Citation: | XU Yifeng, XU Cheng’e, XIONG Haitao. Electrochemiluminescence Determination of Mo(Ⅵ) Content in Beans Based on Polyluminol Composite Modified Electrode[J]. Science and Technology of Food Industry, 2024, 45(5): 205−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030272. |
[1] |
林朋飞, 张晓健, 陈超, 等. 含钼废水处理及饮用水应急处理技术及工艺[J]. 清华大学学报(自然科学版),2014,54(5):613−618. [LIN P F, ZHANG X J, CHEN C, et al. Treatment of molybdenum-containing wastewater and drinking water[J]. Journal of Tsinghua University (Science and Technology),2014,54(5):613−618.]
|
[2] |
王丁林, 李清清. 婴幼儿配方乳粉中钼含量测定的方法探讨[J]. 中国乳品工业,2022,50(10):55−58. [WANG D L, LI Q Q. Discussion on the determination method of molybdenum content in infant formula milk powder[J]. China Dairy Industry,2022,50(10):55−58.]
|
[3] |
张木, 胡承孝, 赵小虎, 等. 钼硒互作对小白菜产量及营养品质的影响[J]. 华中农业大学学报,2013,32(3):72−76. [ZHANG M, HU C X, ZHAO X H, et al. Effects of co-applying Mo and Se on yield and quality of Chinese cabbage[J]. Journal of Huazhong Agricultural University,2013,32(3):72−76.]
|
[4] |
李龙杰, 李忠, 李荀. “钼不暇接”—无处不在的钼元素[J]. 大学化学,2020,35(11):62−65. [LI L J, LI Z, LI X. The ubiquitous molybdenum element[J]. University Chemistry,2020,35(11):62−65.]
|
[5] |
严进. 天然花青素分光光度法测定豆类中的痕量钼(Ⅵ)[J]. 化学试剂,2018,40(4):353−356. [YAN J. Determination of trace molybdenum in bean samples with natural anthocyanins spectrophotometry[J]. Chemical Reagents,2018,40(4):353−356.]
|
[6] |
KLOCHKOAL A, BARBALAT D, CHEBOTAREV A, et al. Dispersive liquid-liquid semi-microextraction of molybdenum(Ⅵ) with 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride for its spectrophotometric determination[J]. Journal of the Iranian Chemical Society,2021,18(1):109−115. doi: 10.1007/s13738-020-02008-8
|
[7] |
QU W, ZHOU C Y, CAI L L, et al. Study on determination of molybdenum in molybdenum concentrate by atomic absorption spectrometry indirectly[J]. Spectroscopy and Spectral Analysis,2017,37(3):984−989.
|
[8] |
GURKAN R, KORKMAZ S, ALTUNARY N. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry[J]. Talanta,2016,155(8):38−46.
|
[9] |
SREENIVASULU V, KUMAR N S, DHARMENDRA V, et al. Determination of boron, phosphorus, and molybdenum content in biosludge samples by microwave plasma atomic emission spectrometry (MP-AES)[J]. Applied Sciences,2017,7(3):264−273. doi: 10.3390/app7030264
|
[10] |
杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析,2019,39(12):55−60. [YANG X N, CHEN D, LI X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metalurgical Analysis,2019,39(12):55−60.]
|
[11] |
廖朝东, 耿国兴, 陆建平, 等. 正丁醇萃取-原子荧光光谱法间接测定茶叶中的钼[J]. 分析化学,2012,40(6):964−967. [LIAO C D, GENG G X, LU J P, et al. Indirect determination of molybdenum in tea with N-butyl alcohol extraction by atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry,2012,40(6):964−967.]
|
[12] |
李明, 陆丽君, 蔡玉曼, 等. 氢化物发生—原子荧光光谱法测定钨矿石、钼矿石中锑[J]. 分析试验室,2014,33(9):1092−1096. [LI M, LU L J, CAI Y M, et al. Determination of Sb in tungsten ores and molybdenum ores by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory,2014,33(9):1092−1096.]
|
[13] |
杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析,2011,31(11):24−28. [YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis-flow injection chemiluminescence analysis[J]. Metalurgical Analysis,2011,31(11):24−28.]
|
[14] |
杨玲娟, 顾水英, 葛勐. 植物种子中微量钼的电化学发光分析法测定研究[J]. 安徽农业科学,2012,40(13):7620−7621,7624. [YANG L J, GU S Y, GE M. Determination of trace molybdenum in plant seeds by electrochemiluminescence method[J]. Journal of Anhui Agricultural Sciences,2012,40(13):7620−7621,7624.]
|
[15] |
朱霞萍, 郭兵, 曾春霖. 水杨基荧光酮荧光猝灭法测定钼原矿中钼[J]. 冶金分析,2014,34(3):43−47. [ZHU X P, GUO B, ZENG C L. Determination of molybdenum in molybdenum ore by salicylfluorone fluorescence quenching method[J]. Metalurgical Analysis,2014,34(3):43−47.]
|
[16] |
WANG X Y, SU Z, LI L, et al. Sensitive detection of molybdenum through its catalysis and quenching of gold nanocluster fluorescence[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:117909−117914. doi: 10.1016/j.saa.2019.117909
|
[17] |
ARANCIBIA V, CARLOS R R, MARGARITA E A, et al. Fast and highly sensitive method for molybdenum (Ⅵ) determination by catalytic adsorptive stripping voltammetry[J]. Sensors and Actuators B:Chemical,2018,258(4):612−620.
|
[18] |
CARLOS R R, MARGARITA E A, ARANCIBIA V. Determination of molybdenum (Ⅵ) via adsorptive stripping voltammetry using an ex-situ bismuth screen-printed carbon electrode[J]. Microchemical Journal,2020,154(5):104589−104596.
|
[19] |
NIKOLAOU P, VALENTI G, PAOLUCCI F. Nano-structured materials for the electrochemiluminescence signal enhancement[J]. Electrochimica Acta,2021,388(8):138586−138599.
|
[20] |
ALEMU Y A, RAMPAZZO E, PAOLUCCI F, et al. Strategies of tailored nanomaterials for electrochemiluminescence signal enhancements[J]. Current Opinion in Colloid & Interface Science,2022,61(10):101621−101630.
|
[21] |
郑行望, 章竹君, 王琦, 等. 基于电还原鲁米诺电化学发光分析法测定水样中钼(Ⅵ)[J]. 分析化学,2003,31(9):1076−1078. [ZHENG X W, ZHANG Z J, WANG Q, et al. Electrogenerated chemiluminescence determination of molybdenum based on its sensitizing effect in electrochemical reduction luminol[J]. Chinese Journal of Analytical Chemistry,2003,31(9):1076−1078.]
|
[22] |
杨玲娟, 李晓东, 王晓峰. 流动注射-电化学发光法测定煤灰中痕量钼(Ⅵ)[J]. 理化检验(化学分册),2012,48(7):753−755,769. [YANG L J, LI X D, WANG X F. Determination of trace amount of molybdenum (Ⅵ) in coal ash by flow injection-electrochemiluminescence[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2012,48(7):753−755,769.]
|
[23] |
JIN X, FENG C F, DEEPALEKSHMI P, et al. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics[J]. Chemical Engineering Journal Advances,2020,4:100034. doi: 10.1016/j.ceja.2020.100034
|
[24] |
YANG Y, LIU Q, LIU X P, et al. Multifunctional reduced graphene oxide (RGO)/Fe3O4/CdSe nanocomposite for electrochemiluminescence immunosensor[J]. Electrochimica Acta,2016,190:948−955. doi: 10.1016/j.electacta.2016.01.014
|
[25] |
YANG M Q, WANG L, LU H Z, et al. Graphene and graphene-like carbon nanomaterials-based electrochemical biosensors for phytohormone detection[J]. Carbon Letters,2023(33):1343−1358.
|
[26] |
XING B, ZHU W J, ZHENG X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/AuNPs-Luminol for insulin detection[J]. Sensors and Actuators B: Chemical,2018,265(7):403−411.
|
[27] |
DU F K, ZHANG H, TAN X C, et al. Ru(bpy)32+-Silica@Poly-L-lysine-Au as labels for electrochemiluminescence lysozyme aptasensor based on 3D graphene[J]. Biosensors and Bioelectronics,2018,106(5):50−56.
|
[28] |
LU L P, GUO L Q, LI J, et al. Electrochemiluminescent detection of Pb2+by graphene/gold nanoparticles and CdSe quantum dots[J]. Applied Surface Science,2016,388(12):431−436.
|
[29] |
ZHAO J, DA J, YANG S S, et al. Efficient electrochemiluminescence of perylene nanocrystal entrapped in hierarchical porous Au nanoparticle-graphene oxide film for bioanalysis based on one-pot DNA Amplification[J]. Electrochimica Acta,2020,332(2):135389−135395.
|
[30] |
CAO J T, FU X L, LIU F R, et al. Reduced graphene oxide-gold nanoparticlescatalase-based dual signal amplification strategy in a spatial-resolved ratiometric electrochemiluminescence immunoassay[J]. Analyst,2020,145(1):91−96. doi: 10.1039/C9AN02056J
|
[31] |
QI Y, HE J, XIU F R, et al. A facile chemiluminescence sensing for ultrasensitive detection of heparin using charge effect of positively-charged AuNPs[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2019,216:310−318.
|
[32] |
ZHANG C G, ZHONG Y Y, HE Q Y, et al. Positively charged nanogold combined with expanded mesoporous silica-based immunoassay for the detection of avermectin[J]. Food Analytical Methods,2020,13:1−9. doi: 10.1007/s12161-019-01647-9
|