SHANG Xuke, ZHU Siliang, ZHENG Baodong, et al. Effects of Digestive Enzymes on Rheological Properties and Microstructure of κ-Carrageenan/Casein Composite Systemsin vitro Simulated Digestion Environment[J]. Science and Technology of Food Industry, 2024, 45(4): 33−41. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030008.
Citation: SHANG Xuke, ZHU Siliang, ZHENG Baodong, et al. Effects of Digestive Enzymes on Rheological Properties and Microstructure of κ-Carrageenan/Casein Composite Systemsin vitro Simulated Digestion Environment[J]. Science and Technology of Food Industry, 2024, 45(4): 33−41. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030008.

Effects of Digestive Enzymes on Rheological Properties and Microstructure of κ-Carrageenan/Casein Composite Systemsin vitro Simulated Digestion Environment

More Information
  • Received Date: February 28, 2023
  • Available Online: December 14, 2023
  • The combination of carrageenan and casein had a certain protective effect on the intestinal barrier. In order to study whether the digestive enzymes of the κ-carrageenan and casein in vitro digestion simulation were the main factors affecting the conformational transformation of polysaccharides or polysaccharide-protein composite systems, κ-carrageenan was used as the research object and the casein in cow's milk was selected as the target food matrix in this paper to explore the effect of digestive enzymes on the binding stability of κ-carrageenan/casein composite systems in vitro simulated digestion. The results showed that gastrointestinal digestive enzymes had little effect on the binding of κ-carrageenan to casein, but could significantly increase the exposure of sulfate groups in the system, which was not conducive to the configuration of κ-carrageenan. The casein in the system was decomposed into low molecular weight proteins or peptides, which increased the characteristic length of the composite system, weakened the interaction, decreased the viscoelasticity, and decreased the stability of the double helix structure. This study provides a theoretical basis for the safe application of κ-carrageenan.
  • [1]
    CAMPO V L, KAWANO D F, SILVA D B D, et al. Carrageenans:Biological properties, chemical modifications and structural analysis-A review[J]. Carbohydrate Polymers,2009,77(2):167−180. doi: 10.1016/j.carbpol.2009.01.020
    [2]
    NECAS J , BARTOSIKOVA L. Carrageenan:A review[J]. Veterinrn Medicna, 2013, 58(4):187-205.
    [3]
    YUGUCHI Y, THUY T T T, URAKAWA H, et al. Structural characteristics of carrageenan gels:Temperature and concentration dependence[J]. Food Hydrocolloids,2002,16(6):515−522. doi: 10.1016/S0268-005X(01)00131-X
    [4]
    郭娟娟. κ-卡拉胶寡糖酶法制备及其免疫防御调节机制的研究[D]. 福州:福建农林大学, 2018. [GUO J J. Enzymatic hydrolysis preparation of κ-carrageenan oligosaccharides and its mechanism in immunologic defense[D]. Fuzhou:Fujian Agriculture and Forestry University, 2018.]

    GUO J J. Enzymatic hydrolysis preparation of κ-carrageenan oligosaccharides and its mechanism in immunologic defense[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018.
    [5]
    侯丽丽. 刺麒麟菜(Eucheuma spinosum)提取ι-卡拉胶的新工艺及流变学特性研究[D]. 青岛:中国海洋大学, 2014. [HOU L L. The new extraction of iota-carrageenan from Eucheuma spinosum and studies of rheological properties[D]. Qingdao:Ocean University of China, 2014.]

    HOU L L. The new extraction of iota-carrageenan from Eucheuma spinosum and studies of rheological properties[D]. Qingdao: Ocean University of China, 2014.
    [6]
    TANG M X, ZHU Y D, LI D, et al. Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems[J]. LWT, 2019, 113:108296.
    [7]
    FONTES-CANDIA C, STRÖM A, LOPEZ-SANCHEZ P, et al. Rheological and structural characterization of carrageenan emulsion gels[J]. Algal Research, 2020, 47:101873.
    [8]
    BŁASZAK B, GOZDECKA G, SHYICHUK A. Carrageenan as a functional additive in the production of cheese and cheese-like products[J]. Acta Scientiarum Polonorum Technologia Alimentaria,2018,17(2):107−116.
    [9]
    TOBACMAN J K, BHATTACHARYYA S, BORTHAKUR A, et al. The carrageenan diet:not recommended[J]. Science,2008,321(5892):1040−1041.
    [10]
    张慧, 杨瑞利, 刘芳, 等. 食品级 κ-卡拉胶对肥胖小鼠致结肠炎风险及体脂蓄积的影响[J]. 食品科学,2021,42(15):121−128. [ZHANG H, YANG R L, LIU F, et al. Effect of food-grade κ-carrageenan on risk of colitis and accumulation of body fat in obese mice[J]. Food Science,2021,42(15):121−128.]

    ZHANG H, YANG R L, LIU F, et al. Effect of food-grade κ-carrageenan on risk of colitis and accumulation of body fat in obese mice[J]. Food Science, 2021, 4215): 121128.
    [11]
    张慧, 刘芳, 杨瑞利, 等. 食品级 κ-卡拉胶对机体致结肠炎风险的探讨[J]. 现代食品科技,2021,37(2):28−35. [ZHANG H, LIU F, YANG R L, et al. Discussion on the risk of body colitis caused by food-grade κ-carrageenan[J]. Modern Food Science and Technology,2021,37(2):28−35.] doi: 10.13982/j.mfst.1673-9078.2021.2.0786

    ZHANG H, LIU F, YANG R L, et al. Discussion on the risk of body colitis caused by food-grade κ-carrageenan[J]. Modern Food Science and Technology, 2021, 372): 2835. doi: 10.13982/j.mfst.1673-9078.2021.2.0786
    [12]
    LIU F, HOU P F, ZHANG H, et al. Food-grade carrageenans and their implications in health and disease[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3918−3936. doi: 10.1111/1541-4337.12790
    [13]
    BHATTACHARYYA S, SHUMARD T, XIE H, et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity[J]. Nutrition and Healthy Aging,2017,4(2):181−192. doi: 10.3233/NHA-170023
    [14]
    DAVID S, SHANI L C, FAHOUM L, et al. Revisiting the carrageenan controversy:Do we really understand the digestive fate and safety of carrageenan in our foods?[J]. Food & Function,2018,9(3):1344−1352.
    [15]
    FAHOUM L, MOSCOVICI A, DAVID S, et al. Digestive fate of dietary carrageenan:Evidence of interference with digestive proteolysis and disruption of gut epithelial function[J]. Molecular Nutrition & Food Research, 2017, 61(3).
    [16]
    TOBACMAN J K. Review of harmful gastrointestinal effects of carrageenan in animal experiments[J]. Environ Health Perspect,2001,109(10):983−994. doi: 10.1289/ehp.01109983
    [17]
    MARTINO J V, VAN LIMBERGEN J, CAHILL L E. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation[J]. Frontiers in Pediatrics,2017,5(96):96.
    [18]
    章璐. 卡拉胶诱导结肠上皮细胞免疫响应的信号机制研究[D]. 宁波:宁波大学, 2012. [ZHANG L. Study on immune response and mechanism of carrageenan on human colonic epithelial cells[D]. Ningbo:Ningbo University, 2012.]

    ZHANG L. Study on immune response and mechanism of carrageenan on human colonic epithelial cells[D]. Ningbo: Ningbo University, 2012.
    [19]
    WEINER M L, FERGUSON H E, THORSRUD B A, et al. An infant formula toxicity and toxicokinetic feeding study on carrageenan in preweaning piglets with special attention to the immune system and gastrointestinal tract[J]. Food and Chemical Toxicology,2015,77:120−131. doi: 10.1016/j.fct.2014.12.022
    [20]
    SPAGNUOLO P, DALGLEISH D, GOFF H, et al. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers[J]. Food Hydrocolloids,2005,19(3):371−377. doi: 10.1016/j.foodhyd.2004.10.003
    [21]
    王芳. 卡拉胶对酪蛋白胶束结构及低脂干酪品质的影响机制[D]. 北京:中国农业大学, 2014. [WANG F. Effect of carrageenan on the structure of casein micelle and the quality of low fat cheese and the mechnism[D]. Beijing:China Agricultural University, 2014.]

    WANG F. Effect of carrageenan on the structure of casein micelle and the quality of low fat cheese and the mechnism[D]. Beijing: China Agricultural University, 2014.
    [22]
    胡静. 蛋白质聚集状态影响蛋白质/多糖静电复合及其食品功能特性研究[D]. 武汉:湖北工业大学, 2019. [HU J. Effects of protein assemblies on protein/polysaccharide electrostatic complexation and its functional properties[D]. Wuhan:Hubei University of Technology, 2019.]

    HU J. Effects of protein assemblies on protein/polysaccharide electrostatic complexation and its functional properties[D]. Wuhan: Hubei University of Technology, 2019.
    [23]
    YE A. Complexation between milk proteins and polysaccharides via electrostatic interaction:Principles and applications-A review[J]. International Journal of Food Science & Technology,2008,43(3):406−415.
    [24]
    BAEZA R I, CARP D J, PÉREZ O E, et al. κ-carrageenan-protein interactions:Effect of proteins on polysaccharide gelling and textural properties[J]. LWT-Food Science and Technology,2002,35(8):741−747. doi: 10.1006/fstl.2002.0938
    [25]
    CHENG J, MA Y, LI X, et al. Effects of milk protein-polysaccharide interactions on the stability of ice cream mix model systems[J]. Food Hydrocolloids,2015,45:327−336. doi: 10.1016/j.foodhyd.2014.11.027
    [26]
    BLAKEMORE W R, DAVIS S R, HRONCICH M M, et al. Carrageenan analysis Part 1:Characterisation of the carrageenan test material and stability in swine-adapted infant formula[J]. Food Additives & Contaminants,2014,31(10):1661−1669.
    [27]
    BESSETTE C, BENOIT B, SEKKAL S, et al. Protective effects of β-casofensin, a bioactive peptide from bovine β-casein, against indomethacin-induced intestinal lesions in rats[J]. Molecular Nutrition & Food Research,2016,60(4):823−833.
    [28]
    BESSETTE C, HENRY G, SEKKAL S, et al. Oral administration of a casein matrix containing β-casofensin protects the intestinal barrier in two preclinical models of gut diseases[J]. Journal of Functional Foods,2016,27:223−235. doi: 10.1016/j.jff.2016.09.007
    [29]
    FERNÁNDEZ-TOMÉ S, MARTíNEZ-MAQUEDA D, TABERNERO M, et al. Effect of the long-term intake of a casein hydrolysate on mucin secretion and gene expression in the rat intestine[J]. Journal of Functional Foods,2017,33:176−180. doi: 10.1016/j.jff.2017.03.036
    [30]
    王露. 卡拉胶/明胶混合体系的相行为研究[D]. 武汉:湖北工业大学, 2015. [WANG L. Study on the phase behavior of carrageenan/gelatin mixture[D]. Wuhan:Hubei University of Technology, 2015.]

    WANG L. Study on the phase behavior of carrageenan/gelatin mixture[D]. Wuhan: Hubei University of Technology, 2015.
    [31]
    SONG S, WU S F, AI C Q, et al. Compositional analysis of sulfated polysaccharides from sea cucumber ( Stichopus japonicus) released by autolysis reaction[J]. International Journal of Biological Macromolecules, 2018, 114: 420−425. doi: 10.1016/j.ijbiomac.2018.03.137
    [32]
    LI R, WANG X B, LIU J N, et al. Relationship between molecular flexibility and emulsifying properties of soy protein isolate-glucose conjugates[J]. Journal of Agricultural and Food Chemistry,2019,67(14):4089−4097. doi: 10.1021/acs.jafc.8b06713
    [33]
    WANG W J, SHEN M Y, JIANG L, et al. Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels[J]. Food Chemistery,2020,313:126125. doi: 10.1016/j.foodchem.2019.126125
    [34]
    JIAO B, SHI A M, LIU H Z, et al. Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization[J]. Food Hydrocolloids,2018,77:329−335. doi: 10.1016/j.foodhyd.2017.10.009
    [35]
    DOI M, ONUKI A. Dynamic coupling between stress and composition in polymer solutions and blends[J]. Journal de Physique II,1992,2(8):1631−1656. doi: 10.1051/jp2:1992225
    [36]
    ONUKI A, TANIGUCHI T. Viscoelastic effects in early stage phase separation in polymeric[J]. Journal of Chemical Physics,1997,106(13):5761−5770. doi: 10.1063/1.473595
    [37]
    QAZVINI N T, BOLISETTY S, ADAMCIK J, et al. Self-healing fish gelatin sodium montmorillonite biohybrid coacervates structural and rheological characterization[J]. Biomacromolecules,2012,12(7):2136−2147.
    [38]
    BOHIDAR H, DUBIN P L, MAJHI P R, et al. Effects of protein-polyelectrolyte affinity and polyelectrolyte[J]. Biomacromolecules,2005,6:1573−1585. doi: 10.1021/bm049174p
    [39]
    胡颖娜. 酪蛋白与卡拉胶凝胶作用机理的研究[D]. 天津:天津科技大学, 2015. [HU Y N. Research on the gelling mechanisms of casein and carrageenan[D]. Tianjing:Tianjin University of Science and Technology, 2015.]

    HU Y N. Research on the gelling mechanisms of casein and carrageenan[D]. Tianjing: Tianjin University of Science and Technology, 2015.
    [40]
    WANG S N, YANG J J, SHAO G Q, et al. pH-induced conformational changes and interfacial dilatational rheology of soy protein isolated/soy hull polysaccharide complex and its effects on emulsion stabilization[J]. Food Hydrocolloids, 2020, 109:106579.
    [41]
    林伟伟. pH和盐浓度对秘鲁鱿鱼肌原纤维蛋白聚集过程的影响[D]. 杭州:浙江工商大学, 2015. [LIN W W. Effect of pH and aslt concentration on myofibrillar protein (Dosidicus gigas) aggregation process[D]. Hangzhou:Zhejiang Gongshang University, 2015.]

    LIN W W. Effect of pH and aslt concentration on myofibrillar protein (Dosidicus gigas) aggregation process[D]. Hangzhou: Zhejiang Gongshang University, 2015.
    [42]
    杨晋杰. pH诱导大豆多糖/蛋白结构影响界面稳定机制[D]. 锦州:渤海大学, 2020. [YANG J J. Effect of soy polysaccharide/protein structures induced by pH on the interfacial stabilization mechanism[D]. Jinzhou:Bohai University, 2020.]

    YANG J J. Effect of soy polysaccharide/protein structures induced by pH on the interfacial stabilization mechanism[D]. Jinzhou: Bohai University, 2020.
    [43]
    张爽, 张兰威, 韩雪. 乳酸菌蛋白酶与发酵乳制品质量相关性研究进展[J]. 微生物学报,2015,55(12):1530−1536. [ZHANG S, ZHANG L W, HAN X. Research progress on the correlation between lactic acid bacteria protease and the quality of fermented dairy products[J]. Acta Microbiologica Sinica,2015,55(12):1530−1536.] doi: 10.13343/j.cnki.wsxb.20150104

    ZHANG S, ZHANG L W, HAN X. Research progress on the correlation between lactic acid bacteria protease and the quality of fermented dairy products[J]. Acta Microbiologica Sinica, 2015, 5512): 15301536. doi: 10.13343/j.cnki.wsxb.20150104
    [44]
    魏衍尚, 宁利敏, 姚忠, 等. 卡拉胶多糖的分子修饰:卡拉胶酶和硫酸化酶的研究进展[J]. 食品与生物技术学报,2022,41(10):17−36. [WEI Y S, NING L M, YAO Z, et al. Molecular modification of carrageenan polysaccharides:Research progress of carrageenases and sulfatase[J]. Journal of Food Science and Biotechnology,2022,41(10):17−36.]

    WEI Y S, NING L M, YAO Z, et al. Molecular modification of carrageenan polysaccharides: Research progress of carrageenases and sulfatase[J]. Journal of Food Science and Biotechnology, 2022, 4110): 1736.
    [45]
    黄子珍, 黄丽, 杨攀, 等. κ-酪蛋白多态性对水牛乳酪蛋白体外消化性及消化产物生物活性的影响[J]. 饲料研究,2020,43(12):1−6. [HUANG Z Z, HUANG L, YANG P, et al. Effect of κ-casein polymorphism on in vitro digestibility and bioactivities of buffalo milk casein in simulated gastrointestinal digestion[J]. Feed Research,2020,43(12):1−6.]

    HUANG Z Z, HUANG L, YANG P, et al. Effect of κ-casein polymorphism on in vitro digestibility and bioactivities of buffalo milk casein in simulated gastrointestinal digestion[J]. Feed Research, 2020, 4312): 16.
    [46]
    曲丹妮. pH诱导大豆种皮多糖油/水界面吸附行为演变机制[D]. 锦州:渤海大学, 2021. [QU D N. The evolution mechanism of pH-induced soy hull polysaccharides O/W interface adsorption behavior[D]. Jinzhou:Bohai University, 2021.]

    QU D N. The evolution mechanism of pH-induced soy hull polysaccharides O/W interface adsorption behavior[D]. Jinzhou: Bohai University, 2021.
    [47]
    PEREIRA L, SOUSA A, COELHO H, et al. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids[J]. Biomolecular Engineering,2003,20(4−6):223−228. doi: 10.1016/S1389-0344(03)00058-3
    [48]
    ZHAO J K, SUN C, LI H Y, et al. Studies on the physicochemical properties, gelling behavior and drug release performance of agar/kappa-carrageenan mixed hydrogels[J]. International Journal of Biological Macromolecules,2020,154:878−887. doi: 10.1016/j.ijbiomac.2020.03.087
    [49]
    YE A Q, CUI J, CARPENTER E, et al. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk:Influence of protein composition[J]. International Dairy Journal,2019,97:76−85. doi: 10.1016/j.idairyj.2019.06.002
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 李志杰,闫睿思,汪秀娟,胡中海,蔡天赐,甄宗圆. 蛋白添加剂增强肉制品凝胶性研究进展. 食品科学. 2024(07): 348-357 .
    2. 曹潇,郭伟滨,林颖琪,林欣然,黄懿迅,夏文杰,陈旭,陈思谦. 采用流变、质构特性及感官评定快速鉴别蒸煮双皮奶和冲调双皮奶. 食品科技. 2024(12): 45-53 .
    3. 郭英. 菜籽蛋白-黄原胶复合物对乳状液稳定性的影响. 食品科技. 2022(02): 279-282 .
    4. 潘泓杉,马高兴,裴斐,马宁,仲磊,赵立艳,胡秋辉. 金针菇多糖对大豆分离蛋白凝胶的增强作用及其结构表征. 食品科学. 2022(20): 102-108 .
    5. 曲敏,王宇,刘琳琳,吴海波,朱颖,张光,朱秀清. 亲水胶体对植物蛋白凝胶影响的研究进展. 食品安全质量检测学报. 2022(22): 7246-7254 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (146) PDF downloads (24) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return