XU Yifeng, XU Cheng’e, XIONG Haitao. Electrochemiluminescence Determination of Mo(Ⅵ) Content in Beans Based on Polyluminol Composite Modified Electrode[J]. Science and Technology of Food Industry, 2024, 45(5): 205−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030272.
Citation: XU Yifeng, XU Cheng’e, XIONG Haitao. Electrochemiluminescence Determination of Mo(Ⅵ) Content in Beans Based on Polyluminol Composite Modified Electrode[J]. Science and Technology of Food Industry, 2024, 45(5): 205−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030272.

Electrochemiluminescence Determination of Mo(Ⅵ) Content in Beans Based on Polyluminol Composite Modified Electrode

More Information
  • Received Date: March 27, 2023
  • Available Online: January 04, 2024
  • In this study, based on the sensitization effect of Mo(Ⅵ) on luminol electroreduction luminescence signals, combined with the amplifying effect of graphene and positively charged gold nanoparticle ((+)AuNPs), a novel electrochemiluminescence method for sensitive and accurate detection of Mo(Ⅵ) content in legumes seeds was established. The Nafion-graphene/(+)AuNPs/polyluminol composite modified electrode was firstly prepared by the drip coating method, and then (+)AuNPs and luminol were modified on the surface of the Nafion-graphene composite electrode by electrostatic assembly and electrochemical polymerization technology. The composite modified electrode was characterized by cyclic voltammetry and ECL technology, and the experimental conditions for determination of Mo(Ⅵ) were optimized. The results showed that the optimal experimental conditions for the determination of Mo(Ⅵ) were saturated borax buffer solution, potential scanning rate of 100 mV/s and concentrated time of 13 minutes. Under the selected conditions, the concentration of Mo(Ⅵ) was well linear with the enhancement of electroreduction luminous signal in the range of 5.0×10−9~1.0×10−6 mol/L. Detection limit of the method and relative standard deviation (RSD) was 2.1×10−9 mol/L (3σ, C=1.0×10−7 mol/L, n=11) and 2.4%, respectively. This method had been applied to the detection of Mo(Ⅵ) content from soybean and mung beans. The recovery rate was between 91.42% and 108.0%. This proposed method is simple and economical, and is expected to be applied to the accurate determination of Mo(Ⅵ) content in other beans seeds.
  • [1]
    林朋飞, 张晓健, 陈超, 等. 含钼废水处理及饮用水应急处理技术及工艺[J]. 清华大学学报(自然科学版),2014,54(5):613−618. [LIN P F, ZHANG X J, CHEN C, et al. Treatment of molybdenum-containing wastewater and drinking water[J]. Journal of Tsinghua University (Science and Technology),2014,54(5):613−618.]

    LIN P F, ZHANG X J, CHEN C, et al. Treatment of molybdenum-containing wastewater and drinking water[J]. Journal of Tsinghua University (Science and Technology), 2014, 545): 613618.
    [2]
    王丁林, 李清清. 婴幼儿配方乳粉中钼含量测定的方法探讨[J]. 中国乳品工业,2022,50(10):55−58. [WANG D L, LI Q Q. Discussion on the determination method of molybdenum content in infant formula milk powder[J]. China Dairy Industry,2022,50(10):55−58.]

    WANG D L, LI Q Q. Discussion on the determination method of molybdenum content in infant formula milk powder[J]. China Dairy Industry, 2022, 5010): 5558.
    [3]
    张木, 胡承孝, 赵小虎, 等. 钼硒互作对小白菜产量及营养品质的影响[J]. 华中农业大学学报,2013,32(3):72−76. [ZHANG M, HU C X, ZHAO X H, et al. Effects of co-applying Mo and Se on yield and quality of Chinese cabbage[J]. Journal of Huazhong Agricultural University,2013,32(3):72−76.]

    ZHANG M, HU C X, ZHAO X H, et al. Effects of co-applying Mo and Se on yield and quality of Chinese cabbage[J]. Journal of Huazhong Agricultural University, 2013, 323): 7276.
    [4]
    李龙杰, 李忠, 李荀. “钼不暇接”—无处不在的钼元素[J]. 大学化学,2020,35(11):62−65. [LI L J, LI Z, LI X. The ubiquitous molybdenum element[J]. University Chemistry,2020,35(11):62−65.]

    LI L J, LI Z, LI X. The ubiquitous molybdenum element[J]. University Chemistry, 2020, 3511): 6265.
    [5]
    严进. 天然花青素分光光度法测定豆类中的痕量钼(Ⅵ)[J]. 化学试剂,2018,40(4):353−356. [YAN J. Determination of trace molybdenum in bean samples with natural anthocyanins spectrophotometry[J]. Chemical Reagents,2018,40(4):353−356.]

    YAN J. Determination of trace molybdenum in bean samples with natural anthocyanins spectrophotometry[J]. Chemical Reagents, 2018, 404): 353356.
    [6]
    KLOCHKOAL A, BARBALAT D, CHEBOTAREV A, et al. Dispersive liquid-liquid semi-microextraction of molybdenum(Ⅵ) with 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride for its spectrophotometric determination[J]. Journal of the Iranian Chemical Society,2021,18(1):109−115. doi: 10.1007/s13738-020-02008-8
    [7]
    QU W, ZHOU C Y, CAI L L, et al. Study on determination of molybdenum in molybdenum concentrate by atomic absorption spectrometry indirectly[J]. Spectroscopy and Spectral Analysis,2017,37(3):984−989.
    [8]
    GURKAN R, KORKMAZ S, ALTUNARY N. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry[J]. Talanta,2016,155(8):38−46.
    [9]
    SREENIVASULU V, KUMAR N S, DHARMENDRA V, et al. Determination of boron, phosphorus, and molybdenum content in biosludge samples by microwave plasma atomic emission spectrometry (MP-AES)[J]. Applied Sciences,2017,7(3):264−273. doi: 10.3390/app7030264
    [10]
    杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析,2019,39(12):55−60. [YANG X N, CHEN D, LI X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metalurgical Analysis,2019,39(12):55−60.]

    YANG X N, CHEN D, LI X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metalurgical Analysis, 2019, 3912): 5560.
    [11]
    廖朝东, 耿国兴, 陆建平, 等. 正丁醇萃取-原子荧光光谱法间接测定茶叶中的钼[J]. 分析化学,2012,40(6):964−967. [LIAO C D, GENG G X, LU J P, et al. Indirect determination of molybdenum in tea with N-butyl alcohol extraction by atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry,2012,40(6):964−967.]

    LIAO C D, GENG G X, LU J P, et al. Indirect determination of molybdenum in tea with N-butyl alcohol extraction by atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 406): 964967.
    [12]
    李明, 陆丽君, 蔡玉曼, 等. 氢化物发生—原子荧光光谱法测定钨矿石、钼矿石中锑[J]. 分析试验室,2014,33(9):1092−1096. [LI M, LU L J, CAI Y M, et al. Determination of Sb in tungsten ores and molybdenum ores by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory,2014,33(9):1092−1096.]

    LI M, LU L J, CAI Y M, et al. Determination of Sb in tungsten ores and molybdenum ores by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2014, 339): 10921096.
    [13]
    杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析,2011,31(11):24−28. [YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis-flow injection chemiluminescence analysis[J]. Metalurgical Analysis,2011,31(11):24−28.]

    YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis-flow injection chemiluminescence analysis[J]. Metalurgical Analysis, 2011, 3111): 2428.
    [14]
    杨玲娟, 顾水英, 葛勐. 植物种子中微量钼的电化学发光分析法测定研究[J]. 安徽农业科学,2012,40(13):7620−7621,7624. [YANG L J, GU S Y, GE M. Determination of trace molybdenum in plant seeds by electrochemiluminescence method[J]. Journal of Anhui Agricultural Sciences,2012,40(13):7620−7621,7624.]

    YANG L J, GU S Y, GE M. Determination of trace molybdenum in plant seeds by electrochemiluminescence method[J]. Journal of Anhui Agricultural Sciences, 2012, 4013): 76207621,7624.
    [15]
    朱霞萍, 郭兵, 曾春霖. 水杨基荧光酮荧光猝灭法测定钼原矿中钼[J]. 冶金分析,2014,34(3):43−47. [ZHU X P, GUO B, ZENG C L. Determination of molybdenum in molybdenum ore by salicylfluorone fluorescence quenching method[J]. Metalurgical Analysis,2014,34(3):43−47.]

    ZHU X P, GUO B, ZENG C L. Determination of molybdenum in molybdenum ore by salicylfluorone fluorescence quenching method[J]. Metalurgical Analysis, 2014, 343): 4347.
    [16]
    WANG X Y, SU Z, LI L, et al. Sensitive detection of molybdenum through its catalysis and quenching of gold nanocluster fluorescence[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:117909−117914. doi: 10.1016/j.saa.2019.117909
    [17]
    ARANCIBIA V, CARLOS R R, MARGARITA E A, et al. Fast and highly sensitive method for molybdenum (Ⅵ) determination by catalytic adsorptive stripping voltammetry[J]. Sensors and Actuators B:Chemical,2018,258(4):612−620.
    [18]
    CARLOS R R, MARGARITA E A, ARANCIBIA V. Determination of molybdenum (Ⅵ) via adsorptive stripping voltammetry using an ex-situ bismuth screen-printed carbon electrode[J]. Microchemical Journal,2020,154(5):104589−104596.
    [19]
    NIKOLAOU P, VALENTI G, PAOLUCCI F. Nano-structured materials for the electrochemiluminescence signal enhancement[J]. Electrochimica Acta,2021,388(8):138586−138599.
    [20]
    ALEMU Y A, RAMPAZZO E, PAOLUCCI F, et al. Strategies of tailored nanomaterials for electrochemiluminescence signal enhancements[J]. Current Opinion in Colloid & Interface Science,2022,61(10):101621−101630.
    [21]
    郑行望, 章竹君, 王琦, 等. 基于电还原鲁米诺电化学发光分析法测定水样中钼(Ⅵ)[J]. 分析化学,2003,31(9):1076−1078. [ZHENG X W, ZHANG Z J, WANG Q, et al. Electrogenerated chemiluminescence determination of molybdenum based on its sensitizing effect in electrochemical reduction luminol[J]. Chinese Journal of Analytical Chemistry,2003,31(9):1076−1078.]

    ZHENG X W, ZHANG Z J, WANG Q, et al. Electrogenerated chemiluminescence determination of molybdenum based on its sensitizing effect in electrochemical reduction luminol[J]. Chinese Journal of Analytical Chemistry, 2003, 319): 10761078.
    [22]
    杨玲娟, 李晓东, 王晓峰. 流动注射-电化学发光法测定煤灰中痕量钼(Ⅵ)[J]. 理化检验(化学分册),2012,48(7):753−755,769. [YANG L J, LI X D, WANG X F. Determination of trace amount of molybdenum (Ⅵ) in coal ash by flow injection-electrochemiluminescence[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2012,48(7):753−755,769.]

    YANG L J, LI X D, WANG X F. Determination of trace amount of molybdenum (Ⅵ) in coal ash by flow injection-electrochemiluminescence[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2012, 487): 753755,769.
    [23]
    JIN X, FENG C F, DEEPALEKSHMI P, et al. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics[J]. Chemical Engineering Journal Advances,2020,4:100034. doi: 10.1016/j.ceja.2020.100034
    [24]
    YANG Y, LIU Q, LIU X P, et al. Multifunctional reduced graphene oxide (RGO)/Fe3O4/CdSe nanocomposite for electrochemiluminescence immunosensor[J]. Electrochimica Acta,2016,190:948−955. doi: 10.1016/j.electacta.2016.01.014
    [25]
    YANG M Q, WANG L, LU H Z, et al. Graphene and graphene-like carbon nanomaterials-based electrochemical biosensors for phytohormone detection[J]. Carbon Letters,2023(33):1343−1358.
    [26]
    XING B, ZHU W J, ZHENG X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/AuNPs-Luminol for insulin detection[J]. Sensors and Actuators B: Chemical,2018,265(7):403−411.
    [27]
    DU F K, ZHANG H, TAN X C, et al. Ru(bpy)32+-Silica@Poly-L-lysine-Au as labels for electrochemiluminescence lysozyme aptasensor based on 3D graphene[J]. Biosensors and Bioelectronics,2018,106(5):50−56.
    [28]
    LU L P, GUO L Q, LI J, et al. Electrochemiluminescent detection of Pb2+by graphene/gold nanoparticles and CdSe quantum dots[J]. Applied Surface Science,2016,388(12):431−436.
    [29]
    ZHAO J, DA J, YANG S S, et al. Efficient electrochemiluminescence of perylene nanocrystal entrapped in hierarchical porous Au nanoparticle-graphene oxide film for bioanalysis based on one-pot DNA Amplification[J]. Electrochimica Acta,2020,332(2):135389−135395.
    [30]
    CAO J T, FU X L, LIU F R, et al. Reduced graphene oxide-gold nanoparticlescatalase-based dual signal amplification strategy in a spatial-resolved ratiometric electrochemiluminescence immunoassay[J]. Analyst,2020,145(1):91−96. doi: 10.1039/C9AN02056J
    [31]
    QI Y, HE J, XIU F R, et al. A facile chemiluminescence sensing for ultrasensitive detection of heparin using charge effect of positively-charged AuNPs[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2019,216:310−318.
    [32]
    ZHANG C G, ZHONG Y Y, HE Q Y, et al. Positively charged nanogold combined with expanded mesoporous silica-based immunoassay for the detection of avermectin[J]. Food Analytical Methods,2020,13:1−9. doi: 10.1007/s12161-019-01647-9
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (89) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return