Citation: | ZHOU Junping, XU Yujuan, WEN Jing, et al. Research Progress of γ-Aminobutyric Acid (GABA)[J]. Science and Technology of Food Industry, 2024, 45(5): 393−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050004. |
[1] |
OKETCH-RABAH H A, MADDEN E F, ROE A L, et al. United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA)[J]. Nutrients,2021,13(8):2742. doi: 10.3390/nu13082742
|
[2] |
RAMESH S A, TYERMAN S D, GILLIHAM M. γ-aminobutyric acid (GABA) signalling in plants[J]. Cellular and Molecular Life Sciences:CMLS,2017,74(9):1577−1603. doi: 10.1007/s00018-016-2415-7
|
[3] |
YANG W, LEI Z, HU Y. Investigations of the thermal properties, nucleation kinetics, and growth of γ-aminobutyric acid in aqueous ethanol solution[J]. Industrial & Engineering Chemistry Research,2010,49(22):11170−11175.
|
[4] |
BOWN A W, SHELP B J. Does the GABA shunt regulate cytosolic GABA?[J]. Trends in Plant Science,2020,25(5):422−424. doi: 10.1016/j.tplants.2020.03.001
|
[5] |
MICHAELI S, FAIT A, LAGOR K, et al. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism[J]. The Plant Journal,2011,67(3):485−498. doi: 10.1111/j.1365-313X.2011.04612.x
|
[6] |
KATEŘINA P, LYDIA U, LUKÁŠ S, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. New Biotechnology,2018,48:53−65.
|
[7] |
YANG R, GUO Q, GU Z. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia[J]. Food Chemistry, 2013, 136(1):152−159.
|
[8] |
CHE-OTHMAN M H, JACOBY R P, MILLAR A H, et al. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress.[J]. The New Phytologist,2020,225(3):1166−1180. doi: 10.1111/nph.15713
|
[9] |
STUDART-GUIMARÃES C, FAIT A, NUNES-NESI A, et al. Reduced expression of succinyl-coenzyme a ligase can be compensated for by up-regulation of the γ-aminobutyrate shunt in illuminated tomato leaves[J]. Plant Physiology,2007,145(3):626−639. doi: 10.1104/pp.107.103101
|
[10] |
SALMINEN A, JOUHTEN P, SARAJÄRVI T, et al. Hypoxia and GABA shunt activation in the pathogenesis of alzheimer's disease[J]. Neurochemistry International,2016,92:13−24. doi: 10.1016/j.neuint.2015.11.005
|
[11] |
SHELP B J, BOZZO G G, TROBACHER C P, et al. Hypothesis/review:Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress[J]. Plant Science,2012,193:130−135.
|
[12] |
周沫霖. 低温和二氧化碳胁迫下龙眼γ-氨基丁酸富集与机理研究[D]. 广州:华南农业大学, 2017. [ZHOU M L. Study on γ-aminobutyric acid (GABA) accumulation and regulation mechanism in longan (Dimocarpus longan Lour.) fruit in response to cold stress and CO2 stress[D]. Guangzhou:South China Agricultural University, 2017.]
ZHOU M L. Study on γ-aminobutyric acid (GABA) accumulation and regulation mechanism in longan (Dimocarpus longan Lour.) fruit in response to cold stress and CO2 stress[D]. Guangzhou: South China Agricultural University, 2017.
|
[13] |
CARON P C, KREMZNER L T, COTE L J. GABA and its relationship to putrescine metabolism in the rat brain and pancreas[J]. Neurochemistry International,1987,10(2):219−229. doi: 10.1016/0197-0186(87)90131-8
|
[14] |
SEQUERRA E B, GARDINO P, HEDIN-PEREIRA C, et al. Putrescine as an important source of GABA in the postnatal rat subventricular zone[J]. Neuroscience,2007,146(2):489−493. doi: 10.1016/j.neuroscience.2007.01.062
|
[15] |
杨东元, 陈开勋, 王亚红. γ-氨基丁酸的合成研究[J]. 中国饲料,2010(1):27−28. [YANG D Y, CHEN K X, WANG Y H. Study on synthesis of γ-aminobutanoic acid[J]. China Feed,2010(1):27−28.]
|
[16] |
王金玲, 袁军, 刘登才. γ-氨基丁酸的合成[J]. 化学与生物工程,2010,27(3):40−41. [WANG J L, YUAN J, LIU D C. Synthesis of γ-aminobutyric acid[J]. Chemistry & Bioengineering,2010,27(3):40−41.]
|
[17] |
董学君. 一种氨酪酸的制造方法:CN200710010078.1[P]. 2010-05-19. [DONG X J. A synthetic method of Aminobutyric acid:CN200710010078.1[P]. 2010-05-19.]
DONG X J. A synthetic method of Aminobutyric acid: CN200710010078.1[P]. 2010-05-19.
|
[18] |
PABLO G C, JOSEFINA M V, GRACIELA S D G, et al. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis crl 2013 based on carbohydrate fermentation[J]. International Journal of Food Microbiology,2020,333:108792. doi: 10.1016/j.ijfoodmicro.2020.108792
|
[19] |
张恕铭, 曾林, 孙向阳, 等. 屎肠球菌与植物乳杆菌共培养产 γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业,2021,47(9):154−159. [ZHANG S M, ZENG L, SUN X Y, et al. Optimization of γ-aminobutyric acid produced by co-culturing Enterococcus faecium and Lactobacillus plantarum and the activities of key enzyme[J]. Food and Fermentation Industries,2021,47(9):154−159.]
|
[20] |
张敏. γ-氨基丁酸乳酸菌诱变选育及其发酵条件优化[D]. 芜湖:安徽工程大学, 2020. [ZHANG M. Mutagenesis breeding of enterococcus faecalis producing GABA and optimization of fermentation conditions[D]. Wuhu:Anhui Polytechnic University, 2020.]
ZHANG M. Mutagenesis breeding of enterococcus faecalis producing GABA and optimization of fermentation conditions[D]. Wuhu: Anhui Polytechnic University, 2020.
|
[21] |
黄俊. 利用短乳杆菌制备γ-氨基丁酸相关过程研究[D]. 杭州:浙江大学, 2006. [HUANG J. Process study on the preparation of γ-aminobutyric acid by Lactobacillus brevis[D]. Hangzhou:Zhejiang University, 2006.]
HUANG J. Process study on the preparation of γ-aminobutyric acid by Lactobacillus brevis[D]. Hangzhou: Zhejiang University, 2006.
|
[22] |
NORIKO K, JUN S, SHINICHI K, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology,2005,22(6):497−504. doi: 10.1016/j.fm.2005.01.002
|
[23] |
LIN Q. Submerged fermentation of Lactobacillus rhamnosus ys9 for γ-aminobutyric acid (GABA) production[J]. Brazilian Journal of Microbiology,2013,44(1):183−187. doi: 10.1590/S1517-83822013000100028
|
[24] |
LEE B, KIM J, KANG Y M, et al. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis bj20 isolated from traditional fermented foods[J]. Food Chemistry,2010,122(1):271−276. doi: 10.1016/j.foodchem.2010.02.071
|
[25] |
LE H P, PARMENTIER N, LE T T, et al. Evaluation of using a combination of enzymatic hydrolysis and lactic acid fermentation for γ-aminobutyric acid production from soymilk[J]. LWT,2021,142:111044. doi: 10.1016/j.lwt.2021.111044
|
[26] |
WAN A A Q I, MOHAMAD N A S, MOHAMAD F I, et al. Isolation, identification, and optimization of γ-aminobutyric acid (GABA)-producing Bacillus cereus strain kbc from a commercial soy sauce moromi in submerged-liquid fermentation[J]. Processes,2020,8(6):652. doi: 10.3390/pr8060652
|
[27] |
YOGESWARA I B A, KITTIBUNCHAKUL S, RAHAYU E S, et al. Microbial production and enzymatic biosynthesis of γ-aminobutyric acid (GABA) using Lactobacillus plantarum fncc 260 isolated from indonesian fermented foods[J]. Processes,2020,9(1):22. doi: 10.3390/pr9010022
|
[28] |
AB KADIR S, WAN-MOHTAR W A A Q, MOHAMMAD R, et al. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production[J]. Journal of Industrial Microbiology and Biotechnology,2016,43(10):1387−1395. doi: 10.1007/s10295-016-1828-5
|
[29] |
HASEGAWA M, YAMANE D, FUNATO K, et al. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis[J]. Journal of Bioscience and Bioengineering,2018,125(3):316−319. doi: 10.1016/j.jbiosc.2017.10.003
|
[30] |
PU Y, SINCLAIR A J, ZHONG J, et al. Determination of γ-aminobutyric acid (GABA) in jujube fruit (Ziziphus jujuba mill.)[J]. CyTA-Journal of Food, 2019, 17(1):158-162.
|
[31] |
LI R, LI Z J, WU N N, et al. The effect of cold plasma pretreatment on GABA, γ-oryzanol, phytic acid, phenolics, and antioxidant capacity in brown rice during germination[J]. Cereal Chemistry,2023,2(100):321−332.
|
[32] |
TU J, LIU G, JIN Y, et al. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ace and α-glucosidase activity[J]. Industrial Crops and Products,2022,177:114485. doi: 10.1016/j.indcrop.2021.114485
|
[33] |
杨苞梅, 姚丽贤, 李国良, 等. 不同品种荔枝果肉游离氨基酸及香气组分分析[J]. 热带作物学报,2014,35(6):1228−1234. [YANG B M, YAO L X, LI G L, et al. Analysis of amino acids and aromatic components of pulps for different litchi variety[J]. Chinese Journal of Tropical Crops,2014,35(6):1228−1234.]
|
[34] |
陈卓慧, 胡卓炎, 吕恩利, 等. 不同贮藏方式对双肩玉荷包荔枝氨基酸变化的影响[J]. 现代食品科技,2013,29(8):1955−1960. [CHEN Z H, HU Z Y, LÜ E L, et al. Changes in amino acid contents of Shuangjianyuhebao litchi during different storage conditions[J]. Modern Food Science and Technology,2013,29(8):1955−1960.]
|
[35] |
白青云, 高红侠, 陈佳雯, 等. 超声辅助盐胁迫对荸荠中 γ-氨基丁酸富集的影响[J]. 食品科技,2021,46(8):76−81. [BAI Q Y, GAO H X, CHEN J W, et al. Effects of ultrasonic assisted salt stress on γ-aminobutyric acid accumulation in water chestnut[J]. Food Science and Technology,2021,46(8):76−81.]
|
[36] |
YOUN Y, PARK J, JANG H, et al. Sequential hydration with anaerobic and heat treatment increases GABA ( γ-aminobutyric acid) content in wheat[J]. Food Chemistry,2011,129(4):1631−1635. doi: 10.1016/j.foodchem.2011.06.020
|
[37] |
周新勇, 陆燕婷, 尹永祺, 等. 低氧联合酸胁迫富集大麦芽中γ-氨基丁酸工艺优化[J]. 中国粮油学报,2020,35(6):144−150. [ZHOU X Y, LU Y T, YIN Y Q, et al. Optimization of hypoxia combined with acid stress processing conditionsfor enriching γ-aminobutyric acid (GABA) in malt[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):144−150.]
|
[38] |
黄柳舒, 沈莲清, 王向阳. 改良比色法测桑叶中 γ-氨基丁酸含量及其热稳定性研究[J]. 食品科技,2010,35(8):328−331. [HUANG L S, SHEN L Q, WANG X Y. Spectrophotometry improvement determination of γ-aminobutyric acid inmulberry leaf and study on its thermal stability[J]. Food Science and Technology,2010,35(8):328−331.]
|
[39] |
陈恩成, 张名位, 彭超英, 等. 比色法快速测定糙米中 γ-氨基丁酸含量研究[J]. 中国粮油学报,2006(1):125−128. [CHEN E C, ZHANG M W, PENG C Y, et al. Spectrophometric determination of γ-aminobutyric acid in brown rice[J]. Journal of the Chinese Cereals and Oils Association,2006(1):125−128.]
|
[40] |
万蓝婷, 李暄妍, 程建峰, 等. Berthelot比色法测定植物叶片中 γ-氨基丁酸(GABA)含量的体系优化[J]. 植物生理学报,2021,57(7):1462−1472. [WAN L T, LI X Y, CHENG J F, et al. Systematic optimization of Berthelot colorimetry for determining γ-aminobutyric acid (GABA) content in plant leaves[J]. Plant Physiology Journal,2021,57(7):1462−1472.]
|
[41] |
JINNARAK A, TEERASONG S. A novel colorimetric method for detection of gamma-aminobutyric acid based on silver nanoparticles[J]. Sensors and Actuators B: Chemical,2016,229:315−320. doi: 10.1016/j.snb.2016.01.115
|
[42] |
王能凤. 红枣γ-氨基丁酸测定方法的优化及应用研究[D]. 阿拉尔:塔里木大学, 2022. [WANG N F. Research on optimization and application of determination method of γ-aminobutyric acid in jujube[D]. Alaer:Tarim University, 2022.]
WANG N F. Research on optimization and application of determination method of γ-aminobutyric acid in jujube[D]. Alaer: Tarim University, 2022.
|
[43] |
王能凤, 杨家荣, 蒲云峰, 等. 红枣中 γ-氨基丁酸的功能及检测方法的研究进展[J]. 农产品加工,2022(14):94−96. [WANG N F, YANG J R, PU Y F, et al. Research progress of function and detection methods of γ-aminobutyric acid in jujube fruit[J]. Farm Products Processing,2022(14):94−96.]
|
[44] |
刘红梅, 魏淘涛, 刘行丹, 等. 发芽糙米 γ-氨基丁酸的检测及研究进展[J]. 作物研究,2012,26(1):88−92. [LIU H M, WEI T T, LIU X D, et al. Determination methods and research progress of gamma aminobutyric acid in germinated brown rice[J]. Crop Research,2012,26(1):88−92.]
|
[45] |
李雁琴. 红枣中GABA检测方法优化及其变化规律的研究[D]. 阿拉尔:塔里木大学, 2020. [LI Y Q. Study on the optimization of γ-aminobutyric acid detection method andits variation rule in jujube[D]. Alaer:Tarim University, 2020.]
LI Y Q. Study on the optimization of γ-aminobutyric acid detection method andits variation rule in jujube[D]. Alaer: Tarim University, 2020.
|
[46] |
郭旭光, 尹玉云, 徐晓楠. 高效液相-柱后衍生-荧光检测法测定保健品中 γ-氨基丁酸的含量[J]. 河南预防医学杂志,2020,31(12):894−896. [GUO X G, YIN Y Y, XU X N. HPLC determination of gamma-aminobutyric acid in health care productswith post-column derivatization and fluorescence detection[J]. Henan Journal of Preventive Medicine,2020,31(12):894−896.]
|
[47] |
王丽群, 潘媛媛, 孟庆虹, 等. 基于柱后衍生发芽糙米中 γ-氨基丁酸HPLC检测方法的建立及应用[J]. 中国酿造,2016,35(2):144−147. [WANG L Q, PAN Y Y, MENG Q H, et al. Establishment and application of the HPLC determination method for γ-aminobutyric acid in germinated brown rice based on postcolumn derivation[J]. China Brewing,2016,35(2):144−147.]
|
[48] |
邢志强. 茶叶γ-氨基丁酸富集方法及其检测方法的研究[D]. 合肥:安徽农业大学, 2009. [XING Z Q. Study of enriching ways and analytical method on the γ-aminobutyric acid in tea leaves[D]. Hefei:Anhui Agricultural University, 2009.]
XING Z Q. Study of enriching ways and analytical method on the γ-aminobutyric acid in tea leaves[D]. Hefei: Anhui Agricultural University, 2009.
|
[49] |
杜金凤, 郭航宏, 陶晓杰, 等. DABS-Cl柱前衍生HPLC测定发芽糙米粉中 γ-氨基丁酸[J]. 食品工业,2021,42(6):468−472. [DU J F, GUO H G, TAO X J, et al. Determine of γ-aminobuytric acid in germinated brown rice powder by HPLC with DABS-Cl precolumn derivatization[J]. The Food Industry,2021,42(6):468−472.]
|
[50] |
杨晶晶, 刘英, 崔秀明, 等. 高效液相色谱法测定三七地上部分 γ-氨基丁酸的含量[J]. 中国中药杂志,2014,39(4):606−609. [YANG J J, LIU Y, CUI X M, et al. Determination of γ-aminobutyric acid in aerial part of panax notoginseng by HPLC[J]. China Journal of Chinese Materia Medica,2014,39(4):606−609.]
|
[51] |
刘宗乐, 高林森, 张东东, 等. 高效液相色谱法测定乳酸菌发酵液中 γ-氨基丁酸[J]. 中国酿造,2022,41(11):233−238. [LIU Z L, GAO L S, ZHANG D D, et al. Determination of γ-aminobutyric acid in lactic acid bacteria fermentationbroth by HPLC[J]. China Brewing,2022,41(11):233−238.]
|
[52] |
胡雪莲, 王宏华, 王莉娜. 高效液相色谱法测定黑莓果汁及黑莓啤酒中的 γ-氨基丁酸[J]. 中国酿造,2015,34(3):150−153. [HU X L, WANG H H, WANG L N. Determination of γ-aminobutyric acid in blackberry juice and blackberry beer by HPLC[J]. China Brewing,2015,34(3):150−153.]
|
[53] |
DAI D, QIN Q, ZHU X, et al. A high performance liquid chromatography tandem mass spectrometry protocol for detection of neurotransmitters in the rat brain tissue[J]. MethodsX,2023,10:102083. doi: 10.1016/j.mex.2023.102083
|
[54] |
BERGH M S, BOGEN I L, LUNDANES E, et al. Validated methods for determination of neurotransmitters and metabolites in rodent brain tissue and extracellular fluid by reversed phase UHPLC-MS/MS[J]. Journal of Chromatography B,2016,1028:120−129. doi: 10.1016/j.jchromb.2016.06.011
|
[55] |
秦宇, 侯蓓蓓, 张斌骏, 等. 超高效液相色谱-串联质谱法测定南瓜中 γ-氨基丁酸的含量[J]. 食品安全质量检测学报,2020,11(2):528−532. [QIN Y, HOU B B, ZHANG B J, et al. Simultaneous determination of γ-aminobutyric acid in pumpkin by ultraperformance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality,2020,11(2):528−532.]
|
[56] |
ZHAO M, TUO H, WANG S, et al. The effects of dietary nutrition on sleep and sleep disorders[J]. Mediators of Inflammation,2020(25):3142874.
|
[57] |
BRUNI O, FERINI-STRAMBI L, GIACOMONI E, et al. Herbal remedies and their possible effect on the GABAergic system and sleep[J]. Nutrients,2021,13(2):530. doi: 10.3390/nu13020530
|
[58] |
GOTTESMANN C. GABA mechanisms and sleep[J]. Neuroscience,2002,111(2):231−239. doi: 10.1016/S0306-4522(02)00034-9
|
[59] |
YAMATSU A, YAMASHITA Y, PANDHARIPANDE T, et al. Effect of oral γ-aminobutyric acid (GABA) administration on sleep and its absorption in humans[J]. Food Science and Biotechnology,2016,25(2):547−551. doi: 10.1007/s10068-016-0076-9
|
[60] |
HEPSOMALI P, GROEGER J A, NISHIHIRA J, et al. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans:A systematic review[J]. Frontiers in Neuroscience,2020,14:923. doi: 10.3389/fnins.2020.00923
|
[61] |
JEONG A, HWANG J, JO K, et al. Fermented gamma aminobutyric acid improves sleep behaviors in fruit flies and rodent models[J]. International Journal of Molecular Sciences,2021,22(7):3537. doi: 10.3390/ijms22073537
|
[62] |
李科, 俞兰秀, 刘小雨, 等. γ-氨基丁酸改善睡眠作用机制的研究进展[J]. 食品工业科技,2019,40(14):353−358. [LI K, YU L X, LIU X Y, et al. Research progress on improving sleep mechanism of γ-aminobutyric acid[J]. Science and Technology of Food Industry,2019,40(14):353−358.]
|
[63] |
WANG H, WANG Z, CHEN N. The receptor hypothesis and the pathogenesis of depression:Genetic bases and biological correlates[J]. Pharmacological Research,2021,167:105542. doi: 10.1016/j.phrs.2021.105542
|
[64] |
FARAJDOKHT F, VOSOUGHI A, ZIAEE M, et al. The role of hippocampal GABA a receptors on anxiolytic effects of echium amoenum extract in a mice model of restraint stress[J]. Molecular Biology Reports,2020,47(9):6487−6496. doi: 10.1007/s11033-020-05699-7
|
[65] |
TAFET G E, NEMEROFF C B. Pharmacological treatment of anxiety disorders:The role of the hpa axis[J]. Frontiers in Psychiatry,2020,11:443. doi: 10.3389/fpsyt.2020.00443
|
[66] |
CAI L, TAO Q, LI W, et al. The anti-anxiety/depression effect of a combined complex of casein hydrolysate and γ-aminobutyric acid on C57BL/6 mice[J]. Frontiers in Nutrition,2022,9:971853. doi: 10.3389/fnut.2022.971853
|
[67] |
SANACORA G, MASON G F, ROTHMAN D L, et al. Increased cortical GABA concentrations in depressed patients receiving ect[J]. American Journal of Psychiatry,2003,160(3):577−579. doi: 10.1176/appi.ajp.160.3.577
|
[68] |
陈青峰, 贺婧, 谢小梅, 等. 淡豆豉炮制中 γ-氨基丁酸含量测定及其抗抑郁作用研究[J]. 药物评价研究,2021,44(4):688−694. [CHEN Q F, HE J, XIE X M, et al. Determination of content of γ-aminobutyric acid and its antidepressant effect at different time points during processing of sojae semen praeparatum[J]. Drug Evaluation Research,2021,44(4):688−694.]
|
[69] |
AL-KURAISHY H M, HUSSIAN N R, AL-NAIMI M S, et al. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus:A critical reappraisal[J]. International Journal of Preventive Medicine,2021,12(1):19.
|
[70] |
HOSSEINI DASTGERDI A, SHARIFI M, SOLTANI N. GABA administration improves liver function and insulin resistance in offspring of type 2 diabetic rats[J]. Scientific Reports,2021,11(1):23155. doi: 10.1038/s41598-021-02324-w
|
[71] |
PRUD'HOMME G J, GLINKA Y, KURT M, et al. The anti-aging protein klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells[J]. Biochemical and Biophysical Research Communications,2017,493(4):1542−1547. doi: 10.1016/j.bbrc.2017.10.029
|
[72] |
LIN E E, SCOTT-SOLOMON E, KURUVILLA R. Peripheral innervation in the regulation of glucose homeostasis[J]. Trends in Neurosciences,2021,44(3):189−202. doi: 10.1016/j.tins.2020.10.015
|
[73] |
LIU Y, WENG W, WANG S, et al. Effect of γ-aminobutyric acid-chitosan nanoparticles on glucose homeostasis in mice[J]. ACS Omega,2018,3(3):2492−2497. doi: 10.1021/acsomega.7b01988
|
[74] |
DUPONT A G, LÉGAT L. GABA is a mediator of brain at 1 and at 2 receptor-mediated blood pressure responses[J]. Hypertension Research,2020,43(10):995−1005. doi: 10.1038/s41440-020-0470-9
|
[75] |
LÉGAT L, SMOLDERS I, DUPONT A G. At 1 receptor mediated hypertensive response to ang ii in the nucleus tractus solitarii of normotensive rats involves no dependent local GABA release[J]. Frontiers in Pharmacology,2019,10:460. doi: 10.3389/fphar.2019.00460
|
[76] |
MILANEZ M I, SILVA A M, PERRY J C, et al. Pattern of sympathetic vasomotor activity induced by GABAergic inhibition in the brain and spinal cord[J]. Pharmacological Reports,2020,72:67−79. doi: 10.1007/s43440-019-00025-w
|
[77] |
KIMURA M, HAYAKAWA K, SANSAWA H. Involvement of γ-aminobutyric acid (GABA) b receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats[J]. Japanese Journal of Pharmacology,2002,89(4):388−394. doi: 10.1254/jjp.89.388
|
[78] |
AKAMA K, KANETOU J, SHIMOSAKI S, et al. Seed-specific expression of truncated osgad 2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats[J]. Transgenic Research,2009,18:865−876. doi: 10.1007/s11248-009-9272-1
|
[79] |
HUSSIN F S, CHAY S Y, ZAREI M, et al. Potentiality of self-cloned Lactobacillus plantarum taj-apis362 for enhancing GABA production in yogurt under glucose induction:optimization and its cardiovascular effect on spontaneous hypertensive rats[J]. Foods,2020,9(12):1826. doi: 10.3390/foods9121826
|
[80] |
XU Y, ZHAO M, HAN Y, et al. GABAergic inhibitory interneuron deficits in alzheimer's disease:Implications for treatment[J]. Frontiers in Neuroscience,2020,14:660. doi: 10.3389/fnins.2020.00660
|
[81] |
ZHANG Z, JING Y, MA Y, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of alzheimer's disease[J]. Biochemical and Biophysical Research Communications,2020,525(4):928−935. doi: 10.1016/j.bbrc.2020.03.004
|
[82] |
INOTSUKA R, UDONO M, YAMATSU A, et al. Exosome-mediated activation of neuronal cells triggered by γ-aminobutyric acid (GABA)[J]. Nutrients,2021,13(8):2544. doi: 10.3390/nu13082544
|
[83] |
YANG J, CHEN J, LIU Y, et al. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA[J]. Neuron,2023,111(7):1104−1117. doi: 10.1016/j.neuron.2022.12.033
|
[84] |
HUANG D, WANG Y, THOMPSON J W, et al. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression[J]. Nature cell Biology,2022,24(2):230−241. doi: 10.1038/s41556-021-00820-9
|
[85] |
HUANG D, ALEXANDER P B, LI Q, et al. GABAergic signaling beyond synapses:An emerging target for cancer therapy[J]. Trends in Cell Biology, 2022. doi: 10.1016/j.tcb.2022.08.004.
|