CHI Yanping, MIAO Xinyu, WANG Jinghui, et al. Identification and Breeding with Genome Shuffling Strain CLYB1 Producing γ-Aminobutyric Acid[J]. Science and Technology of Food Industry, 2023, 44(19): 167−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040233.
Citation: CHI Yanping, MIAO Xinyu, WANG Jinghui, et al. Identification and Breeding with Genome Shuffling Strain CLYB1 Producing γ-Aminobutyric Acid[J]. Science and Technology of Food Industry, 2023, 44(19): 167−173. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040233.

Identification and Breeding with Genome Shuffling Strain CLYB1 Producing γ-Aminobutyric Acid

More Information
  • Received Date: April 24, 2023
  • Available Online: August 04, 2023
  • In order to improve the yield of γ-aminobutyric acid (GABA), strain CLYB1 was bred with ultraviolet mutagenesis and genome shuffling to produce high yield of GABA. After breeding, the hemolysis experiments and antibiotic sensitivity test were carried out on the recombinant strain. The strain CLYB1 was Bacillus velezensis, and the yield of GABA was 3.95 g/L. The GABA yield of CLYB1-Y breeding by ultraviolet mutagenesis from CLYB1 was 10.26 g/L, which was 160% higher than that of CLYB1. The GABA yield of CLYB1-YC breeding by genome shuffling from CLYB1-Y was 20.19 g/L, which was 411% higher than that of CLYB1. The hemolysis experiments and antibiotic sensitivity tests showed that CLYB1-YC had no hemolytic activity and was sensitive to 10 common antibiotics (penicillin, ampicillin, ceftriaxone, gentamycin, tetracycline, erythromycin, ciprofloxacin, lincomycin, chloramphenicol and puromyn). The Bacillus velezensis CLYB1-YC breeding by genome shuffling producing high γ-aminobutyric acid has a good application prospect.
  • [1]
    刘鸷驹, 张东星, 晏仁义, 等. γ-氨基丁酸的生物活性研究进展[J]. 现代药物与临床,2022,37(9):2167−2172. [LIU Zhiju, ZHANG Dongxing, YAN Renyi, et al. Research progress on biological activities of γ-aminobutyric acid[J]. Drugs & Clinic,2022,37(9):2167−2172.

    LIU Zhiju, ZHANG Dongxing, YAN Renyi, et al. Research progress on biological activities of γ-aminobutyric acid[J]. Drugs & Clinic, 2022, 37(9): 2167-2172.
    [2]
    李海峰, 李冰冰, 石硕硕, 等. γ-氨基丁酸在食品中的应用研究进展[J]. 河南工业大学学报(自然科学版),2023,44(1):117−125. [LI Haifeng, LI Bingbing, SHI Shuoshuo, et al. Research progress on the application of γ-aminobutyric acid in food[J]. Journal of Henan University of Technology (Natural Science Edition),2023,44(1):117−125.

    LI Haifeng, LI Bingbing, SHI Shuoshuo, et al. Research progress on the application of γ-aminobutyric acid in food [J]. Journal of Henan University of Technology (Natural Science Edition), 2023, 44(1): 117-125.
    [3]
    FARHAD G, DAVID F M D, LAURA G G-M. Biofunctional, structural, and tribological attributes of GABA-enriched probiotic yoghurts containing Lacticaseibacillus paracasei alone or in combination with prebiotics[J]. International Dairy Journal,2022,129:105348. doi: 10.1016/j.idairyj.2022.105348
    [4]
    JIN Y W, WU J Y, HU D, et al. Gamma-aminobutyric acid-producing Levilactobacillus brevis strains as probiotics in litchi juice fermentation[J]. Foods,2023,12(2):302. doi: 10.3390/foods12020302
    [5]
    SONG C N, ZHU L P, SHAO Y C, et al. Enhancement of GABA content in hongqu wine by optimisation of fermentation conditions using response surface methodology[J]. Czech Journal of Food Sciences,2021,39(4):297−304. doi: 10.17221/47/2021-CJFS
    [6]
    林杨, 唐琦勇, 楚敏, 等. γ-氨基丁酸的功能、生产及食品应用研究进展[J]. 中国调味品,2021,46(6):173−179. [LIN Yang, TANG Qiyong, CHU Min, et al. Research progress on function, production and food application of γ-aminobutyric acid[J]. China Condiment,2021,46(6):173−179.

    LIN Yang, TANG Qiyong, CHU Min, et al. Research progress on function, production and food application of γ-aminobutyric acid[J]. China Condiment, 2021, 46(6): 173-179.
    [7]
    张瑞姣, 杨鹏, 宫安东等. 微生物发酵生产γ-氨基丁酸的研究进展[J]. 信阳师范学院学报(自然科学版),2023,36(1):162−172. [ZHANG Ruijiao, YANG Peng, GONG Andong, et al. Research progress on the production so gamma-aminobutyric acid by microbial fermentation[J]. Journal of Xinyang Norma University (Natural Science Edition),2023,36(1):162−172. doi: 10.3969/j.issn.1003-0972.2023.01.027

    ZHANG Ruijiao, YANG Peng, GONG Andong, et al. Research progress on the production so gamma-aminobutyric acid by microbial fermentation[J]. Journal of Xinyang Norma University (Natural Science Edition), 2023, 36(1): 162-172. doi: 10.3969/j.issn.1003-0972.2023.01.027
    [8]
    ZHANG L, YUE Y, WANG X J, et al. Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue)[J]. Bioprocess and Biosystems Engineering,2022,45(7):1111−1123. doi: 10.1007/s00449-022-02702-2
    [9]
    何维, 宋贺, 扬子彪, 等. 外源γ-氨基丁酸通过调节肠道菌群改善神经系统疾病研究进展[J]. 食品工业科技,2023,44(6):432−440. [HE Wei, SONG He, YANG Zibiao, et al. Research progress of exogenous γ-aminobutyric acid in improving neurological diseases by regulating intestinal flora[J]. Science and Technology of Food Industry,2023,44(6):432−440.

    HE Wei, SONG He, YANG Zibiao, et al. Research progress of exogenous γ-aminobutyric acid in improving neurological diseases by regulating intestinal flora[J]. Science and Technology of Food Industry, 2023, 44(6): 432−440.
    [10]
    孙向阳, 汪杰, 姚红梅, 等. 屎肠球菌与酿酒酵母共发酵产γ-氨基丁酸条件优化及机制研究[J]. 食品工业科技,2022,43(15):132−138. [SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of conditions for γ-aminobutyric acid yield by co-fermentation of enterococcus faecium with Saccharomyces cerevisiae and mechanism research[J]. Science and Technology of Food Industry,2022,43(15):132−138.

    SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of conditions for γ-aminobutyric acid yield by co-fermentation of enterococcus faecium with Saccharomyces cerevisiae and mechanism research [J]. Science and Technology of Food Industry, 2022, 43(15): 132-138.
    [11]
    韩笑, 杜春梅, 李玉婷, 等. 基因组改组技术在微生物育种方面的应用[J]. 中国酿造,2022,41(11):7−13. [HANG Xiao, DU Chunmei, LI Yuting, et al. Application of genome shuffling technique in microbial breeding[J]. China Brewing,2022,41(11):7−13.

    HANG Xiao, DU Chunmei, LI Yuting, et al. Application of genome shuffling technique in microbial breeding[J]. China Brewing, 2022, 41(11): 7-13.
    [12]
    CHEN L, XIN Q H, MA L M, et al. Applications and research advance of genome shuffling for industrial microbial strains improvement[J]. World Journal of Microbiology and Biotechnology,2020,36(10):158. doi: 10.1007/s11274-020-02936-w
    [13]
    LI J, GUO S Y, HUA Q, et al. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling[J]. Biotechnol Lett,2021,43:1143−1154. doi: 10.1007/s10529-020-03034-5
    [14]
    林路成, 徐志伟, 张建泽, 等. 原生质体融合结合基因编辑技术显著提高酿酒酵母2-苯乙醇产量[J]. 食品与发酵工业,2023,49(5):18−28. [LIN Lucheng, XU Zhiwei, ZHANG Jianze, et al. Protoplast fusion combined with gene editing technology significantly improves the ability of Saccharomyces cerevisiae to produce 2-phenylethanol[J]. Food and Fermentation Industries,2023,49(5):18−28. doi: 10.13995/j.cnki.11-1802/ts.031898

    LIN Lucheng, XU Zhiwei, ZHANG Jianze, et al. Protoplast fusion combined with gene editing technology significantly improves the ability of Saccharomyces cerevisiae to produce 2-phenylethanol[J]. Food and Fermentation Industries, 2023, 49(5): 18-28. doi: 10.13995/j.cnki.11-1802/ts.031898
    [15]
    YANG S, ZHANG Z, ZHANG X, et al. Genome shuffling mutant of streptomyces diastatochromogenes for substantial improvement of toyocamycin production[J]. Fermentation,2022,8(10):535. doi: 10.3390/fermentation8100535
    [16]
    SUN J, LIU H, DANG L, et al. Genome shuffling of Lactobacillus plantarum 163 enhanced antibacterial activity and usefulness in preserving orange juice[J]. Letters in Applied Microbiology,2021,73(6):741−749. doi: 10.1111/lam.13566
    [17]
    SUN J, GAO Y, ZHU X, et al. Enhanced antimicrobial activity against Alicyclobacillus acidoterrestris in apple juice by genome shuffling of Lactobacillus acidophilus NX2-6[J]. Journal of Food Safety,2022,42(3):12970.
    [18]
    张亚萌, 王金晶, 钮成拓, 等. 基因组重排选育优良发酵性能的高浓酿造啤酒酵母[J/OL]. 食品与发酵工业: 1−10[2023-04-24]. https://doi.org/10.13995/j.cnki.11-1802/ts.034864.

    ZHANG Yameng, WANG Jinjing, NIU Chengtuo, et al. Breeding brewing yeast with improved fermentation performance in high-gravity beer fermentation by genome shuffling[J/OL]. Food and Fermentation Industries: 1−10[2023-04-24]. https://doi.org/10.13995/j.cnki.11-1802/ts.034864.
    [19]
    尉婧, 王碧香, 李诗瑶, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)的研究进展[J]. 天津农学院学报,2022,29(4):86−91. [WEI Jing, WANG Bixiang, LI Shiyao, et al. Advances in the study of Bacillus velezensis[J]. Journal of Tianjin Agricultural University,2022,29(4):86−91.

    WEI Jing, WANG Bixiang, LI Shiyao, et al. Advances in the study of Bacillus velezensis[J]. Journal of Tianjin Agricultural University, 2022, 29(4): 86-91.
    [20]
    蒲领平, 邓杰, 卫春会, 等. 贝莱斯芽孢杆菌对小曲酒酿造过程中酵母菌生长及风味物质代谢的影响[J]. 中国酿造,2023,42(2):53−57. [PU Lingping, DENG Jie, WEI Chunhui, et al. Effects of Bacillus velesiensis on the growth and flavor metabolism of yeast during Xiaoqu Baijiu brewing[J]. China Brewing,2023,42(2):53−57.

    PU Lingping, DENG Jie, WEI Chunhui, et al. Effects of Bacillus velesiensis on the growth and flavor metabolism of yeast during XiaoquBaijiu brewing [J]. China Brewing, 2023, 42(2): 53-57.
    [21]
    熊香元. 基因组改组技术选育发酵米粉乳酸菌及应用研究[D]. 长沙: 湖南农业大学, 2021.

    XIONG Xiangyuan. Study on lactic acid bacteria from fermented rice noodle by genome shuffling[D]. Changsha: Hunan Agricultural University, 2021.
    [22]
    郭兴燃. 细胞融合选育高产γ-氨基丁酸菌株关键技术及发酵培养基条件优化研究[D]. 长春: 吉林农业大学, 2022.

    GUO X R. Study on the key technology of breeding high-yield gaba strain by cell fusion and optimization of fermentation medium conditions[D]. Changchun: Jilin Agricultural University, 2022.
    [23]
    方绮, 兰秋霞, 万蓝婷, 等. 基于Berthelot比色法快速测定糙米中γ-氨基丁酸(GABA)含量的体系优化[J/OL]. 中国食物与营养: 1−6[2023-07-20]. https://doi.org/10.19870/j.cnki.11-3716/ts.20220923.002.

    FANG Qi, LAN Qiuxia, WANG Lanting, et al. System optimization berthelot colorimetric method for determinating gaba content brown rice[J/OL]. Food and Nutrition in China: 1−6[2023-07-20]. https://doi.org/10.19870/j.cnki.11-3716/ts.20220923.002.
    [24]
    王俊芳, 张震, 申梦雨, 等. 复合诱变选育壳聚糖酶高产菌种及产酶条件优化[J]. 中国酿造,2021,40(5):108−112. [WANG Junfang, ZHANG Zhen, SHENG Mengyu, et al. Breeding of high-yield chitosanase strain by compound mutation and optimization of enzyme production conditions[J]. China Brewing,2021,40(5):108−112.

    WANG Junfang, ZHANG Zhen, SHENG Mengyu, et al. Breeding of high-yield chitosanase strain by compound mutation and optimization of enzyme production conditions[J]. China Brewing, 2021, 40(5): 108-112.
    [25]
    庞光武, 梁智群. 海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化[J]. 中国生物工程杂志,2022,42(12):27−36. [PANG Guangwu, LIANG Zhiquan. Mutagenic breeding and optimization of fermentation conditions of fibrinolytic enzyme from marine Bacillus subtilis[J]. China Biotechnology,2022,42(12):27−36. doi: 10.13523/j.cb.2207056

    PANG Guangwu, LIANG Zhiquan. Mutagenic breeding and optimization of fermentation conditions of fibrinolytic enzyme from marine Bacillus subtilis[J]. China Biotechnology, 2022, 42(12): 27-36. doi: 10.13523/j.cb.2207056
    [26]
    LU F, CHAO J, ZHAO X, et al. Enhancing protease activity of Bacillus subtilis using UV-laser random mutagenesis and high-throughput screening[J]. Process Biochemistry,2022,119:119−127. doi: 10.1016/j.procbio.2022.05.018
    [27]
    SANDIP G, BOMBA D. Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus[J]. Appl Microbiol Biotechnol,2020,104:10451−10463. doi: 10.1007/s00253-020-10987-0
    [28]
    王晓洁, 孟凡强, 周立邦, 等. 利用基因组改组技术提高短杆菌素产量及其培养条件优化[J]. 中国生物工程杂志,2021,41(8):42−51. [WANG Xiaojie, MENG Fangqiang, ZHOU Libang, et al. Breeding of brevibacillin producing strain by genome shuffling and optimization of culture conditions[J]. China Biotechnology,2021,41(8):42−51. doi: 10.13523/j.cb.2103022

    WANG Xiaojie, MENG Fangqiang, ZHOU Libang, et al. Breeding of brevibacillin producing strain by genome shuffling and optimization of culture conditions[J]. China Biotechnology, 2021, 41(8): 42-51. doi: 10.13523/j.cb.2103022
    [29]
    LI S, WANG L, WANG N, et al. Enhanced poly-γ-L-diaminobutanoic acid production in Bacillus pumilus by combining genome shuffling with multiple antibiotic-resistance[J]. Journal of Industrial Microbiology & Biotechnology,2020,47(12):1141−1154.
    [30]
    张天笑, 肖敏敏, 邢馨月, 等. 利用基因组改组技术选育耐酒精高产L-乳酸菌株[J/OL]. 吉林农业大学学报: 1−8[2023-04-22]. https://doi.org/10.13327/j.jjlau.2021.1579.

    ZHANG Tianxiao, XIAO Minmin, XING Xinyue, et al. Breeding of alcohol-tolerance and high-yield L-lactic acid bacteria strains by genome shuffling[J/OL]. Journal of Jilin Agricultural University: 1−8[2023-04-22]. https://doi.org/10.13327/j.jjlau.2021.1579.
    [31]
    FATEMA M A A, ASMAA M E, HALA F M, et al. Enhanced antimicrobial activity of lactic acid bacteria through genome shuffling and genetic variability among shuffled strains[J]. World Journal of Microbiology and Biotechnology,2023,39(5):114. doi: 10.1007/s11274-023-03556-w
  • Related Articles

    [1]ZHANG Yanwei, YANG Ling, LU Jianghao, YAN Chao, WU Hongyan, LI Ling, LIU Mingyue, QI Shihua, HE Fang. Application Progress of Lactic Acid Bacteria Whole Genome Sequencing[J]. Science and Technology of Food Industry, 2022, 43(15): 444-450. DOI: 10.13386/j.issn1002-0306.2021080128
    [2]WANG Ke-jia, QIU Shu-yi. Research Progress of Genome Shuffling Applied in Microbial Strains Screening[J]. Science and Technology of Food Industry, 2020, 41(3): 351-356. DOI: 10.13386/j.issn1002-0306.2020.03.058
    [3]CHEN Rui-long, ZHUANG Ying, HE Bin-bin, QING Shu-ting, HU Luo-ting, LU Zhao-xin, BIE Xiao-mei. Screeging of High-yield Plantaricin Producing Stains Induced by Mutations and the Fresh-keeping Effect of Plantaricin on the Preservation of Meatballs[J]. Science and Technology of Food Industry, 2018, 39(22): 121-127. DOI: 10.13386/j.issn1002-0306.2018.22.022
    [4]TIAN Rui, Sarula, DUAN Xiao-xia, Wuyundalai. Screening and Identification of γ-Aminobutyric Acid Lactobacillus and Its UV Mutagenesis[J]. Science and Technology of Food Industry, 2018, 39(17): 128-132. DOI: 10.13386/j.issn1002-0306.2018.17.022
    [5]LIU Hong-quan, YUAN Sha, LU En-qiu, PAN Yi-hua, YANG Hai-yan, LONG Han, XUAN Jin-cai, HE Xiu-miao. Increase the lipid production of Chlorella hirataii rapidly by genome shuffling[J]. Science and Technology of Food Industry, 2017, (21): 96-99. DOI: 10.13386/j.issn1002-0306.2017.21.020
    [6]WANG Fang, LU Wen-jun, YANG Jing, BIE Xiao-mei. Study on screeging of high-yield bacteriocin producing Lactobacillus plantarum stains induced by mutations[J]. Science and Technology of Food Industry, 2017, (02): 191-195. DOI: 10.13386/j.issn1002-0306.2017.02.028
    [7]LI Cheng-long, LIU Shu-zhen, ZHOU Cai-qiong. Effect of part of the trace elements on genomic stability[J]. Science and Technology of Food Industry, 2015, (02): 392-396. DOI: 10.13386/j.issn1002-0306.2015.02.077
    [8]YUAN Fang, FU Yu-xin, HUANG Yao, ZHONG Liang, LU Zhao-xin, LV Feng-xia, ZHAO Hai-zhen, BIE Xiao-mei. The breeding for high-yield subtilosina strain with genome shuffling[J]. Science and Technology of Food Industry, 2014, (22): 167-171. DOI: 10.13386/j.issn1002-0306.2014.22.028
    [9]WANG Li-ning, ZHAO Yan, XI Li-ping, CHEN Ming-jie. Genome shuffling and its application in fungal-breeding[J]. Science and Technology of Food Industry, 2014, (18): 362-365. DOI: 10.13386/j.issn1002-0306.2014.18.073
    [10]Optimizing process of genome shuffling in Rhodotorula sp. producing lycopene[J]. Science and Technology of Food Industry, 2013, (08): 228-231. DOI: 10.13386/j.issn1002-0306.2013.08.032

Catalog

    Article Metrics

    Article views (99) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return