Citation: | PAN Junkun, JIAO Zhonggao, ZHANG Qiang. Synergistic Effect of EGCG and Isorhamnetin on CellularAntioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 12−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040160. |
[1] |
王睿, 王琦, 周敏, 等. 茶多酚和EGCG对风干金鲳鱼品质相关理化指标的改善效果比较[J]. 食品科学,2023,44(2):54−63
WANG R, WANG Q, ZHOU M, et al. Comparison of the effect of tea polyphenols and epigallocatechin gallate on improving physicochemical indexes related to quality of air-dried golden pomfret[J]. Food Science,2023,44(2):54−63.
|
[2] |
毕樱馨, 刘咸筠, 孟祥龙, 等. 茶多酚EGCG通过调控miR-16-5p/含铜胺氧化酶1轴发挥对过氧化氢诱导的人心肌细胞凋亡的保护作用[J]. 食品工业科技,2022,43(7):376−383
BI Y X, LIU X J, MENG X L, et al. Protective effect of EGCG on hydrogen peroxide-induced apoptosis of human cardiomyocyte via regulating miR-16-5p/AOC1 Axis[J]. Science and Technology of Food Industry,2022,43(7):376−383.
|
[3] |
ALMATROODI S A, ALMATROUDI A, KHAN A A, et al. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer[J]. Molecules,2020,25(14):3146. doi: 10.3390/molecules25143146
|
[4] |
GRZESIK M, NAPARLO K, BARTOSZ G, et al. Antioxidant properties of catechins:Comparison with other antioxidants[J]. Food Chemistry,2018,241:480−492. doi: 10.1016/j.foodchem.2017.08.117
|
[5] |
倪璐卿, 陆慧, 高明, 等. 基于UPLC-Q/TOF-MS/MS法的异鼠李素在小鼠体内代谢产物研究[J]. 军事医学,2023,47(5):364−370
NI L Q, LU H, GAO M, et al. In vivo metabolites of isorhamnetin in mice after oral administration based on UPLC-Q/TOF-MS/MS[J]. Military Medicine Science,2023,47(5):364−370.
|
[6] |
官红香, 南丽红, 陈亚萍, 等. 异鼠李素抑制单侧输尿管梗阻大鼠肾间质纤维化的机制研究[J]. 福建中医药,2023,54(2):43−47
GUAN H X, NAN L P, CHEN Y P, et al. Mechanism of isorhamnetin inhibiting renal interstitial fibrosis in rat with unilateral ureteral obstruction[J]. Fujian Journal of Traditional Chinese Medicine,2023,54(2):43−47.
|
[7] |
朱敏, 赵丽敏, 王培, 等. 异鼠李素抑制卵清蛋白诱导的哮喘小鼠肺部炎症[J]. 中国病理生理杂志,2021,37(1):106−111
ZHU M, ZHAO L M, WANG P, et al. Isorhamnetin inhibits ovalbumin-induced pulmonary inflammation in asthmatic mice[J]. Chinese Journal of Pathophysiology,2021,37(1):106−111.
|
[8] |
董曦, 孙桂波, 罗云, 等. 异鼠李素对H2O2引起的 H9C2细胞氧化应激损伤的保护作用研究[J]. 中国药理学通报,2015,31(6):853−860
DONG X, SUN G B, LUO Y, et al. Protective effect of isorhamnetin on H9C2 cell line against oxidative stress[J]. Chinese Pharmacological Bulletin,2015,31(6):853−860.
|
[9] |
MULAT A, ZHANG X, ZHAO T, et al. Isorhamnetin attenuates high-fat and high - fructose diet induced cognitive impairments and neuroinflammation by mediating MAPK and NF- κB signaling pathways[J]. Food and Function,2021,12(19):9261−9272. doi: 10.1039/D0FO03165H
|
[10] |
赵增光, 刘应才. 异鼠李素的心血管保护作用[J]. 医学综述,2008,14(15):2321−2323
ZHAO Z G, LIU Y C. Cardiovascular protective effect of isorhamnetin[J]. Medicine Recapitulate,2008,14(15):2321−2323.
|
[11] |
曹汝鸽, 马建飞, 周中凯. 芸香柚皮苷与EGCG协同抗氧化作用及其机理研究[J]. 中国食品学报,2018,18(1):43−48
CAO R G, MA J F, ZHOU Z K. Studies on the mechanism of the synergistic antioxidant effect of narirutin complexed with EGCG[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(1):43−48.
|
[12] |
肖星凝, 徐雯慧, 左丹, 等. 6种黄酮协同抗氧化作用及构效关系研究[J]. 食品与机械,2017,33(2):17−21
XIAO X N, XU W H, ZUO D, et al. The synergistic antioxidant effect and structure-activity relationship of six flavonoids[J]. Food Machinery,2017,33(2):17−21.
|
[13] |
WANG D, JIANG Y, SUN D X, et al. MicroRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H2O2-stimulated HepG2 cells:Roles of BACH1 in Nrf2-dependent pathways[J]. Free Radical Biology and Medicine,2020,153:122−131. doi: 10.1016/j.freeradbiomed.2020.04.018
|
[14] |
王娜, 高恩光, 李娜, 等. 白藜芦醇与维生素E协同抗氧化效应研究[J]. 河南农业大学学报,2022,56(6):1007−1014
WANG N, GAO E G, LI N, et al. Study on the synergistic antioxidant effect of resveratrol and vitamin E[J]. Journal of Henan Agricultural University,2022,56(6):1007−1014.
|
[15] |
LIU H, GUAN H, TAN X T, et al. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p[J]. Free Radical Biology and Medicine,2022,181:105−117. doi: 10.1016/j.freeradbiomed.2022.02.002
|
[16] |
PAN Y, DENG Y Z, CHEN X, et al. Synergistic antioxidant effects of phenolic acids and carotenes on H2O2-induced H9c2 cells:Role of cell membrane transporters[J]. Food Chemistry,2021,341:128000. doi: 10.1016/j.foodchem.2020.128000
|
[17] |
关惠. 槲皮素与儿茶素通过靶向FOXO3协同抑制CHUK基因转录增强细胞抗氧化应激的分子机制[D]. 泰安:山东农业大学, 2022
GUAN H. Molecular mechanism of quercetin and catechin in protecting cell against oxidative stress by targeting FOXO3 to synergistically inhibit CHUK taanscription [D]. Taian:Shandong Agricultural University, 2022.
|
[18] |
LIANG T S, ZHANG Z T, JING P. Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells[J]. Food Chemistry,2019,301:125280. doi: 10.1016/j.foodchem.2019.125280
|
[19] |
LIU L L, LIU Q, LI P, et al. Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet[J]. Chinese Journal Natural Medicines,2018,16(9):683−692. doi: 10.1016/S1875-5364(18)30108-0
|
[20] |
TU J M, SHI D D, WEN L R, et al. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity[J]. Food and Chemical Toxicology,2019,132:110730. doi: 10.1016/j.fct.2019.110730
|
[21] |
ZHANG Q, YANG W B, LIU J C, et al. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship[J]. Oxidative Medicine and Cellular Longevity,2020,2020:4150897.
|
[22] |
SHI D D, YANG J L, JIANG Y M, et al. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin[J]. Free Radical Biology and Medicine,2020,152(20):207−215.
|
[23] |
DENG M, JIA X C, DONG L H, et al. Structural elucidation of flavonoids from Shatianyu ( Citrus grandis L. Osbeck) pulp and screening of key antioxidant components[J]. Food Chemistry,2022,366:130605. doi: 10.1016/j.foodchem.2021.130605
|
[24] |
WOLFE K L, LIU R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry,2007,55(22):8896−8907. doi: 10.1021/jf0715166
|
[25] |
张强. 稻壳的化学成分及生物活性研究[D]. 北京:中国科学院大学, 2018
ZHANG Q. Chemical constituents from rice hull and their bioactivities [D]. Beijing:University of Chinese Academy of Sciences, 2018].
|
[26] |
CHEN X, DENG Z Y, ZHENG L F, et al. Interaction between flavonoids and carotenoids on ameliorating oxidative stress and cellular uptake in different cells[J]. Foods,2021,10(12):3096. doi: 10.3390/foods10123096
|
[27] |
PHAN M A, BUCKNALL M, ARCOT J. Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo[J]. Journal Functional Foods,2018,45:129−137. doi: 10.1016/j.jff.2018.03.021
|
[28] |
CHOU T C. Drug combination studies and their synergy quantification using the Chou-Talalay method[J]. Cancer Research,2010,70(2):440−446. doi: 10.1158/0008-5472.CAN-09-1947
|
[29] |
于佳成. 黄芪白芍协同调控细胞抗氧化作用机制的研究[D]. 泰安:山东农业大学, 2015
YU J C. Synergistic mechaniam of astragalus and peony in the regulation of cellular antioxidant[D]. Taian:Shandong Agricultural University, 2015.
|
[30] |
SAW C L, GUO Y, YANG A Y, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species:Involvement of the Nrf2-ARE signaling pathway[J]. Food and Chemistry Toxicology,2014,72:303−311. doi: 10.1016/j.fct.2014.07.038
|
[31] |
CHOU T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews,2006,58(3):621−681. doi: 10.1124/pr.58.3.10
|
[32] |
VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal Biochemistry Cell Biology,2007,39(1):44−84. doi: 10.1016/j.biocel.2006.07.001
|
[33] |
CHEN X, LI H Y, ZHANG B, et al. The synergistic and antagonistic antioxidant interactions of dietary phytochemical com-binations[J]. Critical Reviews in Food Science and Nutrition,2022,62(20):5658−5677. doi: 10.1080/10408398.2021.1888693
|
[34] |
WEN L G, YOU L J, YANG X M, et al. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity[J]. Free Radical Biology and Medicine,2015,84:171−184. doi: 10.1016/j.freeradbiomed.2015.03.023
|
[35] |
JIANG Y S, ZHAO D R, SUN J Y, et al. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin[J]. Food Sciences and Nutrition,2019,7(7):2391−2403.
|
[36] |
ZHOU J, WEI M F, YOU L J. Protective effect of peptides from Pinctada martensii meat on the H2O2-induced oxidative injured HepG2 cells[J]. Antioxidants,2023,12(2):12020535.
|
[37] |
HUO J Y, MING Y Z, LI H F, et al. The protective effects of peptides from Chinese baijiu on AAPH-induced oxidative stress in HepG2 cells via Nrf2-mediated signaling pathway[J]. Food Science and Human Wellness,2022,11(6):1527−1538. doi: 10.1016/j.fshw.2022.06.010
|
1. |
穆雪萌,杜芯仪,王彦超,金云峰,张嘉. 桑椹来源的寡核苷酸显著改善小鼠骨质疏松症. 动物营养学报. 2024(01): 602-609 .
![]() | |
2. |
柯昌虎,严慧,赵阳,朱军,李志浩. 基于网络药理学和分子对接探讨黄精抗衰老的作用机制. 湖北农业科学. 2023(10): 100-108+131 .
![]() |