Citation: | XIANG Zhixuan, GUAN Leying, LI Jing, et al. Recombinant Expression and Characterization of A Novel Cold-Adapted β-Galactosidase from Paenibacillus polymyxa[J]. Science and Technology of Food Industry, 2023, 44(22): 125−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010185. |
[1] |
KOLEV P, ROCHA-MENDOZA D, RUIZ-RAMÍREZ S, et al. Screening and characterization of β-galactosidase activity in lactic acid bacteria for the valorization of acid whey[J]. JDS Communications,2022,3(1):1−6. doi: 10.3168/jdsc.2021-0145
|
[2] |
LU L L, GUO L C, WANG K, et al. β-Galactosidases:A great tool for synthesizing galactose-containing carbohydrates[J]. Biotechnology Advances,2020,39:107465. doi: 10.1016/j.biotechadv.2019.107465
|
[3] |
GAO X, WU J, WU D. Rational design of the β-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production[J]. Food Chemistry,2019,286:362−367. doi: 10.1016/j.foodchem.2019.01.212
|
[4] |
ARSOV A, IVANOV I, TSIGORIYNA L, et al. In vitro production of galactooligosaccharides by a novel β-galactosidase of Lactobacillus bulgaricus[J]. International Journal of Molecular Sciences,2022,23(22):14308. doi: 10.3390/ijms232214308
|
[5] |
YIN H F, BULTERMA J B, DIJKHUIZEN L, et al. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae[J]. Food Chemistry,2017,225:230−238. doi: 10.1016/j.foodchem.2017.01.030
|
[6] |
HUNG M N, LEE B H. Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96[J]. Applied Microbiology and Biotechnology,2002,58(4):439−445. doi: 10.1007/s00253-001-0911-6
|
[7] |
LIU Y, CHEN Z, JIANG Z Q, et al. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis[J]. International Journal of Biological Macromolecules,2017,104:1055−1063. doi: 10.1016/j.ijbiomac.2017.06.073
|
[8] |
SUN X J, DUAN X G, WU D, et al. Characterization of Sulfolobus solfataricus β-galactosidase mutant F441Y expressed in Pichia pastoris[J]. Journal of the Science of Food and Agriculture,2014,94(7):1359−1365. doi: 10.1002/jsfa.6419
|
[9] |
RUTKIEWICZ M, BUJACZ A, BUJACZ G. Structural features of cold-adapted dimeric GH2 β-D-galactosidase from Arthro bacter sp. 32cB[J]. BBA - Proteins and Proteomics,2019,1867(9):776−786. doi: 10.1016/j.bbapap.2019.06.001
|
[10] |
FAN Y T, HUA X, ZHANG Y Z, et al. Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3[J]. Protein Expression and Purification,2015,115:158−164. doi: 10.1016/j.pep.2015.07.001
|
[11] |
MANGIAGALLI M, LOTTI M. Cold-active β-galactosidases:insight into cold adaption mechanisms and biotechnological exploitation[J]. Marine Drugs,2021,19(1):43. doi: 10.3390/md19010043
|
[12] |
NAKAGAWA T, FUJIMOTO Y, IKEHATA R, et al. Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2[J]. Applied Microbiology and Biotechnology,2006,72(4):720−725. doi: 10.1007/s00253-006-0339-0
|
[13] |
PAWLAK-SZUKALSKA A, WANARSKA M, TOMASZ A, et al. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB-gene cloning, purification and characterization[J]. Process Biochemistry,2014,49(12):2122−2133. doi: 10.1016/j.procbio.2014.09.018
|
[14] |
TIMMUSK S, COPOLOVICI D, COPOLOVICI L, et al. Paenibacillus polymyxa biofilm polysaccharides antagonise Fusarium graminearum[J]. Scientific Reports,2019,9(1):1−11. doi: 10.1038/s41598-018-37186-2
|
[15] |
SAAD M A, ABDRABOU H S, ELKHTAB E, et al. Occurrence of toxic biogenic amines in various types of soft and hard cheeses and their control by Bacillus polymyxa D05-1[J]. Fermentation,2022,8(7):327. doi: 10.3390/fermentation8070327
|
[16] |
YUAN Y, ZHANG X Y, ZHANG H, et al. Degradative GH5 β-1, 3-1, 4-glucanase PpBglu5A for glucan in Paenibacillus polymyxa KF-1[J]. Process Biochemistry,2020,98:183−192. doi: 10.1016/j.procbio.2020.08.008
|
[17] |
HORI K, KAWABATA Y, NAKAZAWA Y, et al. A novel β-1, 4-mannanase isolated from Paenibacillus polymyxa KT551[J]. Food Science and Technology Research,2014,20(6):1261−1265. doi: 10.3136/fstr.20.1261
|
[18] |
张春园, 张鸣明, 胡先望, 等. 多粘类芽孢杆菌新普鲁兰酶基因克隆及其在大肠杆菌中的表达[J]. 食品工业科技,2020,41(15):119−123,128 doi: 10.13386/j.issn1002-0306.2020.15.019
ZHANG C Y, ZHANG M M, HU X W, et al. Cloning of neopullulanase gene from Paenibacillus polymyxa and its expression in Escherichia coli[J]. Science and Technology of Food Industry,2020,41(15):119−123,128. doi: 10.13386/j.issn1002-0306.2020.15.019
|
[19] |
LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
|
[20] |
KATROLIA P, YAN Q J, JIA H Y, et al. Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris[J]. Journal of Molecular Catalysis. B:Enzymatic, 2011, 69(3):112-119.
|
[21] |
LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. The Journal of Biological Chemistry,1951,193(1):265−275. doi: 10.1016/S0021-9258(19)52451-6
|
[22] |
LIU Y, YAN Q J, GUAN L Y, et al. Biochemical characterization of a novel protease-resistant α-galactosidase from Paecilomyces thermophila suitable for raffinose family oligosaccharides degradation[J]. Process Biochemistry,2020,94:370−379. doi: 10.1016/j.procbio.2020.04.013
|
[23] |
QIN Z M, LI S F, HUANG X, et al. Improving galactooligosaccharide synthesis efficiency of β-galactosidase Bgal1-3 by reshaping the active site with an intelligent hydrophobic amino acid scanning[J]. Journal of Agriculture and Food Chemistry,2019,67(40):11158−11166. doi: 10.1021/acs.jafc.9b04774
|
[24] |
KOLEV P, ROCHA-MENDOZA D, RUIZ-RAMÍREZ S, et al. Screening and characterization of β-galactosidase activity in lactic acid bacteria for the valorization of acid whey[J]. JDS Communications,2021,3(1):1−6.
|
[25] |
ZERVA A, LIMNAIOS A, KRITIKOU A S, et al. A novel thermophile β-galactosidase from Thermothielavioides terrestris producing galactooligosaccharides from acid whey[J]. New Biotechnology,2021,63:45−53. doi: 10.1016/j.nbt.2021.03.002
|
[26] |
PEPRAH A F, WANG T T, KOSIBA A A, et al. Integration of elastin-like polypeptide fusion system into the expression and purification of Lactobacillus sp. B164 β-galactosidase for lactose hydrolysis[J]. Bioresource Technology,2020,311:123513. doi: 10.1016/j.biortech.2020.123513
|
[27] |
LIN Q B, WANG S D, WANG M L, et al. A novel glycoside hydrolase family 42 enzyme with bifunctional β-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation[J]. International Journal of Biological Macromolecules,2019,140:129−139. doi: 10.1016/j.ijbiomac.2019.08.037
|
[28] |
ABURTO C, CASTILLO C, CORNEJO F, et al. β-Galactosidase from Exiguobacterium acetylicum:cloning, expression, purification and characterization[J]. Bioresource Technology,2019,277:211−215. doi: 10.1016/j.biortech.2019.01.005
|
[29] |
KATROLIA P, ZHANG M, YAN Q J, et al. Characterisation of a thermostable family 42 β-galactosidase (BgalC) family from Thermotoga maritima showing efficient lactose hydrolysis[J]. Food Chemistry,2011,125(2):614−621. doi: 10.1016/j.foodchem.2010.08.075
|
[30] |
SUN J J, YAO C Y, WANG W, et al. Cloning, expression and characterization of a novel cold-adapted β-galactosidase from the deep-sea bacterium Alteromonas sp. ML52[J]. Marine Drugs,2018,16(12):469. doi: 10.3390/md16120469
|
[31] |
WANG K, LI G, YU S Q, et al. A novel metagenome-derived β-galactosidase:gene cloning, overexpression, purification and characterization[J]. Applied Microbiology and Biotechnology,2010,88(1):155−165. doi: 10.1007/s00253-010-2744-7
|
[32] |
WANG L J, MOU Y Z, GUAN B, et al. Genome sequence of the psychrophilic Cryobacterium sp. LW097 and characterization of its four novel cold-adapted β-galactosidases[J]. International Journal of Biological Macromolecules,2020,163:2068−2083. doi: 10.1016/j.ijbiomac.2020.09.100
|
[33] |
CARNEIRO L A B C, LI Y, DUPREE P, et al. Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity[J]. International Journal of Biological Macromolecules,2018,120:279−287. doi: 10.1016/j.ijbiomac.2018.07.116
|
[34] |
JUAJUN O, NGUYEN T H, MAISCHBERGER T, et al. Cloning, purification, and characterization of β-galactosidase from Bacillus licheniformis DSM 13[J]. Applied Microbiology and Biotechnology,2011,89(3):645−654. doi: 10.1007/s00253-010-2862-2
|
1. |
穆雪萌,杜芯仪,王彦超,金云峰,张嘉. 桑椹来源的寡核苷酸显著改善小鼠骨质疏松症. 动物营养学报. 2024(01): 602-609 .
![]() | |
2. |
柯昌虎,严慧,赵阳,朱军,李志浩. 基于网络药理学和分子对接探讨黄精抗衰老的作用机制. 湖北农业科学. 2023(10): 100-108+131 .
![]() |