A R. Review on extraction of phenolic compounds from natural sources using green deep eutectic solvents[J]. Journal of Agricultural and Food Chemistry,2021,69(3):878−912. doi: 10.1021/acs.jafc.0c06641
|
[32] |
BI Y H, CHI X W, ZHANG R, et al. Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents:Insights of degradation kinetics and stability evaluation[J]. Innovative Food Science & Emerging Technologies,2020,66:102512.
|
[33] |
SKARPALEZOS D, DETSI A. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources[J]. Applied Sciences,2019,9(19):4169−4169. doi: 10.3390/app9194169
|
[34] |
BERTOLO M R V, MARTINS V C A, PLEPIS A M G, et al. Utilization of pomegranate peel waste:Natural deep eutectic solvents as a green strategy to recover valuable phenolic compounds[J]. Journal of Cleaner Production,2021,327:129471−129471. doi: 10.1016/j.jclepro.2021.129471
|
[35] |
BOSILJKOV T, DUJMI F, CVJETKO BUBALO M, et al. Natural deep eutectic solvents and ultrasound-assisted extraction:Green approaches for extraction of wine lees anthocyanins[J]. Food and Bioproducts Processing,2017,102:195−203. doi: 10.1016/j.fbp.2016.12.005
|
[36] |
SHANG X, ZHANG M, HU J, et al. Chemical compositions, extraction optimizations, and in vitro bioactivities of flavonoids from perilla leaves ( Perillae folium) by microwave-assisted natural deep eutectic solvents[J]. Antioxidants,2022,12(1):104−104. doi: 10.3390/antiox12010104
|
[37] |
HADAVI R, JAFARI S M, KATOUZIAN I. Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization[J]. International Journal of Biological Macromolecules,2020,164:4046−4053. doi: 10.1016/j.ijbiomac.2020.09.028
|
[38] |
张海霞, 包良, 王晓兰, 等. 紫色马铃薯花青素的提取和稳定性评价[J]. 食品研究与开发,2021,42(11):103−108. [ZHANG H X, BAO L, WANG X L, et al. Extraction and stability evaluation of anthocyanins from purple sweet potato[J]. Food Research and Development,2021,42(11):103−108.] doi: 10.12161/j.issn.1005-6521.2021.11.017
|
[39] |
CONDURACHE N N, CROITORU C, ENACHI E, et al. Eggplant peels as a valuable source of anthocyanins:Extraction, thermal stability and biological activities[J]. Plants,2021,10(3):577. doi: 10.3390/plants10030577
|
1. |
陈科明,马德才,贺嘉夫茹孜,马鸿儒,何思瑶,何瑞,李广永. 沙棘籽油通过调节自噬水平改善多囊卵巢综合征. 中药材. 2024(03): 719-723 .
![]() | |
2. |
刘若琪,刘瑞,马福林,马玉花. 中国沙棘叶黄酮的提取及纯化研究. 北方园艺. 2024(23): 88-96 .
![]() | |
3. |
刘邵凡,何海华. 基于农业食品膳食营养对运动员营养需求的分析. 江苏调味副食品. 2024(04): 33-39 .
![]() | |
4. |
贾敏,李城城,王乐玲,王丽妹,张玲,李俊红. 沙棘黄酮对小鼠动脉粥样硬化斑块和NOD样受体蛋白3的影响及作用机制. 中国医药. 2023(03): 410-414 .
![]() | |
5. |
符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
![]() | |
6. |
张存存,张娟,谭志超,柳嘉,王永霞. 沙棘叶总黄酮闪式提取工艺优化及组分鉴定. 食品工业. 2022(01): 1-5 .
![]() | |
7. |
赵轶轩,王丽娜,屈凝伊. 沙棘果研究进展. 中国民族民间医药. 2022(03): 56-62 .
![]() | |
8. |
常虹,王爽,周家华,李文生,王云香,王宝刚. 体外模拟消化对鲜切苹果皮渣黄酮类物质及其还原力的影响. 食品工业科技. 2022(20): 39-44 .
![]() | |
9. |
戈素芬,张东为,赵鑫丹,胡建忠,温秀凤,高岩. 5个杂交沙棘品种果实营养成分比较分析. 食品工业科技. 2022(22): 328-335 .
![]() | |
10. |
刘雅娜,包晓玮,王娟,魏晨业,白羽嘉. 沙棘多糖抗运动性疲劳及抗氧化作用的研究. 食品工业科技. 2021(10): 321-326 .
![]() | |
11. |
胡樱,魏晶晶,贾慧萍,乔福鹏,王慧春. 青海省林业发展现状及展望. 青海草业. 2021(01): 26-31 .
![]() | |
12. |
郝娟. 沙棘果实和叶片中黄酮类物质测定方法研究进展. 食品安全导刊. 2021(18): 81-83 .
![]() | |
13. |
朱文军. 抗运动疲劳食源性活性成分的研究进展. 食品安全质量检测学报. 2021(11): 4589-4595 .
![]() | |
14. |
李奕. 大孔树脂纯化襄荷黄酮提取物及其对小鼠运动性疲劳的影响. 保鲜与加工. 2021(07): 64-70 .
![]() | |
15. |
陈三达,乔娟娟,陆耕宇,谢国勇,秦民坚. 大孔树脂富集纯化黄酮类化合物的研究进展. 广州化工. 2021(17): 9-13 .
![]() | |
16. |
郑传痴,杨艳,韦余,周旭美,高健美. 金丝桃苷对小鼠的抗疲劳作用及机制研究. 食品工业科技. 2021(23): 350-355 .
![]() | |
17. |
康鹏,李国薇,马宏祥,李香云,宋宇轩,葛武鹏. 运动营养食品及其抗疲劳活性成分研究进展. 食品安全质量检测学报. 2021(23): 9157-9164 .
![]() |