Effect of Phenolic Acid and Organic Acid Co-color on the Quality of Hawthorn Wine during Storage
-
Graphical Abstract
-
Abstract
To solve the problem that hawthorn wine tends to lose its color and quality during storage, this experiment established the simulation system, and three acids with strong co-color ability were selected from eight phenolic and organic acids. The effects of the three phenolic and organic acids on the simulated system (0~30 d) and fermented hawthorn wine (storage time 0~120 d) were evaluated comprehensively by using the CIELab color system, and determining the chromatic colors, polyphenols, anthocyanins, and flavonoids. The results showed that different phenolic acids and organic acids had different cochromatic effects. Different phenolic and organic acid treatments in the CIELab color system in the simulated system showed good effects on the L*, a*, b*, C*ab and hab as well as on the chromatic hue of the wine. The total phenolic content of the wine was increased by 18.00% and 20.88% for ferulic acid and vanillic acid treatment, respectively, compared to the control group. The content of anthocyanin in the simulated system treated with p-hydroxybenzoic acid and vanillic acid increased by 17.27% and 15.74%, respectively, compared with the control group. During storage of fermented hawthorn wine, para-hydroxybenzoic acid could significantly improve the chromaticity (P<0.05). The total phenolic content of the fermented wine with ferulic acid and vanillic acid treatment increased by 37.42% and 34.44% compared to the control group. Vanillic acid and p-hydroxybenzoic acid treatment increased the anthocyanin content of fermented wine by 22.93% and 6.92% compared to the control group. In conclusion, phenolic acid and organic acid auxiliary color treatment can reduce the loss of color and phenolic substances and improve the quality of hawthorn wine. It has some complementary color effect on hawthorn wine.
-
-