LAN Tian, ZHAO Qinyu, WANG Jiaqi, et al. Storage Characteristics and Shelf-life Prediction of Probiotic Fermented Kiwifruit Juice[J]. Science and Technology of Food Industry, 2024, 45(5): 301−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050001.
Citation: LAN Tian, ZHAO Qinyu, WANG Jiaqi, et al. Storage Characteristics and Shelf-life Prediction of Probiotic Fermented Kiwifruit Juice[J]. Science and Technology of Food Industry, 2024, 45(5): 301−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050001.

Storage Characteristics and Shelf-life Prediction of Probiotic Fermented Kiwifruit Juice

More Information
  • Received Date: May 03, 2023
  • Available Online: January 02, 2024
  • This study investigated the storage characteristics of probiotic fermented kiwifruit juice under 4 ℃ refrigeration. The research focused on the changes in the viable lactic acid bacteria count physicochemical properties, sensory quality, nutritional quality and functional properties of the juice during 14 days storage period. Additionally, preliminary shelf-life prediction was made based on the changes in ascorbic acid during the storage. The results showed that the fermented kiwifruit juice maintained good probiotic activity throughout the entire storage process with a consistently higher viable bacterial count of over 8.7 lg CFU/mL. Meanwhile, the fermented juice maintained stable physicochemical properties and color and odor characteristics during storage. Compared to unfermented juice, probiotic fermentation contributed to retaining and maintaining ascorbic acid, total phenols and antioxidant activity of juice during storage. In particular, the unfermented juice experienced a 67.98% loss in ascorbic acid after storage, while fermented juice only lost 23.94%. Moreover, based on the zero-order kinetic model, the study effectively predicted the changes in ascorbic acid in kiwifruit juice during storage. The prediction results indicated that fermented juice could be stored at 4 ℃ for 50 d, while unfermented juice could only be stored for 15 d, based on whether ascorbic acid could be effectively supplemented. This showed that fermented kiwifruit juice could maintain high nutritional quality for an extended period during cold storage, further providing the possibility for the commercialization of fermented kiwifruit juice.
  • [1]
    任灏. 发酵型猕猴桃果汁饮料的研制[D]. 杨凌:西北农林科技大学, 2016. [REN H. Development of the fermented kiwifruit juice[D]. Yangling:Northwest A & F University, 2016.]

    REN H. Development of the fermented kiwifruit juice[D]. Yangling: Northwest A & F University, 2016.
    [2]
    ZHAO N, ZHANG Y, LIU D, et al. Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines[J]. European Food Research and Technology,2020,246:875−890. doi: 10.1007/s00217-020-03452-9
    [3]
    SZUTOWSKA J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices:A systematic literature review[J]. European Food Research and Technology,2020,246:357−372. doi: 10.1007/s00217-019-03425-7
    [4]
    WANG Z, FENG Y, YANG N, et al. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria:Bioactive phenolics, antioxidant activities and flavor volatiles[J]. Food Chemistry,2020,373:131455.
    [5]
    CELE N P, AKINOLA S A, MANHIVI V E, et al. Influence of lactic acid bacterium strains on changes in quality, functional compounds and volatile compounds of mango juice from different cultivars during fermentation[J]. Foods,2022,11:682. doi: 10.3390/foods11050682
    [6]
    LAN T, LÜ X, ZHAO Q, et al. Optimization of strains for fermentation of kiwifruit juice and effects of mono- and mixed culture fermentation on its sensory and aroma profiles[J]. Food Chemistry: X,2023,17:100595. doi: 10.1016/j.fochx.2023.100595
    [7]
    PATEL A R. Probiotic fruit and vegetable juices- recent advances and future perspective[J]. International Food Research Journal,2017,24(5):1850−1857.
    [8]
    MANDHA J, SHUMOY H, MATEMU A O, et al. Evaluation of the composition and quality of watermelon and mango juices fermented by Levilactobacillus brevis, Lacticaseibacillus casei and Pediococcus pentosaceus and subsequent simulated digestion and storage[J]. International Journal of Food Science and Technology,2022,57:5461−5471. doi: 10.1111/ijfs.15878
    [9]
    MA T, WANG J, WANG H, et al. Is overnight fresh juice drinkable? The shelf life prediction of non-industrial fresh watermelon juice based on the nutritional quality, microbial safety quality, and sensory quality[J]. Food & Nutrition Research 2020, 64:4237.
    [10]
    BONTSIDIS C, MALLOUCHOS A, TERPOU A, et al. Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4 ℃ for 4 weeks[J]. Foods,2021,10:768. doi: 10.3390/foods10040768
    [11]
    DZANDU B, CHOTIKO A, SATHIVEL S. Antioxidant activity and viability of Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and co-culture in fermented tomato juice during refrigerated storage[J]. Food Bioscience,2022,50:102085. doi: 10.1016/j.fbio.2022.102085
    [12]
    ZHANG H, ZHAO Q, LAN T, et al. Comparative analysis of physicochemical characteristics, nutritional and functional components and antioxidant capacity of fifteen kiwifruit ( Actinidia) cultivars—Comparative analysis of fifteen kiwifruit ( Actinidia) cultivars[J]. Foods,2020,9:1267. doi: 10.3390/foods9091267
    [13]
    MA T, LAN T, JU Y, et al. Comparison of the nutritional properties and biological activities of kiwifruit ( Actinidia) and their different forms of products:Towards making kiwifruit more nutritious and functional[J]. Food & Function,2019,10:1317−1329.
    [14]
    BAI X, HAN M, YUE T, et al. Control of post-acidification and shelf-life prediction of apple juice fermented by Lactobacillus[J]. Food Control,2022,139:109076. doi: 10.1016/j.foodcont.2022.109076
    [15]
    朱金艳, 赵雪梅, 王殿夫, 等. 超高压和热杀菌的蓝莓果汁饮料贮藏期品质的变化及货架期预测模型[J]. 食品工业科技,2021,42(20):320−327. [ZHU J Y, ZHAO X M, WANG D F, et al. Storage quality changes and shelf life predictive modeling of blueberry juice treated by ultra-high pressure and thermal sterilization[J]. Science and Technology of Food Industry,2021,42(20):320−327.]

    ZHU J Y, ZHAO X M, WANG D F, et al. Storage quality changes and shelf life predictive modeling of blueberry juice treated by ultra-high pressure and thermal sterilization[J]. Science and Technology of Food Industry, 2021, 4220): 320327.
    [16]
    MIZUTA A G, DE-MENEZES J L, DA-SILVA L A, et al. High-intensity ultrasound reduces fermentation time and improves textural properties, antioxidant activity and probiotic survival in fermented probiotic strawberry drink[J]. International Journal of Food Science and Technology,2023,58:194−204. doi: 10.1111/ijfs.16187
    [17]
    GUEDES C K R D, GUEDES A F L D, DA-SILVA J R, et al. Development of vegetal probiotic beverage of passion fruit ( Passiflora edulis Sims), yam ( Dioscorea cayenensis) and Lacticaseiba cillus casei[J]. Food Science and Technology,2020,41(Suppl.2):619−626.
    [18]
    GUMUS S, DEMIRCI A S. Survivability of probiotic strains, Lactobacillus fermentum CECT 5716 and Lactobacillus acidophilus DSM 20079 in grape juice and physico-chemical properties of the juice during refrigerated storage[J]. Food Science and Technology,2022,42:e08122. doi: 10.1590/fst.08122
    [19]
    MANTZOURANI I, KAZAKOS S, TERPOU A, et al. Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice[J]. Foods,2019,8:4.
    [20]
    CHEN C, LU Y, YU H, et al. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice[J]. Food Bioscience,2019,27:30−36. doi: 10.1016/j.fbio.2018.11.006
    [21]
    ZHAO D, SHAH N P. Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion[J]. Journal of Functional Foods,2016,20:182−194. doi: 10.1016/j.jff.2015.10.033
    [22]
    代文清. 苹果梨黑果腺肋花揪汁贮藏品质变化及体外模拟胃肠消化[D]. 锦州:渤海大学, 2021. [DAI W Q. Quality changes of Pingguo pear and Aronia melanocarpa compound Juice during storage and gastrointestinal digestion in vitro[D]. Jinzhou:Bohai University, 2021.]

    DAI W Q. Quality changes of Pingguo pear and Aronia melanocarpa compound Juice during storage and gastrointestinal digestion in vitro[D]. Jinzhou: Bohai University, 2021.
    [23]
    胡海敏, 田佳乐, 孙思霖, 等. 固相微萃取-气相色谱-质谱结合电子鼻技术分析发酵乳中挥发性风味物质[J]. 微生物学通报,2023,50(1):273−288. [HU H M, TIAN J L, SUN S L, et al. Analysis of volatile flavor compounds in fermented milk by solid phase microextraction-gas chromatography-mass spectrometry and electronic nose[J]. Microbiology China,2023,50(1):273−288.]

    HU H M, TIAN J L, SUN S L, et al. Analysis of volatile flavor compounds in fermented milk by solid phase microextraction-gas chromatography-mass spectrometry and electronic nose[J]. Microbiology China, 2023, 501): 273288.
    [24]
    WANG S, QIU Y, ZHU F. Kiwifruit (Actinidia spp.):A review of chemical diversity and biological activities[J]. Food Chemistry, 2021, 350: 128469.
    [25]
    LAN T, BAO S H, WANG J Q, et al. Shelf life of non-industrial fresh mango juice:Microbial safety, nutritional and sensory characteristics[J]. Food Bioscience,2021,42:101060. doi: 10.1016/j.fbio.2021.101060
    [26]
    CAI L Q, WANG W J, TONG J W, et al. Changes of bioactive substances in lactic acid bacteria and yeasts fermented kiwifruit extract during the fermentation[J]. LWT-Food Science and Technology,2022,164:113629. doi: 10.1016/j.lwt.2022.113629
    [27]
    WANG J, XIE B, SUN Z. Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage[J]. LWT-Food Science and Technology,2021,137:110438. doi: 10.1016/j.lwt.2020.110438
    [28]
    LI T L, JIANG T, LIU N, et al. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria[J]. Food Chemistry, 2021, 339:127859.
    [29]
    孙强, 张鑫, 高贵田. 海沃德猕猴桃货架期预测模型的建立[J]. [J]. 核农学报,2020,34(8):1729−1736. [SUN Q, ZHANG X, GAO G T. Establishment of prediction model of Hayward kiwifruit shelf-life[J]. Journal of Nuclear Agricultural Sciences,2020,34(8):1729−1736.] doi: 10.11869/j.issn.100-8551.2020.08.1729

    SUN Q, ZHANG X, GAO G T. Establishment of prediction model of Hayward kiwifruit shelf-life[J]. Journal of Nuclear Agricultural Sciences, 2020, 348): 17291736. doi: 10.11869/j.issn.100-8551.2020.08.1729
    [30]
    陈登飘. 探究猕猴桃果汁饮料生产过程中的质量管理[J]. 现代食品,2018,12:161−163. [CHEN D P. Explore the quality management of kiwi fruit juice beverage[J]. Modern Food,2018,12:161−163.]

    CHEN D P. Explore the quality management of kiwi fruit juice beverage[J]. Modern Food, 2018, 12: 161163.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (144) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return