PAN Junkun, JIAO Zhonggao, ZHANG Qiang. Synergistic Effect of EGCG and Isorhamnetin on CellularAntioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 12−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040160.
Citation: PAN Junkun, JIAO Zhonggao, ZHANG Qiang. Synergistic Effect of EGCG and Isorhamnetin on CellularAntioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 12−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040160.

Synergistic Effect of EGCG and Isorhamnetin on CellularAntioxidant Activity

More Information
  • Received Date: April 17, 2023
  • Available Online: September 16, 2023
  • Objective: To investigate the synergistic antioxidant effects of different ratios of EGCG (epigallocatechin gallate) and isorhamnetin combinations, and provide a theoretical basis for the development of food borne flavonoid functional foods. Methods: The cellular antioxidant activities (CAA) of EGCG and isorhamnetiin combinations were estimated by Chou-Talalay combination Index (CI) method. Results: The median effective dose (EC50) of EGCG and isorhamnetin combination (6:4, c/c) was 5.01±0.1 μg/mL with the CIavg value of 0.76, which represented significantly synergistic effects. Further experiments proved that the superoxide dismutase (SOD) activities of EGCG+isorhamnetin (1.5+1, 3+2, and 6+4 μg/mL) were increased by 5.2%, 21.1% and 49.1%. Glutathione peroxidase (GSH-Px) activities were increased by 7.6%, 27.8% and 57.6%, and catalase (CAT) activities were increased by 5.6%, 24.6% and 42.1% of AAPH group value, respectively. Conclusion: The mechanism of the combination of EGCG and isorhamnetin in cell antioxidant activity might be through up-regulating the activity of endogenous antioxidant enzymes to enhance the cell's own antioxidant capacity, thereby achieving a balance in the body's oxidative stress response.
  • [1]
    王睿, 王琦, 周敏, 等. 茶多酚和EGCG对风干金鲳鱼品质相关理化指标的改善效果比较[J]. 食品科学,2023,44(2):54−63

    WANG R, WANG Q, ZHOU M, et al. Comparison of the effect of tea polyphenols and epigallocatechin gallate on improving physicochemical indexes related to quality of air-dried golden pomfret[J]. Food Science,2023,44(2):54−63.
    [2]
    毕樱馨, 刘咸筠, 孟祥龙, 等. 茶多酚EGCG通过调控miR-16-5p/含铜胺氧化酶1轴发挥对过氧化氢诱导的人心肌细胞凋亡的保护作用[J]. 食品工业科技,2022,43(7):376−383

    BI Y X, LIU X J, MENG X L, et al. Protective effect of EGCG on hydrogen peroxide-induced apoptosis of human cardiomyocyte via regulating miR-16-5p/AOC1 Axis[J]. Science and Technology of Food Industry,2022,43(7):376−383.
    [3]
    ALMATROODI S A, ALMATROUDI A, KHAN A A, et al. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer[J]. Molecules,2020,25(14):3146. doi: 10.3390/molecules25143146
    [4]
    GRZESIK M, NAPARLO K, BARTOSZ G, et al. Antioxidant properties of catechins:Comparison with other antioxidants[J]. Food Chemistry,2018,241:480−492. doi: 10.1016/j.foodchem.2017.08.117
    [5]
    倪璐卿, 陆慧, 高明, 等. 基于UPLC-Q/TOF-MS/MS法的异鼠李素在小鼠体内代谢产物研究[J]. 军事医学,2023,47(5):364−370

    NI L Q, LU H, GAO M, et al. In vivo metabolites of isorhamnetin in mice after oral administration based on UPLC-Q/TOF-MS/MS[J]. Military Medicine Science,2023,47(5):364−370.
    [6]
    官红香, 南丽红, 陈亚萍, 等. 异鼠李素抑制单侧输尿管梗阻大鼠肾间质纤维化的机制研究[J]. 福建中医药,2023,54(2):43−47

    GUAN H X, NAN L P, CHEN Y P, et al. Mechanism of isorhamnetin inhibiting renal interstitial fibrosis in rat with unilateral ureteral obstruction[J]. Fujian Journal of Traditional Chinese Medicine,2023,54(2):43−47.
    [7]
    朱敏, 赵丽敏, 王培, 等. 异鼠李素抑制卵清蛋白诱导的哮喘小鼠肺部炎症[J]. 中国病理生理杂志,2021,37(1):106−111

    ZHU M, ZHAO L M, WANG P, et al. Isorhamnetin inhibits ovalbumin-induced pulmonary inflammation in asthmatic mice[J]. Chinese Journal of Pathophysiology,2021,37(1):106−111.
    [8]
    董曦, 孙桂波, 罗云, 等. 异鼠李素对H2O2引起的 H9C2细胞氧化应激损伤的保护作用研究[J]. 中国药理学通报,2015,31(6):853−860

    DONG X, SUN G B, LUO Y, et al. Protective effect of isorhamnetin on H9C2 cell line against oxidative stress[J]. Chinese Pharmacological Bulletin,2015,31(6):853−860.
    [9]
    MULAT A, ZHANG X, ZHAO T, et al. Isorhamnetin attenuates high-fat and high - fructose diet induced cognitive impairments and neuroinflammation by mediating MAPK and NF- κB signaling pathways[J]. Food and Function,2021,12(19):9261−9272. doi: 10.1039/D0FO03165H
    [10]
    赵增光, 刘应才. 异鼠李素的心血管保护作用[J]. 医学综述,2008,14(15):2321−2323

    ZHAO Z G, LIU Y C. Cardiovascular protective effect of isorhamnetin[J]. Medicine Recapitulate,2008,14(15):2321−2323.
    [11]
    曹汝鸽, 马建飞, 周中凯. 芸香柚皮苷与EGCG协同抗氧化作用及其机理研究[J]. 中国食品学报,2018,18(1):43−48

    CAO R G, MA J F, ZHOU Z K. Studies on the mechanism of the synergistic antioxidant effect of narirutin complexed with EGCG[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(1):43−48.
    [12]
    肖星凝, 徐雯慧, 左丹, 等. 6种黄酮协同抗氧化作用及构效关系研究[J]. 食品与机械,2017,33(2):17−21

    XIAO X N, XU W H, ZUO D, et al. The synergistic antioxidant effect and structure-activity relationship of six flavonoids[J]. Food Machinery,2017,33(2):17−21.
    [13]
    WANG D, JIANG Y, SUN D X, et al. MicroRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H2O2-stimulated HepG2 cells:Roles of BACH1 in Nrf2-dependent pathways[J]. Free Radical Biology and Medicine,2020,153:122−131. doi: 10.1016/j.freeradbiomed.2020.04.018
    [14]
    王娜, 高恩光, 李娜, 等. 白藜芦醇与维生素E协同抗氧化效应研究[J]. 河南农业大学学报,2022,56(6):1007−1014

    WANG N, GAO E G, LI N, et al. Study on the synergistic antioxidant effect of resveratrol and vitamin E[J]. Journal of Henan Agricultural University,2022,56(6):1007−1014.
    [15]
    LIU H, GUAN H, TAN X T, et al. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p[J]. Free Radical Biology and Medicine,2022,181:105−117. doi: 10.1016/j.freeradbiomed.2022.02.002
    [16]
    PAN Y, DENG Y Z, CHEN X, et al. Synergistic antioxidant effects of phenolic acids and carotenes on H2O2-induced H9c2 cells:Role of cell membrane transporters[J]. Food Chemistry,2021,341:128000. doi: 10.1016/j.foodchem.2020.128000
    [17]
    关惠. 槲皮素与儿茶素通过靶向FOXO3协同抑制CHUK基因转录增强细胞抗氧化应激的分子机制[D]. 泰安:山东农业大学, 2022

    GUAN H. Molecular mechanism of quercetin and catechin in protecting cell against oxidative stress by targeting FOXO3 to synergistically inhibit CHUK taanscription [D]. Taian:Shandong Agricultural University, 2022.
    [18]
    LIANG T S, ZHANG Z T, JING P. Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells[J]. Food Chemistry,2019,301:125280. doi: 10.1016/j.foodchem.2019.125280
    [19]
    LIU L L, LIU Q, LI P, et al. Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet[J]. Chinese Journal Natural Medicines,2018,16(9):683−692. doi: 10.1016/S1875-5364(18)30108-0
    [20]
    TU J M, SHI D D, WEN L R, et al. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity[J]. Food and Chemical Toxicology,2019,132:110730. doi: 10.1016/j.fct.2019.110730
    [21]
    ZHANG Q, YANG W B, LIU J C, et al. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship[J]. Oxidative Medicine and Cellular Longevity,2020,2020:4150897.
    [22]
    SHI D D, YANG J L, JIANG Y M, et al. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin[J]. Free Radical Biology and Medicine,2020,152(20):207−215.
    [23]
    DENG M, JIA X C, DONG L H, et al. Structural elucidation of flavonoids from Shatianyu ( Citrus grandis L. Osbeck) pulp and screening of key antioxidant components[J]. Food Chemistry,2022,366:130605. doi: 10.1016/j.foodchem.2021.130605
    [24]
    WOLFE K L, LIU R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry,2007,55(22):8896−8907. doi: 10.1021/jf0715166
    [25]
    张强. 稻壳的化学成分及生物活性研究[D]. 北京:中国科学院大学, 2018

    ZHANG Q. Chemical constituents from rice hull and their bioactivities [D]. Beijing:University of Chinese Academy of Sciences, 2018].
    [26]
    CHEN X, DENG Z Y, ZHENG L F, et al. Interaction between flavonoids and carotenoids on ameliorating oxidative stress and cellular uptake in different cells[J]. Foods,2021,10(12):3096. doi: 10.3390/foods10123096
    [27]
    PHAN M A, BUCKNALL M, ARCOT J. Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo[J]. Journal Functional Foods,2018,45:129−137. doi: 10.1016/j.jff.2018.03.021
    [28]
    CHOU T C. Drug combination studies and their synergy quantification using the Chou-Talalay method[J]. Cancer Research,2010,70(2):440−446. doi: 10.1158/0008-5472.CAN-09-1947
    [29]
    于佳成. 黄芪白芍协同调控细胞抗氧化作用机制的研究[D]. 泰安:山东农业大学, 2015

    YU J C. Synergistic mechaniam of astragalus and peony in the regulation of cellular antioxidant[D]. Taian:Shandong Agricultural University, 2015.
    [30]
    SAW C L, GUO Y, YANG A Y, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species:Involvement of the Nrf2-ARE signaling pathway[J]. Food and Chemistry Toxicology,2014,72:303−311. doi: 10.1016/j.fct.2014.07.038
    [31]
    CHOU T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews,2006,58(3):621−681. doi: 10.1124/pr.58.3.10
    [32]
    VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal Biochemistry Cell Biology,2007,39(1):44−84. doi: 10.1016/j.biocel.2006.07.001
    [33]
    CHEN X, LI H Y, ZHANG B, et al. The synergistic and antagonistic antioxidant interactions of dietary phytochemical com-binations[J]. Critical Reviews in Food Science and Nutrition,2022,62(20):5658−5677. doi: 10.1080/10408398.2021.1888693
    [34]
    WEN L G, YOU L J, YANG X M, et al. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity[J]. Free Radical Biology and Medicine,2015,84:171−184. doi: 10.1016/j.freeradbiomed.2015.03.023
    [35]
    JIANG Y S, ZHAO D R, SUN J Y, et al. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin[J]. Food Sciences and Nutrition,2019,7(7):2391−2403.
    [36]
    ZHOU J, WEI M F, YOU L J. Protective effect of peptides from Pinctada martensii meat on the H2O2-induced oxidative injured HepG2 cells[J]. Antioxidants,2023,12(2):12020535.
    [37]
    HUO J Y, MING Y Z, LI H F, et al. The protective effects of peptides from Chinese baijiu on AAPH-induced oxidative stress in HepG2 cells via Nrf2-mediated signaling pathway[J]. Food Science and Human Wellness,2022,11(6):1527−1538. doi: 10.1016/j.fshw.2022.06.010
  • Related Articles

    [1]GUO Haodan, WU Ying, WEI Yuqiong, CAO Li, BAI Zhouya, FAN Qiuxia, PENG Nan, GU Shaobin. Preparation and Anti-fatigue Function of Weizmannia coagulans BC99 Emergency Energy Bar[J]. Science and Technology of Food Industry, 2025, 46(1): 218-230. DOI: 10.13386/j.issn1002-0306.2024010361
    [2]ZHONG Qiming, ZHANG Jiayu, GUO Cheng, YANG Guoyan, JIA Xiwu, LIU Yubiao, JIN Weiping. Correlation Analysis of 3D Printability and Rheological Properties of Sodium Alginate Hydrogels[J]. Science and Technology of Food Industry, 2023, 44(23): 21-28. DOI: 10.13386/j.issn1002-0306.2023030162
    [3]HU Hua. Purification of Flavonoids from Eupatorium fortunei Turcz. and Its Anti-oxidant and Resisting Exercise Fatigue Effects[J]. Science and Technology of Food Industry, 2022, 43(15): 220-226. DOI: 10.13386/j.issn1002-0306.2021110064
    [4]LIU Wenjing. Preparation of Amaranthus caudatus L. and Punica granatum Composite Beverage and Its Resisting Exercise Fatigue Effect[J]. Science and Technology of Food Industry, 2021, 42(12): 203-208. DOI: 10.13386/j.issn1002-2020090125
    [5]WANG Yu, LIU Qi, GENG Jie. Purification and Resisting Movement Fatigue Activity of Flavonoids from Hippophae rhamnoides L.[J]. Science and Technology of Food Industry, 2020, 41(23): 169-174. DOI: 10.13386/j.issn1002-0306.2020020153
    [6]LIU Jia-wei, ZHANG Xin-yun, LIN Hui-jiao, YUAN Li-wei, LIU Jia-le, WANG Chun-mei, SUN Jing-hui, ZHANG Cheng-yi, CHEN Jian-guang, LI He, JING Shu. Anti-fatigue Effect of Anwulignan on Aging Mice[J]. Science and Technology of Food Industry, 2020, 41(18): 319-323. DOI: 10.13386/j.issn1002-0306.2020.18.050
    [7]CHEN Rong, WU Qi-nan. Effect of Semen Euryales seed coat polyphenols on anti-fatigue and hypoxia tolerance[J]. Science and Technology of Food Industry, 2015, (24): 100-103. DOI: 10.13386/j.issn1002-0306.2015.24.012
    [8]LI Ming. Anti-hypoxia and anti-fatigue effects of water extract from pummel pericarp[J]. Science and Technology of Food Industry, 2014, (16): 342-343. DOI: 10.13386/j.issn1002-0306.2014.16.066
    [9]WANG Xin, XU Li-ping. Evaluation of the antioxidant and anti-fatigue effect of soy oligopeptide[J]. Science and Technology of Food Industry, 2013, (24): 359-362. DOI: 10.13386/j.issn1002-0306.2013.24.023
    [10]Anti-fatigue effect of functional rice wine in mice[J]. Science and Technology of Food Industry, 2012, (23): 364-366. DOI: 10.13386/j.issn1002-0306.2012.23.009
  • Cited by

    Periodical cited type(2)

    1. 穆雪萌,杜芯仪,王彦超,金云峰,张嘉. 桑椹来源的寡核苷酸显著改善小鼠骨质疏松症. 动物营养学报. 2024(01): 602-609 .
    2. 柯昌虎,严慧,赵阳,朱军,李志浩. 基于网络药理学和分子对接探讨黄精抗衰老的作用机制. 湖北农业科学. 2023(10): 100-108+131 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return