Citation: | ZHONG Qiming, ZHANG Jiayu, GUO Cheng, et al. Correlation Analysis of 3D Printability and Rheological Properties of Sodium Alginate Hydrogels[J]. Science and Technology of Food Industry, 2023, 44(23): 21−28. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030162. |
[1] |
戴妍, 袁莹, 张静, 等. 食品3D打印技术在现代食品工业中的应用进展[J]. 食品工业科技,2022,43(7):35−42. [DAI Yan, YUAN Ying, ZHANG Jing, et al. Food 3D printing technology and application in modern food industry:A review[J]. Science and Technology of Food Industry,2022,43(7):35−42. doi: 10.13386/j.issn1002-0306.2021100326
|
[2] |
WEI Yan Toh, LIN Li, CHEE Kai Chua, et al. Comparison of existing 3D food printers[C]//The 3rd International conference on progress in additive manufacturing. Nanyang Technological University, Singapore. 2018:389-394.
|
[3] |
赖月梅. 基于开源型3D打印机(RepRap)打印部件的机械性能研究[J]. 科技通报,2015,31(8):235−239. [LAI Yuemei. Research on mechanical properties based on 3D printed parts by open-source printers[J]. Bulletin of Science and Technology,2015,31(8):235−239. doi: 10.3969/j.issn.1001-7119.2015.08.079
|
[4] |
OUTREQUIN T C R, GAMONPILAS C, SIRIWATWECHAKUL W, et al. Extrusion-based 3D printing of food biopolymers:A highlight on the important rheological parameters to reach printability[J]. Journal of Food Engineering, 2023, 342:111371.
|
[5] |
周浩宇, 张鹏辉, 卢森, 等. 小麦面粉的3D打印特性[J]. 食品科学,2022,43(15):61−68. [ZHOU Haoyu, ZHANG Penghui, LU Sen, et al. 3D printing characteristics of wheat flour[J]. Food Science,2022,43(15):61−68. doi: 10.7506/spkx1002-6630-20210523-277
|
[6] |
AZARMIDOKHT Gholamipour-Shirazi, NORTON T. Ian, MILLS Tom. Designing hydrocolloid based food-ink formulations for extrusion 3D printing[J]. Food Hydrocolloids, 2019, 95:161−167.
|
[7] |
CHEN Huizhi, ZHANG Min, YANG Chaohui. Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics[J]. Journal of Food Engineering,2020,292:110278.
|
[8] |
JI Shengyang, XU Tao. Effect of starch molecular structure on precision and texture properties of 3D printed products[J]. Food Hydrocolloids, 2021, 125:107387.
|
[9] |
HU Chuhuan, LU Wei, ANALUCIA Mata, et al. Ions-induced gelation of alginate:Mechanisms and applications[J]. International Journal of Biological Macromolecules,2021,177(30):578−588.
|
[10] |
周莎莎, 杨晓溪, 李翠平, 等. 添加剂在食品3D打印中的应用现状[J]. 食品工业科技, 2022, 44(6):1−8. [ZHOU Shasha, YANG Xiaoxi, LI Cuiping, et al. Status of food additives in 3D food printing[J]. Science and Technology of Food Industry, 2023, 44(6):1−8.
ZHOU Shasha, YANG Xiaoxi, LI Cuiping, et al. Status of food additives in 3D food printing[J]. Science and Technology of Food Industry, 2023, 44(6): 1−8.
|
[11] |
LIU Yuntao. Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste[J]. LWT- Food Science and Technology,2020,127:109360. doi: 10.1016/j.lwt.2020.109360
|
[12] |
TIMILEHIN Martins, Oyinloye, YOON Won Byong. Stability of 3D printing using a mixture of pea protein and alginate:Precision and application of additive layer manufacturing simulation approach for stress distribution[J]. Journal of Food Engineering,2020,288:110127.
|
[13] |
KUO Chihchun, QIN Hantang, CHENG Yiliang, et al. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels:3D printing and freeze-drying[J]. Food Hydrocolloids,2021,111:106262. doi: 10.1016/j.foodhyd.2020.106262
|
[14] |
PARK Sea Mi, KIM Hyun Woo, and PARK Hyun Jin. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production[J]. Journal of Food Engineering,2020,271:109781. doi: 10.1016/j.jfoodeng.2019.109781
|
[15] |
张鹏辉, 周浩宇, 聂远洋, 等. 原料特性及打印参数对食品3D打印制品品质的影响[J]. 食品与机械, 2021, 37(6):219−223. [ZHANG Penghui, ZHOU Haoyu, NIE Yuanyang, et al. Effects of raw material characteristics and printing parameters on product quality in food 3D printing[J]. Food & Machinery, 2021, 37(6):219−223.
ZHANG Penghui, ZHOU Haoyu, NIE Yuanyang, et al. Effects of raw material characteristics and printing parameters on product quality in food 3D printing[J]. Food & Machinery, 2021, 37(6): 219−223.
|
[16] |
GAYNOR M Kavanagh, SIMON B. Ross-Murphy rheological characterization of polymer gels[J]. Progress in Polymer Science,1998,23(3):533−562. doi: 10.1016/S0079-6700(97)00047-6
|
[17] |
LIU Zhengbin, BHANDARI Bhesh. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
|
[18] |
MU Xuan, AGOSTINACCHIO F. Recent advances in 3d printing with protein-based inks[J]. Progress in Polymer Science,2021,5:101375.
|
[19] |
周琪. 基于低场核磁共振技术研究琼脂糖凝胶性质[D]. 武汉:湖北大学, 2016. [ZHOU Qi. Researches on agarose gel properties based on low-field nuclear magnetic resonance technology[D]. Wuhan: Hubei University, 2016.
ZHOU Qi. Researches on agarose gel properties based on low-field nuclear magnetic resonance technology[D]. Wuhan: Hubei University, 2016.
|
[20] |
叶翔凌, 王波群, 康正阳, 等. 3D打印聚羟基丁酸戊酸共聚酯/半水硫酸钙支架复合壳聚糖水凝胶涂层的性能[J]. 中国组织工程研究, 2022, 26(10):8−17. [YE Xiangling, WANG Boqun, KANG Zhengyang, et al. Function on 3D printing poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium sulfate hemihydrate scaffold integrated chitosan hydrogel coating[J]. Chinese Journal of Tisue Engineering Research, 2022, 26(10):8−17.
YE Xiangling, WANG Boqun, KANG Zhengyang, et al. Function on 3D printing poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium sulfate hemihydrate scaffold integrated chitosan hydrogel coating[J]. Chinese Journal of Tisue Engineering Research, 2022, 26(10): 8−17.
|
[21] |
VALÉRIE Vancauwenberghe, LOUISE Katalagarianakis, WANG Zi, et al. Pectin based food-ink formulations for 3D printing of customizable porous food simulants[J]. Innovative Food Science & Emerging Technologies,2017,42(5):138−150.
|
[22] |
杨耿涵, 韩瑜, 陶阳, 等. 明胶对鸡肉糜3D打印成型稳定性的影响[J]. 食品科学,2022,43(12):51−50. [YANG Genghan, HAN Yu, TAO Yang, et al. Effect of gelatin on the 3D printing forming stability of chicken meat paste[J]. Food Science,2022,43(12):51−50.
|
[23] |
PULATSU Ezgi, LIN Mengshi. A review on customizing edible food materials into 3D printable inks:Approaches and strategies[J]. Trends in Food Science & Technology,2021,107:68−77.
|
[24] |
KADIVAL Amaresh, KOUR Manpreet, MEENA Deepoo, et al. Extrusion-based 3D food printing:printability assessment and improvement techniques[J]. Food and Bioprocess Technology,2022,16(5):113−125.
|
[25] |
LIU Zhengbin, ZHANG Min, BHANDARI Bhesh, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering,2017,220:76−82.
|
[26] |
XU Meiling, DONG Qiaoru, HUANG Guiying, et al. Physical and 3D printing properties of arrowroot starch gels[J]. Foods,2022,11(14):2140. doi: 10.3390/foods11142140
|
[27] |
ZAKANI Behzad, GRECOV Dana. Yield stress analysis of cellulose nanocrystalline gels[J]. Cellulose,2020,27(16):9337−9353. doi: 10.1007/s10570-020-03429-7
|
[28] |
LEI Du, AMIN Ghavaminejad, YAN Zhicao, et al. Effect of a functional polymer on the rheology and microstructure of sodium alginate[J]. Carbohydrate Polymers,2018,199:58−67. doi: 10.1016/j.carbpol.2018.07.001
|
[29] |
ZHU F L, CHEN M, FENG Q Q. Water distribution within wetted porous fabric exposed to a thermal radiation characterized by low-field nuclear magnetic resonance[J]. Heat and Mass Transfer,2019,55(4):1239−1243. doi: 10.1007/s00231-018-2463-7
|
[30] |
孙伟俊. 基于机器视觉的3D打印表面缺陷多角度在线检测技术研究[D]. 杭州:浙江大学, 2019. [SHUN Weijun. Research on technologies of multi-view online detection of surface defect in 3D printing based on machine vision[D]. Hangzhou: Zhejiang University, 2019.
SHUN Weijun. Research on technologies of multi-view online detection of surface defect in 3D printing based on machine vision[D]. Hangzhou: Zhejiang University, 2019.
|